Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Exploring and Designing Potential Inhibitors of SIRT2 in Natural Products by Artificial Intelligence (AI) and Molecular Dynamics Methods

Author(s): Yangyang Ni, Juxia Bai, Yuqi Zhang, Haoran Qiao, Liqun Liang, Junfeng Wan, Yanyan Zhu, Haijing Cao, Huiyu Li* and Qingjie Zhao*

Volume 21, Issue 16, 2024

Published on: 12 March, 2024

Page: [3542 - 3554] Pages: 13

DOI: 10.2174/0115701808288696240308052948

Price: $65

Abstract

Background: The histone deacetylase family of proteins, which includes the sirtuins, participates in a wide range of cellular processes, and is intimately involved in neurodegenerative illnesses. The research on sirtuins has garnered a lot of interest. However, there are currently no effective therapeutic drugs.

Methods: In order to explore the potential inhibitors of SIRTs, we first screened four potential lead compounds of SIRT2 in Traditional Chinese Medicine (TCM) for nervous disease using the Auto- Dock Vina method. Then, with Molecular Dynamics (MD) simulation method, we discovered how these inhibitors from Traditional Chinese herbal medicines affect this protein at the atomic level.

Results and Discussion: We found hydrophobic interactions between inhibitors and SIRT2 to be crucial. The small molecules have been found to have strong effect on the residues in the zincbinding domain, exhibiting relationship with the signaling pathway. Finally, based on the conformational characteristics and the MD properties of the four potential inhibitors in TCM, we have designed the new skeleton molecules according to the parameters of binding energy, fingerprint similarity, 3D similarity, and RO5, with AI method using MolAICal software.

Conclusion: We have proposed the candidate inhibitor of SIRT2. Our research has provided a new approach that can be used to explore potential inhibitors from TCM. This could potentially pave the way for the creation of effective medicines.

[1]
Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol., 2010, 5(1), 253-295.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092250] [PMID: 20078221]
[2]
Ji, Z.; Liu, G.H.; Qu, J. Mitochondrial sirtuins, metabolism, and aging. J. Genet. Genomics, 2022, 49(4), 287-298.
[http://dx.doi.org/10.1016/j.jgg.2021.11.005] [PMID: 34856390]
[3]
Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Front. Endocrinol., 2019, 10, 187.
[http://dx.doi.org/10.3389/fendo.2019.00187] [PMID: 30972029]
[4]
Nakagawa, T.; Guarente, L. Sirtuins at a glance. J. Cell Sci., 2011, 124(6), 833-838.
[http://dx.doi.org/10.1242/jcs.081067] [PMID: 21378304]
[5]
Manjula, R.; Anuja, K.; Alcain, F.J. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front. Pharmacol., 2021, 11, 585821.
[http://dx.doi.org/10.3389/fphar.2020.585821] [PMID: 33597872]
[6]
Yan, J.; Zhang, P.; Tan, J.; Li, M.; Xu, X.; Shao, X.; Fang, F.; Zou, Z.; Zhou, Y.; Tian, B. Cdk5 phosphorylation-induced SIRT2 nuclear translocation promotes the death of dopaminergic neurons in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 46.
[http://dx.doi.org/10.1038/s41531-022-00311-0] [PMID: 35443760]
[7]
Zhou, W.; Ni, T.K.; Wronski, A.; Glass, B.; Skibinski, A.; Beck, A.; Kuperwasser, C. The SIRT2 deacetylase stabilizes slug to control malignancy of basal-like breast cancer. Cell Rep., 2016, 17(5), 1302-1317.
[http://dx.doi.org/10.1016/j.celrep.2016.10.006] [PMID: 27783945]
[8]
Chen, G.; Huang, P.; Hu, C. The role of SIRT2 in cancer: A novel therapeutic target. Int. J. Cancer, 2020, 147(12), 3297-3304.
[http://dx.doi.org/10.1002/ijc.33118] [PMID: 32449165]
[9]
Zhou, S.; Tang, X.; Chen, H.Z. Sirtuins and insulin resistance. Front. Endocrinol., 2018, 9, 748.
[http://dx.doi.org/10.3389/fendo.2018.00748] [PMID: 30574122]
[10]
Presegué, B.L.; Vaquero, A. The dual role of sirtuins in cancer. Genes Cancer, 2011, 2(6), 648-662.
[http://dx.doi.org/10.1177/1947601911417862] [PMID: 21941620]
[11]
Li, S.; Lv, X.; Zhai, K.; Xu, R.; Zhang, Y.; Zhao, S.; Qin, X.; Yin, L.; Lou, J. MicroRNA-7 inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax and Sirt2. Am. J. Transl. Res., 2016, 8(2), 993-1004.
[PMID: 27158385]
[12]
Song, M.; Zhu, Y.; Wei, G.; Li, H. Carbon nanotube prevents the secondary structure formation of amyloid-β trimers: An all-atom molecular dynamics study. Mol. Simul., 2017, 43(13-16), 1189-1195.
[http://dx.doi.org/10.1080/08927022.2017.1321757]
[13]
Palomer, E.; Flores, M.N.; Jolly, S.; Vargas, P.P.; Benvegnù, S.; Podpolny, M.; Teo, S.; Vaher, K.; Saito, T.; Saido, T.C.; Whiting, P.; Salinas, P.C. Epigenetic repression of Wnt receptors in AD: A role for Sirtuin2-induced H4K16ac deacetylation of Frizzled1 and Frizzled7 promoters. Mol. Psychiatry, 2022, 27(7), 3024-3033.
[http://dx.doi.org/10.1038/s41380-022-01492-z] [PMID: 35296808]
[14]
Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Mol. Med., 2013, 5(3), 344-352.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[15]
Sola-Sevilla, N.; Puerta, E. SIRT2 as a potential new therapeutic target for Alzheimer’s disease. Neural Regen. Res., 2024, 19(1), 124-131.
[http://dx.doi.org/10.4103/1673-5374.375315] [PMID: 37488853]
[16]
Sevilla, S.N.; Lombardo, M.A.; Aleixo, M.; Expósito, S.; Perdigón, D.T.; Azqueta, A.; Zamani, F.; Suzuki, T.; Maioli, S.; Eroli, F.; Matton, A.; Ramírez, M.J.; Solas, M.; Tordera, R.M.; Martín, E.D.; Puerta, E. SIRT2 inhibition rescues neurodegenerative pathology but increases systemic inflammation in a transgenic mouse model of alzheimer’s disease. J. Neuroimmune Pharmacol., 2023, 18(3), 529-550.
[17]
Rumpf, T.; Schiedel, M.; Karaman, B.; Roessler, C.; North, B.J.; Lehotzky, A.; Oláh, J.; Ladwein, K.I.; Schmidtkunz, K.; Gajer, M.; Pannek, M.; Steegborn, C.; Sinclair, D.A.; Gerhardt, S.; Ovádi, J.; Schutkowski, M.; Sippl, W.; Einsle, O.; Jung, M. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun., 2015, 6(1), 6263.
[http://dx.doi.org/10.1038/ncomms7263] [PMID: 25672491]
[18]
Yamagata, K.; Goto, Y.; Nishimasu, H.; Morimoto, J.; Ishitani, R.; Dohmae, N.; Takeda, N.; Nagai, R.; Komuro, I.; Suga, H.; Nureki, O. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure, 2014, 22(2), 345-352.
[http://dx.doi.org/10.1016/j.str.2013.12.001] [PMID: 24389023]
[19]
Huang, S.; Song, C.; Wang, X.; Zhang, G.; Wang, Y.; Jiang, X.; Sun, Q.; Huang, L.; Xiang, R.; Hu, Y.; Li, L.; Yang, S. Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure–activity relationship analysis. J. Chem. Inf. Model., 2017, 57(4), 669-679.
[http://dx.doi.org/10.1021/acs.jcim.6b00714] [PMID: 28301150]
[20]
Tao, S; Chen, G; Yang, M; Deng, S; Zhang, J; Guo, D Identification of the major constituents in Shi-Quan-Da-Bu decoction by HPLC-ESI-MS/MS. Nat. Prod. Commun., 2008, 3, 1934578X0800300.
[21]
Zee-Cheng, R.K. Shi-quan-da-bu-tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Methods Find. Exp. Clin. Pharmacol., 1992, 14(9), 725-736.
[PMID: 1294861]
[22]
Peng, W.; Han, T.; Xin, W.B.; Zhang, X.G.; Zhang, Q.Y.; Jia, M.; Qin, L.P. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala. Med. Chem. Res., 2011, 20(2), 146-151.
[http://dx.doi.org/10.1007/s00044-010-9311-8]
[23]
Kum, W.F.; Durairajan, S.S.K.; Bian, Z.X.; Man, S.C.; Lam, Y.C.; Xie, L.X.; Lu, J.H.; Wang, Y.; Huang, X.Z.; Li, M. Treatment of idiopathic Parkinson’s disease with traditional chinese herbal medicine: A randomized placebo-controlled pilot clinical study. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8.
[http://dx.doi.org/10.1093/ecam/nep116] [PMID: 19692449]
[24]
Chao, W.W.; Lin, B.F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin. Med., 2011, 6(1), 29.
[http://dx.doi.org/10.1186/1749-8546-6-29] [PMID: 21851645]
[25]
Effects of fuling shengmai yin on superoxide dismutase, malondialdehyde and lipofuscin level of rat hippocampal neurons in vitro 2011. Available from: https://www.researchgate.net/publication/296747054_Effects_of_fuling_shengmai_yin_on_ superoxide_ dismutase_malondialdehyde_and_lipofuscin_level_of_ rat_hippocampal_neurons_in_vitro
[26]
Jiang, Y.; Gao, H.; Turdu, G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review. Bioorg. Chem., 2017, 75, 50-61.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.004] [PMID: 28915465]
[27]
Wang, T.; Liu, Y.; Zhuang, X.; Luan, F.; Zhao, C. Interaction of isoflavone phytoestrogens with ERα and ERβ by molecular docking and molecular dynamics simulations. Curr Comput Aided Drug Des, 2021, 17, 655-665.
[28]
Xu, J.; Yang, Y. Traditional Chinese medicine in the Chinese health care system. Health Policy, 2009, 90(2-3), 133-139.
[http://dx.doi.org/10.1016/j.healthpol.2008.09.003] [PMID: 18947898]
[29]
Efferth, T.; Li, P.C.H.; Konkimalla, V.S.B.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13(8), 353-361.
[http://dx.doi.org/10.1016/j.molmed.2007.07.001] [PMID: 17644431]
[30]
Li, W.L.; Zheng, H.C.; Bukuru, J.; De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol., 2004, 92(1), 1-21.
[http://dx.doi.org/10.1016/j.jep.2003.12.031] [PMID: 15099842]
[31]
Dong, X.; Tang, Y.; Zhan, C.; Wei, G. Green tea extract EGCG plays a dual role in Aβ42 protofibril disruption and membrane protection: A molecular dynamic study. Chem. Phys. Lipids, 2021, 234, 105024.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.105024] [PMID: 33278382]
[32]
Liu, Z.; Zou, Y.; Zhang, Q.; Chen, P.; Liu, Y.; Qian, Z. Distinct binding dynamics, sites and interactions of fullerene and fullerenols with amyloid-β peptides revealed by molecular dynamics simulations. Int. J. Mol. Sci., 2019, 20(8), 2048.
[http://dx.doi.org/10.3390/ijms20082048] [PMID: 31027286]
[33]
Arabi, A.A. Artificial intelligence in drug design: Algorithms, applications, challenges and ethics. Future Drug Discov., 2021, 3(2), FDD59.
[http://dx.doi.org/10.4155/fdd-2020-0028]
[34]
Merk, D.; Grisoni, F.; Friedrich, L.; Schneider, G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Commun. Chem., 2018, 1(1), 68.
[http://dx.doi.org/10.1038/s42004-018-0068-1]
[35]
Lipinski, C.F.; Maltarollo, V.G.; Oliveira, P.R.; da Silva, A.B.F.; Honorio, K.M. Advances and perspectives in applying deep learning for drug design and discovery. Front. Robot. AI, 2019, 6, 108.
[http://dx.doi.org/10.3389/frobt.2019.00108] [PMID: 33501123]
[36]
Ertl, P.; Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform., 2009, 1(1), 8.
[http://dx.doi.org/10.1186/1758-2946-1-8] [PMID: 20298526]
[37]
Blaschke, T.; Pous, A.J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; Papadopoulos, K.; Patronov, A. REINVENT 2.0: An AI tool for de novo drug design. J. Chem. Inf. Model., 2020, 60(12), 5918-5922.
[http://dx.doi.org/10.1021/acs.jcim.0c00915] [PMID: 33118816]
[38]
Duch, W.; Swaminathan, K.; Meller, J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des., 2007, 13, 1497-1508.
[39]
Qian, Z.; Zhu, L.; Lju, H.; Sun, G. Potential mechanisms of several promising small molecules disrupting fibrillar oligomer of tau fragments revealed by molecular dynamics simulation. Biophys. J., 2022, 121(3), 189a-190a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.1783]
[40]
Wang, Y.; Chiu, J.F.; He, Q.Y. Proteomics in computer-aided drug design. Curr. Computeraided Drug Des., 2005, 1(1), 43-52.
[http://dx.doi.org/10.2174/1573409052952260]
[41]
Breda, A.; Basso, L.; Santos, D.; De Azevedo, W., Jr Virtual screening of drugs: Score functions, docking, and drug design. Curr. Comput. Aided Drug Des., 2008, 4, 265-272.
[42]
Pungpo, P.; Punkvang, A.; Saparpakorn, P.; Wolschann, P.; Hannongbua, S. Recent Advances in NNRTI Design. Comput.-Aid. Molecul. Desig. Approach. CAD, 2009, 5, 174-199.
[43]
Zhang, Y.; Chen, L.; Wang, X.; Zhu, Y.; Liu, Y.; Li, H.; Zhao, Q. Interactive mechanism of potential inhibitors with glycosyl for SARS-CoV-2 by molecular dynamics simulation. Processes, 2021, 9(10), 1749.
[http://dx.doi.org/10.3390/pr9101749]
[44]
Sakkiah, S.; Arooj, M.; Kumar, M.R.; Eom, S.H.; Lee, K.W. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations. PLoS One, 2013, 8(1), e51429.
[http://dx.doi.org/10.1371/journal.pone.0051429] [PMID: 23382805]
[45]
Zhu, A.Y.; Zhou, Y.; Khan, S.; Deitsch, K.W.; Hao, Q.; Lin, H. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. ACS Chem. Biol., 2012, 7(1), 155-159.
[http://dx.doi.org/10.1021/cb200230x] [PMID: 21992006]
[46]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[47]
Bai, Q.; Tan, S.; Xu, T.; Liu, H.; Huang, J.; Yao, X. MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform., 2021, 22(3), bbaa161.
[http://dx.doi.org/10.1093/bib/bbaa161] [PMID: 32778891]
[48]
Chen, C.Y.C. TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One, 2011, 6(1), e15939.
[http://dx.doi.org/10.1371/journal.pone.0015939] [PMID: 21253603]
[49]
Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins, 2010, 78(8), 1950-1958.
[http://dx.doi.org/10.1002/prot.22711] [PMID: 20408171]
[50]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[51]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33--38. 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570 ]
[52]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[53]
Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[54]
Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins, 2004, 55(2), 383-394.
[http://dx.doi.org/10.1002/prot.20033] [PMID: 15048829]
[55]
Onufriev, A.; Bashford, D.; Case, D.A. Modification of the generalized born model suitable for macromolecules. J. Phys. Chem. B, 2000, 104(15), 3712-3720.
[http://dx.doi.org/10.1021/jp994072s]
[56]
Mo, Y.; Lu, Y.; Wei, G.; Derreumaux, P. Structural diversity of the soluble trimers of the human amylin(20–29) peptide revealed by molecular dynamics simulations. J. Chem. Phys., 2009, 130(12), 125101.
[http://dx.doi.org/10.1063/1.3097982] [PMID: 19334894]
[57]
Kumari, R.; Kumar, R. Open source drug discovery consortium and lynn A 2014 g_mmpbsa —A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54, 1951-1962.
[58]
Zhao, S.; Zhu, Y-Y.; Wang, X-Y.; Liu, Y-S.; Sun, Y-X.; Zhao, Q-J. Li, H-Y Structural insight into the interactions between structurally similar inhibitors and SIRT6. Int. J. Mol. Sci., 2020, 21(7), 2601.
[59]
Liu, X.; Peng, L.; Zhou, Y.; Zhang, Y.; Zhang, J.Z.H. Computational alanine scanning with interaction entropy for protein–ligand binding free energies. J. Chem. Theory Comput., 2018, 14(3), 1772-1780.
[http://dx.doi.org/10.1021/acs.jctc.7b01295] [PMID: 29406753]
[60]
Sun, Y.; Xi, W.; Wei, G. Atomic-level study of the effects of O4 molecules on the structural properties of protofibrillar Aβ trimer: β-sheet stabilization, salt bridge protection, and binding mechanism. J. Phys. Chem. B, 2015, 119(7), 2786-2794.
[http://dx.doi.org/10.1021/jp508122t] [PMID: 25608630]
[61]
Nedumpully-Govindan, P.; Jemec, D.B.; Ding, F. CSAR benchmark of flexible medusadock in affinity prediction and nativelike binding pose selection. J. Chem. Inf. Model., 2016, 56(6), 1042-1052.
[http://dx.doi.org/10.1021/acs.jcim.5b00303] [PMID: 26252196]
[62]
Ding, F.; Dokholyan, N.V. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. J. Chem. Inf. Model., 2013, 53(8), 1871-1879.
[http://dx.doi.org/10.1021/ci300478y] [PMID: 23237273]
[63]
Chen, L.; Zhao, S.; Zhu, Y.; Liu, Y.; Li, H.; Zhao, Q. Molecular dynamics simulations reveal the modulated mechanism of STING conformation. Interdiscip. Sci., 2021, 13(4), 751-765.
[http://dx.doi.org/10.1007/s12539-021-00446-3] [PMID: 34142362]
[64]
Wang, X.; Song, M.; Zhao, S.; Li, H.; Zhao, Q.; Shen, J. Molecular dynamics simulations reveal the mechanism of the interactions between the inhibitors and SIRT2 at atom level. Mol. Simul., 2020, 46(8), 638-649.
[http://dx.doi.org/10.1080/08927022.2020.1757093]
[65]
Zhang, Y.; Zhu, Y.; Yue, H.; Zhao, Q.; Li, H. Exploring the misfolding and self-assembly mechanism of TTR (105–115) peptides by all-atom molecular dynamics simulation. Front. Mol. Biosci., 2022, 9, 982276.
[http://dx.doi.org/10.3389/fmolb.2022.982276] [PMID: 36120541]
[66]
Tan, Y.; Chen, Y.; Liu, X.; Tang, Y.; Lao, Z.; Wei, G. Dissecting how ALS-associated D290V mutation enhances pathogenic aggregation of hnRNPA2286–291 peptides: Dynamics and conformational ensembles. Int. J. Biol. Macromol., 2023, 241, 124659.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124659] [PMID: 37119915]
[67]
Moniot, S.; Schutkowski, M.; Steegborn, C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J. Struct. Biol., 2013, 182(2), 136-143.
[http://dx.doi.org/10.1016/j.jsb.2013.02.012] [PMID: 23454361]
[68]
Narang, S.S.; Goyal, D.; Goyal, B. Inhibition of Alzheimer’s amyloid-β 42 peptide aggregation by a bi-functional bis-tryptoline triazole: key insights from molecular dynamics simulations. J. Biomol. Struct. Dyn., 2019, 38(6), 1598-1611.
[http://dx.doi.org/10.1080/07391102.2019.1614093] [PMID: 31046642]
[69]
Song, M.; Sun, Y.; Luo, Y.; Zhu, Y.; Liu, Y.; Li, H. Exploring the mechanism of inhibition of Au nanoparticles on the aggregation of amyloid-β(16-22) peptides at the atom level by all-atom molecular dynamics. Int. J. Mol. Sci., 2018, 19(6), 1815.
[http://dx.doi.org/10.3390/ijms19061815] [PMID: 29925792]
[70]
Teng, Y.B.; Jing, H.; Aramsangtienchai, P.; He, B.; Khan, S.; Hu, J.; Lin, H.; Hao, Q. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci. Rep., 2015, 5(1), 8529.
[http://dx.doi.org/10.1038/srep08529] [PMID: 25704306]
[71]
Jing, H.; Hu, J.; He, B.; Negrón Abril, Y.L.; Stupinski, J.; Weiser, K.; Carbonaro, M.; Chiang, Y.L.; Southard, T.; Giannakakou, P.; Weiss, R.S.; Lin, H.A. SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell, 2016, 29(3), 297-310.
[http://dx.doi.org/10.1016/j.ccell.2016.02.007] [PMID: 26977881]
[72]
Yang, Y.; Hsieh, C-Y.; Kang, Y.; Hou, T.; Liu, H.; Yao, X. Deep generation model guided by the docking score for active molecular design. J. Chem. Inf. Model., 2023, 63(10), 2983-2991.
[73]
Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv., 2018, 4(7), eaap7885.
[http://dx.doi.org/10.1126/sciadv.aap7885] [PMID: 30050984]
[74]
Prykhodko, O.; Johansson, S.V.; Kotsias, P.C.; Arús-Pous, J.; Bjerrum, E.J.; Engkvist, O.; Chen, H. A de novo molecular generation method using latent vector based generative adversarial network. J. Cheminform., 2019, 11(1), 74.
[http://dx.doi.org/10.1186/s13321-019-0397-9] [PMID: 33430938]
[75]
Lu, M.; Yin, J.; Zhu, Q.; Lin, G.; Mou, M.; Liu, F.; Pan, Z.; You, N.; Lian, X.; Li, F.; Zhang, H.; Zheng, L.; Zhang, W.; Zhang, H.; Shen, Z.; Gu, Z.; Li, H.; Zhu, F. Artificial intelligence in pharmaceutical sciences. Engineering, 2023, 2013, S2095809923001649.
[76]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[77]
Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 443-470.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.443] [PMID: 11264465]
[78]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[79]
DeBernardis, J.F.; Kerkman, D.J.; Winn, M.; Bush, E.N.; Arendsen, D.L.; McClellan, W.J.; Basha, F. Conformationally defined adrenergic agents. 1. Design and synthesis of novel alpha 2 selective adrenergic agents: Electrostatic repulsion based conformational prototypes. J. Med. Chem., 1985, 28(10), 1398-1404.
[80]
Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]

© 2025 Bentham Science Publishers | Privacy Policy