Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Intestinal Epithelial Cell-specific Knockout of METTL3 Aggravates Intestinal Inflammation in CLP Mice by Weakening the Intestinal Barrier

In Press, (this is not the final "Version of Record"). Available online 13 March, 2024
Author(s): Hongzhou Shi, Jiahui Sun, Yaya Sun, Junjie Wu, Guangqing Jiang, Zhaiyue Xu, Xin Shi* and Miao Fang
Published on: 13 March, 2024

DOI: 10.2174/0113892010271970240202054245

Price: $95

Abstract

Background: Many studies have demonstrated that the expression of methyltransferase- like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation.

Objectives: Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis.

Materials and Methods: Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis.

Results: METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways.

Conclusion: This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO- 1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.

[1]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[2]
Gotts, J.E.; Matthay, M.A. Sepsis: Pathophysiology and clinical management. BMJ, 2016, 353, i1585.
[http://dx.doi.org/10.1136/bmj.i1585] [PMID: 27217054]
[3]
Vincent, J.L.; Opal, S.M.; Marshall, J.C.; Tracey, K.J. Sepsis definitions: Time for change. Lancet, 2013, 381(9868), 774-775.
[http://dx.doi.org/10.1016/S0140-6736(12)61815-7] [PMID: 23472921]
[4]
Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-induced immunosuppression: From cellular dysfunctions to immunotherapy. Nat. Rev. Immunol., 2013, 13(12), 862-874.
[http://dx.doi.org/10.1038/nri3552] [PMID: 24232462]
[5]
Rhodes, A.; Phillips, G.; Beale, R.; Cecconi, M.; Chiche, J.D.; De Backer, D.; Divatia, J.; Du, B.; Evans, L.; Ferrer, R.; Girardis, M.; Koulenti, D.; Machado, F.; Simpson, S.Q.; Tan, C.C.; Wittebole, X.; Levy, M. The surviving sepsis campaign bundles and outcome: results from the international multicentre prevalence study on sepsis (the IMPreSS study). Intensive Care Med., 2015, 41(9), 1620-1628.
[http://dx.doi.org/10.1007/s00134-015-3906-y] [PMID: 26109396]
[6]
Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med., 2001, 29(7), 1303-1310.
[http://dx.doi.org/10.1097/00003246-200107000-00002] [PMID: 11445675]
[7]
Prescott, H.C.; Osterholzer, J.J.; Langa, K.M.; Angus, D.C.; Iwashyna, T.J. Late mortality after sepsis: Propensity matched cohort study. BMJ, 2016, 353, i2375.
[http://dx.doi.org/10.1136/bmj.i2375] [PMID: 27189000]
[8]
Mittal, R.; Coopersmith, C.M. Redefining the gut as the motor of critical illness. Trends Mol. Med., 2014, 20(4), 214-223.
[http://dx.doi.org/10.1016/j.molmed.2013.08.004] [PMID: 24055446]
[9]
Cheng, J.; Wei, Z.; Liu, X.; Li, X.; Yuan, Z.; Zheng, J.; Chen, X.; Xiao, G.; Li, X. The role of intestinal mucosa injury induced by intra-abdominal hypertension in the development of abdominal compartment syndrome and multiple organ dysfunction syndrome. Crit. Care, 2013, 17(6), R283.
[http://dx.doi.org/10.1186/cc13146] [PMID: 24321230]
[10]
Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 2009, 9(11), 799-809.
[http://dx.doi.org/10.1038/nri2653] [PMID: 19855405]
[11]
Fihn, B.M.; Sjöqvist, A.; Jodal, M. Permeability of the rat small intestinal epithelium along the villus-crypt axis: Effects of glucose transport. Gastroenterology, 2000, 119(4), 1029-1036.
[http://dx.doi.org/10.1053/gast.2000.18148] [PMID: 11040189]
[12]
Zhang, S.; Zhang, Y.; Ahsan, M.Z.; Yuan, Y.; Liu, G.; Han, X.; Zhang, J.; Zhao, X.; Bai, B.; Li, Y. Atorvastatin attenuates cold-induced hypertension by preventing gut barrier injury. J. Cardiovasc. Pharmacol., 2019, 74(2), 143-151.
[http://dx.doi.org/10.1097/FJC.0000000000000690] [PMID: 31310598]
[13]
Zong, X.; Xiao, X.; Kai, L.; Cheng, Y.; Fu, J.; Xu, W.; Wang, Y.; Zhao, K.; Jin, M. Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. Int. J. Biol. Macromol., 2021, 167, 76-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.144] [PMID: 33248053]
[14]
McConnell, K.W.; Coopersmith, C.M. Epithelial cells. Crit. Care Med., 2005, 33(12)(Suppl.), S520-S522.
[http://dx.doi.org/10.1097/01.CCM.0000187004.09189.1B] [PMID: 16340439]
[15]
Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol., 2009, 124(1), 3-20.
[http://dx.doi.org/10.1016/j.jaci.2009.05.038] [PMID: 19560575]
[16]
Farquhar, M.G.; Palade, G.E. Junctional complexes in various epithelia. J. Cell Biol., 1963, 17(2), 375-412.
[http://dx.doi.org/10.1083/jcb.17.2.375] [PMID: 13944428]
[17]
Hotchkiss, R.S.; Swanson, P.E.; Freeman, B.D.; Tinsley, K.W.; Cobb, J.P.; Matuschak, G.M.; Buchman, T.G.; Karl, I.E. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med., 1999, 27(7), 1230-1251.
[http://dx.doi.org/10.1097/00003246-199907000-00002] [PMID: 10446814]
[18]
Hotchkiss, R.S.; Swanson, P.E.; Cobb, J.P.; Jacobson, A.; Buchman, T.G.; Karl, I.E. Apoptosis in lymphoid and parenchymal cells during sepsis. Crit. Care Med., 1997, 25(8), 1298-1307.
[http://dx.doi.org/10.1097/00003246-199708000-00015] [PMID: 9267941]
[19]
Coopersmith, C.M.; Stromberg, P.E.; Davis, C.G.; Dunne, W.M.; Amiot, D.M., II; Karl, I.E.; Hotchkiss, R.S.; Buchman, T.G. Sepsis from Pseudomonas aeruginosa pneumonia decreases intestinal proliferation and induces gut epithelial cell cycle arrest. Crit. Care Med., 2003, 31(6), 1630-1637.
[http://dx.doi.org/10.1097/01.CCM.0000055385.29232.11] [PMID: 12794397]
[20]
Vyas, D.; Robertson, C.M.; Stromberg, P.E.; Martin, J.R.; Dunne, W.M.; Houchen, C.W.; Barrett, T.A.; Ayala, A.; Perl, M.; Buchman, T.G.; Coopersmith, C.M. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol. Histopathol., 2007, 22(6), 623-630.
[PMID: 17357092]
[21]
Deitch, E.A. Gut-origin sepsis: Evolution of a concept. Surgeon, 2012, 10(6), 350-356.
[http://dx.doi.org/10.1016/j.surge.2012.03.003] [PMID: 22534256]
[22]
Deitch, E.A. Gut lymph and lymphatics: A source of factors leading to organ injury and dysfunction. Ann. N. Y. Acad. Sci., 2010, 1207(s1)(Suppl. 1), E103-E111.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05713.x] [PMID: 20961300]
[23]
Fink, M.P.; Delude, R.L. Epithelial barrier dysfunction: A unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit. Care Clin., 2005, 21(2), 177-196.
[http://dx.doi.org/10.1016/j.ccc.2005.01.005] [PMID: 15781156]
[24]
Swank, G.M.; Deitch, E.A. Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J. Surg., 1996, 20(4), 411-417.
[http://dx.doi.org/10.1007/s002689900065] [PMID: 8662128]
[25]
Yoseph, B.P.; Breed, E.; Overgaard, C.E.; Ward, C.J.; Liang, Z.; Wagener, M.E.; Lexcen, D.R.; Lusczek, E.R.; Beilman, G.J.; Burd, E.M.; Farris, A.B.; Guidot, D.M.; Koval, M.; Ford, M.L.; Coopersmith, C.M. Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis. PLoS One, 2013, 8(5), e62792.
[http://dx.doi.org/10.1371/journal.pone.0062792] [PMID: 23717394]
[26]
Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3971-3975.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[27]
Adams, J.M.; Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature, 1975, 255(5503), 28-33.
[http://dx.doi.org/10.1038/255028a0] [PMID: 1128665]
[28]
Furuichi, Y.; Morgan, M.; Shatkin, A.J.; Jelinek, W.; Salditt-Georgieff, M.; Darnell, J.E. Methylated, blocked 5 termini in HeLa cell mRNA. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1904-1908.
[http://dx.doi.org/10.1073/pnas.72.5.1904] [PMID: 1057180]
[29]
Li, J.; Yang, X.; Qi, Z.; Sang, Y.; Liu, Y.; Xu, B.; Liu, W.; Xu, Z.; Deng, Y. The role of mRNA m6A methylation in the nervous system. Cell Biosci., 2019, 9(1), 66.
[http://dx.doi.org/10.1186/s13578-019-0330-y] [PMID: 31452869]
[30]
Bakin, A.; Lane, B.G.; Ofengand, J. Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry, 1994, 33(45), 13475-13483.
[http://dx.doi.org/10.1021/bi00249a036] [PMID: 7947756]
[31]
Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol., 2017, 18(1), 31-42.
[http://dx.doi.org/10.1038/nrm.2016.132] [PMID: 27808276]
[32]
Geula, S.; Moshitch-Moshkovitz, S.; Dominissini, D.; Mansour, A.A.; Kol, N.; Salmon-Divon, M.; Hershkovitz, V.; Peer, E.; Mor, N.; Manor, Y.S.; Ben-Haim, M.S.; Eyal, E.; Yunger, S.; Pinto, Y.; Jaitin, D.A.; Viukov, S.; Rais, Y.; Krupalnik, V.; Chomsky, E.; Zerbib, M.; Maza, I.; Rechavi, Y.; Massarwa, R.; Hanna, S.; Amit, I.; Levanon, E.Y.; Amariglio, N.; Stern-Ginossar, N.; Novershtern, N.; Rechavi, G.; Hanna, J.H. m 6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science, 2015, 347(6225), 1002-1006.
[http://dx.doi.org/10.1126/science.1261417] [PMID: 25569111]
[33]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[34]
Patil, D.P.; Chen, C.K.; Pickering, B.F.; Chow, A.; Jackson, C.; Guttman, M.; Jaffrey, S.R. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016, 537(7620), 369-373.
[http://dx.doi.org/10.1038/nature19342] [PMID: 27602518]
[35]
Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C.A. METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 2014, 10(2), 93-95.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[36]
Wang, J.; Yan, S.; Lu, H.; Wang, S.; Xu, D. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF- κ B signaling pathway. Mediators Inflamm., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/3120391] [PMID: 31772500]
[37]
Feng, Z.; Li, Q.; Meng, R.; Yi, B.; Xu, Q. METTL 3 regulates alternative splicing of MyD88 upon the lipopolysaccharide‐induced inflammatory response in human dental pulp cells. J. Cell. Mol. Med., 2018, 22(5), 2558-2568.
[http://dx.doi.org/10.1111/jcmm.13491] [PMID: 29502358]
[38]
Liu, Q.; Li, M.; Jiang, L.; Jiang, R.; Fu, B. METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem. Biophys. Res. Commun., 2019, 516(1), 22-27.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.168] [PMID: 31186141]
[39]
Li, Q.; Yu, L.; Gao, A.; Ren, R.; Zhang, J.; Cao, L.; Wang, X.; Liu, Y.; Qi, W.; Cai, L.; Li, W.; Wang, W.; Guo, X.; Su, G.; Yu, X.; Zhang, J.; Xi, B.; Zhang, Y.; Zhang, M.; Zhang, C. METTL3 (Methyltransferase Like 3)-dependent n6-methyladenosine modification on Braf mRNA promotes macrophage inflammatory response and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2023, 43(5), 755-773.
[http://dx.doi.org/10.1161/ATVBAHA.122.318451] [PMID: 36951060]
[40]
Luo, S.; Liao, C.; Zhang, L.; Ling, C.; Zhang, X.; Xie, P.; Su, G.; Chen, Z.; Zhang, L.; Lai, T.; Tang, J. METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Rep., 2023, 42(3), 112259.
[http://dx.doi.org/10.1016/j.celrep.2023.112259] [PMID: 36920907]
[41]
Chen, Y.; Wu, Y.; Zhu, L.; Chen, C.; Xu, S.; Tang, D.; Jiao, Y.; Yu, W. METTL3-mediated N6-methyladenosine modification of Trim59 mRNA protects against sepsis-induced acute respiratory distress syndrome. Front. Immunol., 2022, 13, 897487.
[http://dx.doi.org/10.3389/fimmu.2022.897487] [PMID: 35693774]
[42]
Rittirsch, D.; Huber-Lang, M.S.; Flierl, M.A.; Ward, P.A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc., 2009, 4(1), 31-36.
[http://dx.doi.org/10.1038/nprot.2008.214] [PMID: 19131954]
[43]
Rittirsch, D.; Hoesel, L.M.; Ward, P.A. The disconnect between animal models of sepsis and human sepsis. J. Leukoc. Biol., 2007, 81(1), 137-143.
[http://dx.doi.org/10.1189/jlb.0806542] [PMID: 17020929]
[44]
Remick, D.G.; Newcomb, D.E.; Bolgos, G.L.; Call, D.R. Comparison of the mortality and inflammatory response of two models of sepsis: Lipopolysaccharide vs. cecal ligation and puncture. Shock, 2000, 13(2), 110-116.
[http://dx.doi.org/10.1097/00024382-200013020-00004] [PMID: 10670840]
[45]
Yamashita, S.; Suzuki, T.; Iguchi, K.; Sakamoto, T.; Tomita, K.; Yokoo, H.; Sakai, M.; Misawa, H.; Hattori, K.; Nagata, T.; Watanabe, Y.; Matsuda, N.; Yoshimura, N.; Hattori, Y. Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(9), 1021-1032.
[http://dx.doi.org/10.1007/s00210-018-1527-z] [PMID: 29922941]
[46]
Cai, Y.; Yu, R.; Zhang, Z.; Li, D.; Yi, B.; Feng, Z.; Xu, Q. Mettl3/Ythdf2 regulate macrophage inflammation and ROS generation by controlling Pyk2 mRNA stability. Immunol. Lett., 2023, 264, 64-73.
[http://dx.doi.org/10.1016/j.imlet.2023.11.004] [PMID: 37952687]
[47]
Xiang, S.; Wang, Y.; Lei, D.; Luo, Y.; Peng, D.; Zong, K.; Liu, Y.; Huang, Z.; Mo, S.; Pu, X.; Zheng, J.; Wu, Z. Donor graft METTL3 gene transfer ameliorates rat liver transplantation ischemia-reperfusion injury by enhancing HO-1 expression in an m6A-dependent manner. Clin. Immunol., 2023, 251, 109325.
[http://dx.doi.org/10.1016/j.clim.2023.109325] [PMID: 37030526]
[48]
Shen, H.; Xie, K.; Tian, Y.; Wang, X. N6-methyladenosine writer METTL3 accelerates the sepsis-induced myocardial injury by regulating m6A-dependent ferroptosis. Apoptosis, 2023, 28(3-4), 514-524.
[http://dx.doi.org/10.1007/s10495-022-01808-y] [PMID: 36645573]
[49]
Han, X.; Liu, L.; Huang, S.; Xiao, W.; Gao, Y.; Zhou, W.; Zhang, C.; Zheng, H.; Yang, L.; Xie, X.; Liang, Q.; Tu, Z.; Yu, H.; Fu, J.; Wang, L.; Zhang, X.; Qian, L.; Zhou, Y. RNA m6A methylation modulates airway inflammation in allergic asthma via PTX3-dependent macrophage homeostasis. Nat. Commun., 2023, 14(1), 7328.
[http://dx.doi.org/10.1038/s41467-023-43219-w] [PMID: 37957139]
[50]
Li, Y.J.; Xu, Q.W.; Xu, C.H.; Li, W.M. MSC promotes the secretion of exosomal miR-34a-5p and improve intestinal barrier function through METTL3-mediated pre-miR-34A m6A modification. Mol. Neurobiol., 2022, 59(8), 5222-5235.
[http://dx.doi.org/10.1007/s12035-022-02833-3] [PMID: 35687301]
[51]
Meng, J.; Liu, X.; Tang, S.; Liu, Y.; Zhao, C.; Zhou, Q.; Li, N.; Hou, S. METTL3 inhibits inflammation of retinal pigment epithelium cells by regulating NR2F1 in an m6A-dependent manner. Front. Immunol., 2022, 13, 905211.
[http://dx.doi.org/10.3389/fimmu.2022.905211] [PMID: 35936005]
[52]
Wen, L.; Sun, W.; Xia, D.; Wang, Y.; Li, J.; Yang, S. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway. Neuroreport, 2022, 33(6), 243-251.
[http://dx.doi.org/10.1097/WNR.0000000000001550] [PMID: 33165191]
[53]
Yang, X.; Yang, Y.; Wu, Y.; Fu, M. METTL3 promotes inflammation and cell apoptosis in a pediatric pneumonia model by regulating EZH2. Allergol. Immunopathol., 2021, 49(5), 49-56.
[http://dx.doi.org/10.15586/aei.v49i5.445] [PMID: 34476922]
[54]
Yang, L.; Wu, G.; Wu, Q.; Peng, L.; Yuan, L. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov., 2022, 8(1), 62.
[http://dx.doi.org/10.1038/s41420-022-00849-1] [PMID: 35165276]
[55]
Zhang, Y.; Li, M.; Meng, M.; Qin, C. Effect of ethyl pyruvate on physical and immunological barriers of the small intestine in a rat model of sepsis. J. Trauma, 2009, 66(5), 1355-1364.
[http://dx.doi.org/10.1097/TA.0b013e31817d0568] [PMID: 19430239]
[56]
Fukudome, I.; Kobayashi, M.; Dabanaka, K.; Maeda, H.; Okamoto, K.; Okabayashi, T.; Baba, R.; Kumagai, N.; Oba, K.; Fujita, M.; Hanazaki, K. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med. Mol. Morphol., 2014, 47(2), 100-107.
[http://dx.doi.org/10.1007/s00795-013-0055-7] [PMID: 24005798]
[57]
Karabulut, K.U.; Narci, H.; Gul, M.; Dundar, Z.D.; Cander, B.; Girisgin, A.S.; Erdem, S. Diamine oxidase in diagnosis of acute mesenteric ıschemia. Am. J. Emerg. Med., 2013, 31(2), 309-312.
[http://dx.doi.org/10.1016/j.ajem.2012.07.029] [PMID: 23158606]
[58]
Luk, G.D.; Bayless, T.M.; Baylin, S.B. Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat. J. Clin. Invest., 1983, 71(5), 1308-1315.
[http://dx.doi.org/10.1172/JCI110881] [PMID: 6406546]
[59]
Shakir, K.M.M.; Margolis, S.; Baylin, S.B. Localization of histaminase (diamine oxidase) in rat small intestinal mucosa: Site of release by heparin. Biochem. Pharmacol., 1977, 26(24), 2343-2347.
[http://dx.doi.org/10.1016/0006-2952(77)90438-5] [PMID: 413549]
[60]
Biegański, T. Biochemical, physiological and pathophysiological aspects of intestinal diamine oxidase. Acta Physiol. Pol., 1983, 34(1), 139-154.
[PMID: 6416024]
[61]
Luk, G.D.; Bayless, T.M.; Baylin, S.B. Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. J. Clin. Invest., 1980, 66(1), 66-70.
[http://dx.doi.org/10.1172/JCI109836] [PMID: 6772669]
[62]
Niewold, T.A.; Meinen, M.; van der Meulen, J. Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs. Res. Vet. Sci., 2004, 77(1), 89-91.
[http://dx.doi.org/10.1016/j.rvsc.2004.02.006] [PMID: 15120958]
[63]
Pelsers, M.M.A.L.; Hermens, W.T.; Glatz, J.F.C. Fatty acid-binding proteins as plasma markers of tissue injury. Clin. Chim. Acta, 2005, 352(1-2), 15-35.
[http://dx.doi.org/10.1016/j.cccn.2004.09.001] [PMID: 15653098]
[64]
Rahman, S.; Ammori, B.J.; Holmfield, J.; Larvin, M.; McMahon, M.J. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancreatitis. J. Gastrointest. Surg., 2003, 7(1), 26-36.
[http://dx.doi.org/10.1016/S1091-255X(02)00090-2] [PMID: 12559182]
[65]
Glatz, J.F.C.; van der Vusse, G.J. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res., 1996, 35(3), 243-282.
[http://dx.doi.org/10.1016/S0163-7827(96)00006-9] [PMID: 9082452]
[66]
Hermiston, M.L.; Gordon, J.I. In vivo analysis of cadherin function in the mouse intestinal epithelium: Essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol., 1995, 129(2), 489-506.
[http://dx.doi.org/10.1083/jcb.129.2.489] [PMID: 7721948]
[67]
Amasheh, S.; Meiri, N.; Gitter, A.H.; Schöneberg, T.; Mankertz, J.; Schulzke, J.D.; Fromm, M. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci., 2002, 115(24), 4969-4976.
[http://dx.doi.org/10.1242/jcs.00165] [PMID: 12432083]
[68]
Colegio, O.R.; Itallie, C.V.; Rahner, C.; Anderson, J.M. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. Cell Physiol., 2003, 284(6), C1346-C1354.
[http://dx.doi.org/10.1152/ajpcell.00547.2002] [PMID: 12700140]
[69]
Simon, D.B.; Lu, Y.; Choate, K.A.; Velazquez, H.; Al-Sabban, E.; Praga, M.; Casari, G.; Bettinelli, A.; Colussi, G.; Rodriguez-Soriano, J.; McCredie, D.; Milford, D.; Sanjad, S.; Lifton, R.P. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science, 1999, 285(5424), 103-106.
[http://dx.doi.org/10.1126/science.285.5424.103] [PMID: 10390358]
[70]
Dörfel, M.J.; Huber, O. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J. Biomed. Biotechnol., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/807356] [PMID: 22315516]
[71]
Suzuki, H.; Tani, K.; Fujiyoshi, Y. Crystal structures of claudins: Insights into their intermolecular interactions. Ann. N. Y. Acad. Sci., 2017, 1397(1), 25-34.
[http://dx.doi.org/10.1111/nyas.13371] [PMID: 28605828]
[72]
Müller, S.L.; Portwich, M.; Schmidt, A.; Utepbergenov, D.I.; Huber, O.; Blasig, I.E.; Krause, G. The tight junction protein occludin and the adherens junction protein alpha-catenin share a common interaction mechanism with ZO-1. J. Biol. Chem., 2005, 280(5), 3747-3756.
[http://dx.doi.org/10.1074/jbc.M411365200] [PMID: 15548514]
[73]
Odenwald, M.A.; Turner, J.R. Intestinal permeability defects: Is it time to treat? Clin. Gastroenterol. Hepatol., 2013, 11(9), 1075-1083.
[http://dx.doi.org/10.1016/j.cgh.2013.07.001] [PMID: 23851019]
[74]
Rupani, B.; Caputo, F.J.; Watkins, A.C.; Vega, D.; Magnotti, L.J.; Lu, Q.; Xu, D.Z.; Deitch, E.A. Relationship between disruption of the unstirred mucus layer and intestinal restitution in loss of gut barrier function after trauma hemorrhagic shock. Surgery, 2007, 141(4), 481-489.
[http://dx.doi.org/10.1016/j.surg.2006.10.008] [PMID: 17383525]
[75]
Chen, C.; Wang, P.; Su, Q.; Wang, S.; Wang, F. Myosin light chain kinase mediates intestinal barrier disruption following burn injury. PLoS One, 2012, 7(4), e34946.
[http://dx.doi.org/10.1371/journal.pone.0034946] [PMID: 22529961]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy