Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Fluconazole Microemulsions: Preparation, Statistical Optimization by Two-Level Factorial Design, and Physicochemical Evaluation

Author(s): Payam Khazaeli*, Abbas Pardakhty, Gholamreza Dehghannoudeh, Sina Safizade, Marzieh Sajadi Bami and Mandana Ohadi*

Volume 21, Issue 16, 2024

Published on: 11 March, 2024

Page: [3515 - 3525] Pages: 11

DOI: 10.2174/0115701808287346240228120148

Price: $65

Abstract

Background: Candida albicans is the yeast that causes the fungal infection known as candidiasis. One of the standard methods for treating candida is the application of fluconazole. The low solubility of fluconazole in aqueous media is a big problem in the use of this agent. Novel drug delivery systems, such as microemulsions, could be applied to solve this problem. The main aim of this study was to perform statistical optimization of the formulation and physicochemical characterization of fluconazole microemulsion.

Methods: Optimization of the microemulsion formulation was done by using experimental design software, and then fluconazole was loaded onto the best formulation at a concentration of 1 % w/w. The physiochemistry of the microemulsion formulation was assessed by pH measurement, rheology measurement, simultaneous thermal analysis, and Scanning Electron Microscopy (SEM).

Results: The two-level fractional factorial design application demonstrated the optimum formulation to consist of surfactant, co-surfactant, oil content, and water, comprising 58%, 27%, 10%, and 5% of the formulation, respectively. Desirable thermal mass was observed up to 150°C. The formulation was a non-Newtonian shear-thinning liquid in terms of viscosity, with a reported pH between 6.5-7.

Conclusion: Considerably stable, high-quality microemulsion formulations containing fluconazole are presented, which are applicable for antifungal skin candidiasis treatment in clinical trials.

[1]
Saad, A.; Fadli, M.; Bouaziz, M.; Benharref, A.; Mezrioui, N.E.; Hassani, L. Anticandidal activity of the essential oils of Thymus maroccanus and Thymus broussonetii and their synergism with amphotericin B and fluconazol. Phytomedicine, 2010, 17(13), 1057-1060.
[http://dx.doi.org/10.1016/j.phymed.2010.03.020] [PMID: 20554185]
[2]
Foye, W.O. Foye’s principles of medicinal chemistry; Lippincott Williams & Wilkins, 2008.
[3]
Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. Clin. Microbiol. Infect., 2008, 14(Suppl. 4), 5-24.
[http://dx.doi.org/10.1111/j.1469-0691.2008.01978.x] [PMID: 18430126]
[4]
Chowdhary, A.; Voss, A.; Meis, J.F. Multidrug-resistant Candida auris: ‘New kid on the block’ in hospital-associated infections? J. Hosp. Infect., 2016, 94(3), 209-212.
[http://dx.doi.org/10.1016/j.jhin.2016.08.004] [PMID: 27634564]
[5]
Chapman, S.W.; Sullivan, D.C.; Cleary, J.D. In search of the holy grail of antifungal therapy. Trans. Am. Clin. Climatol. Assoc., 2008, 119, 197-215.
[PMID: 18596853]
[6]
Saag, M.S.; Dismukes, W.E. Azole antifungal agents: Emphasis on new triazoles. Antimicrob. Agents Chemother., 1988, 32(1), 1-8.
[http://dx.doi.org/10.1128/AAC.32.1.1] [PMID: 2831809]
[7]
Gupta, A.K.; Daigle, D.; Foley, K.A. Drug safety assessment of oral formulations of ketoconazole. Expert Opin. Drug Saf., 2015, 14(2), 325-334.
[http://dx.doi.org/10.1517/14740338.2015.983071] [PMID: 25409549]
[8]
Lori, M.S.; Ohadi, M.; Estabragh, M.A.R.; Afsharipour, S.; Banat, I.M.; Dehghannoudeh, G. pH-Sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept. Lett., 2021, 28(11), 1230-1237.
[http://dx.doi.org/10.2174/0929866528666210720142841] [PMID: 34303327]
[9]
Raeisi Estabragh, M.A.; Pardakhty, A.; Ahmadzadeh, S.; Dabiri, S.; Afshar, M.R.; Abbasi, F.M. Successful application of alpha lipoic acid niosomal formulation in cerebral ischemic reperfusion injury in rat model. Adv. Pharm. Bull., 2022, 12(3), 541-549.
[http://dx.doi.org/10.34172/apb.2022.058] [PMID: 35935040]
[10]
Estabragh, R.M.A.; Bami, S.M.; Dehghannoudeh, G.; Noudeh, Y.D.; Moghimipour, E. Cellulose derivatives and natural gums as gelling agents for preparation of emulgel-based dosage forms: A brief review. Int. J. Biol. Macromol., 2023, 241, 124538.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124538] [PMID: 37085064]
[11]
Macwan, M.; Prajapati, B. Development, optimization and characterization of ocular nanoemulsion of an antifungal agent using design of experiments. Res J Pharm Technol, 2022, 15(5), 2273-2278.
[http://dx.doi.org/10.52711/0974-360X.2022.00378]
[12]
Ruiz, S.J.L.; Capmany, C.A.C.; Enrich, C.C.; Febrer, N.B.; Carbó, S.J.; Souto, E.B.; Naveros, C.B. Biopharmaceutical profile of a clotrimazole nanoemulsion: Evaluation on skin and mucosae as anticandidal agent. Int. J. Pharm., 2019, 554, 105-115.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.002] [PMID: 30395953]
[13]
Kale, S.N.; Deore, S.L. Emulsion micro emulsion and nano emulsion: A review. Syst. Rev. Pharm., 2016, 8(1), 39-47.
[http://dx.doi.org/10.5530/srp.2017.1.8]
[14]
Salehi, T.; Estabragh, R.M.A.; Salarpour, S.; Ohadi, M.; Dehghannoudeh, G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J. Drug Target., 2023, 31(9), 950-961.
[http://dx.doi.org/10.1080/1061186X.2023.2271680] [PMID: 37842966]
[15]
Prajapati, B.G.; Jivani, M.; Paliwal, H. Formulation and optimization of topical nanoemulsion based gel of mometasone furoate using 32 full factorial design. Indian Drugs, 2021, 58(6), 19-29.
[16]
Sunazuka, Y.; Ueda, K.; Higashi, K.; Tanaka, Y.; Moribe, K. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int. J. Pharm., 2018, 546(1-2), 263-271.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.031] [PMID: 29763688]
[17]
Shaker, D.S.; Ishak, R.A.H.; Ghoneim, A.; Elhuoni, M.A. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci. Pharm., 2019, 87(3), 17.
[http://dx.doi.org/10.3390/scipharm87030017]
[18]
Sabjan, K.B.; Munawar, S.M.; Rajendiran, D.; Vinoji, S.K.; Kasinathan, K. Nanoemulsion as oral drug delivery - A review. Curr. Drug Res. Rev., 2020, 12(1), 4-15.
[http://dx.doi.org/10.2174/2589977511666191024173508] [PMID: 31774040]
[19]
Raeisi Estabragh, M.A.; Bami, M.S.; Ohadi, M.; Banat, I.M.; Dehghannoudeh, G. Carrier‐based systems as strategies for oral delivery of therapeutic peptides and proteins: A mini‐review. Int. J. Pept. Res. Ther., 2021, 27(2), 1589-1596.
[http://dx.doi.org/10.1007/s10989-021-10193-0]
[20]
Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M.E. Multiple nanoemulsions. Nat. Rev. Mater., 2020, 5(3), 214-228.
[http://dx.doi.org/10.1038/s41578-019-0161-9]
[21]
Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123-127.
[22]
Prajapati, B.G.; Patel, A.G.; Paliwal, H. Fabrication of nanoemulsion-based in situ gel using moxifloxacin hydrochloride as model drug for the treatment of conjunctivitis. Food Hydrocoll. Health, 2021, 1, 100045.
[http://dx.doi.org/10.1016/j.fhfh.2021.100045]
[23]
Prajapati, B.G.; Barot, T. Formulation & optimization of microemulsion based transdermal gel of atomoxetine hydrochloride. Int. Res. J. Pharm., 2019, 11(3)
[24]
Ahmadi Borhanabadi, M.; Raeisi Estabragh, M.A.; Dehghannoudeh, G.; Banat, I.M.; Ohadi, M.; Moshafi, M.H. Optimization of calcium alginate hydrogel bioencapsulation of Acinetobacter junii B6, a lipopeptide biosurfactant producer. Jundishapur J. Nat. Pharm. Prod., 2023, 18(2), e134325.
[http://dx.doi.org/10.5812/jjnpp-134325]
[25]
Parihar, A.; Prajapati, B.G. Response surface methodology for an improved nanoemulsion of ivacaftor & its optimisation for solubility and stability. Pharmacophore, 2023, 14(5), 1-8.
[26]
Al-mahallawi, A.M.; Ahmed, D.; Hassan, M.; El-Setouhy, D.A. Enhanced ocular delivery of clotrimazole via loading into mucoadhesive microemulsion system: In vitro characterization and in vivo assessment. J. Drug Deliv. Sci. Technol., 2021, 64, 102561.
[http://dx.doi.org/10.1016/j.jddst.2021.102561]
[27]
Dini, A.; Khazaeli, P.; Roohbakhsh, A.; Madadlou, A.; Pourenamdari, M.; Setoodeh, L.; Askarian, A.; Doraki, N.; Farrokhi, H.; Moradi, H.; Khodadadi, E. Aflatoxin contamination level in Iran’s pistachio nut during years 2009–2011. Food Control, 2013, 30(2), 540-544.
[http://dx.doi.org/10.1016/j.foodcont.2012.08.012]
[28]
Moghimipour, E.; Salimi, A.; Leis, F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv. Pharm. Bull., 2012, 2(2), 141-147.
[PMID: 24312785]
[29]
Kumar, N. Shishu, D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur. J. Pharm. Sci., 2015, 67, 97-112.
[http://dx.doi.org/10.1016/j.ejps.2014.10.014] [PMID: 25445834]
[30]
N, P.; Chakraborty, I.; Mal, S.S.; Bharath Prasad, A.S.; Mahato, K.K.; Mazumder, N. Evaluation of physicochemical properties of citric acid crosslinked starch elastomers reinforced with silicon dioxide. RSC Advances, 2024, 14(1), 139-146.
[http://dx.doi.org/10.1039/D3RA07868J] [PMID: 38173576]
[31]
Nirmala, M.J.; Mukherjee, A.; Chandrasekaran, N. Enhanced solubilization of aqueous insoluble anti-hypertensive drug. Int. J. Pharm. Pharm. Sci., 2012, 4(5), 366-368.
[32]
Ohadi, M.; Dehghannoudeh, G.; Forootanfar, H.; Shakibaie, M.; Rajaee, M. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int. J. Biol. Macromol., 2018, 112, 712-719.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.209] [PMID: 29425877]
[33]
Hasssanzadeh, H.; Alizadeh, M.; Rezazad Bari, M. Formulation of garlic oil‐in‐water nanoemulsion: Antimicrobial and physicochemical aspects. IET Nanobiotechnol., 2018, 12(5), 647-652.
[http://dx.doi.org/10.1049/iet-nbt.2017.0104] [PMID: 30095427]
[34]
Pascual-Villalobos, M.J.; Guirao, P.; Díaz-Baños, F.G.; Cantó-Tejero, M.; Villora, G. Oil in water nanoemulsion formulations of botanical active substances. In: Nano-Biopesticides Today and Future Perspectives; Elsevier, 2019; pp. 223-247.
[http://dx.doi.org/10.1016/B978-0-12-815829-6.00009-7]
[35]
Malakar, J.; Nayak, A.K. Formulation and statistical optimization of multiple-unit ibuprofen-loaded buoyant system using 23-factorial design. Chem. Eng. Res. Des., 2012, 90(11), 1834-1846.
[http://dx.doi.org/10.1016/j.cherd.2012.02.010]
[36]
Naveed, S.; Nafees, M. UV spectrophotometric assay method for the determination of fluconazole capsules. Open Access Lib. J., 2015, 2(04), 5.
[37]
Vu, Q.L.; Fang, C.W.; Suhail, M.; Wu, P.C. Enhancement of the topical bioavailability and skin whitening effect of genistein by using microemulsions as drug delivery carriers. Pharmaceuticals, 2021, 14(12), 1233.
[http://dx.doi.org/10.3390/ph14121233] [PMID: 34959634]
[38]
Payyal, S.P.; Rompicherla, N.C.; Sathyanarayana, S.D.; Shriram, R.G.; Vadakkepushpakath, A.N. Microemulsion based gel of sulconazole nitrate for topical application. Turk. J. Pharm. Sci., 2020, 17(3), 259.
[39]
More, S.K.; Pawar, A.P. Preparation, optimization and preliminary pharmacokinetic study of curcumin encapsulated turmeric oil micro-emulsion in zebra fish. Eur. J. Pharm. Sci., 2020, 155, 105539.
[http://dx.doi.org/10.1016/j.ejps.2020.105539] [PMID: 32898637]
[40]
Shah, B.; Khunt, D.; Misra, M. Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: Pharmacokinetic and gamma scintigraphy studies. Future J. Pharm. Sci., 2021, 7(1), 6.
[http://dx.doi.org/10.1186/s43094-020-00156-5]
[41]
Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomedicine, 2016, 11, 1475-1482.
[PMID: 27114707]
[42]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[43]
Agrawal, V.; Patel, R.; Patel, M.; Thanki, K.; Mishra, S. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies. Colloids Surf. B Biointerfaces, 2021, 201, 111652.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111652] [PMID: 33740733]
[44]
Volpe, V.; Giacomodonato, M.N.; Sordelli, D.O.; Insausti, M.; Buzzola, F.R.; Grünhut, M. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration. J. Drug Deliv. Sci. Technol., 2020, 57, 101705.
[http://dx.doi.org/10.1016/j.jddst.2020.101705]
[45]
Chomchalao, P.; Saelim, N.; Tiyaboonchai, W. Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application. J. Mater. Sci., 2022, 57(26), 12522-12539.
[http://dx.doi.org/10.1007/s10853-022-07413-3]
[46]
Moghimipour, E.; Salimi, A.; Eftekhari, S. Design and characterization of microemulsion systems for naproxen. Adv. Pharm. Bull., 2013, 3(1), 63-71.
[PMID: 24312814]
[47]
Moreno, M.A.; Ballesteros, M.P.; Frutos, P. Lecithin-based oil-in-water microemulsions for parenteral use: Pseudoternary phase diagrams, characterization and toxicity studies. J. Pharm. Sci., 2003, 92(7), 1428-1437.
[http://dx.doi.org/10.1002/jps.10412] [PMID: 12820147]
[48]
Froelich, A.; Osmałek, T.; Kunstman, P.; Roszak, R.; Białas, W. Rheological and textural properties of microemulsion-based polymer gels with indomethacin. Drug Dev. Ind. Pharm., 2016, 42(6), 854-861.
[http://dx.doi.org/10.3109/03639045.2015.1066799] [PMID: 26204348]
[49]
Nikumbh, K.V.; Sevankar, S.G.; Patil, M.P. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv., 2015, 22(4), 509-515.
[http://dx.doi.org/10.3109/10717544.2013.859186] [PMID: 24266589]
[50]
Fonseca-Santos, B.; Araujo, G.A.; Ferreira, P.S.; Victorelli, F.D.; Pironi, A.M.; Araújo, V.H.S.; Carvalho, S.G.; Chorilli, M. Design and characterization of lipid-surfactant-based systems for enhancing topical anti-inflammatory activity of ursolic acid. Pharmaceutics, 2023, 15(2), 366.
[http://dx.doi.org/10.3390/pharmaceutics15020366] [PMID: 36839688]
[51]
Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol., 2019, 55, 101400.

© 2024 Bentham Science Publishers | Privacy Policy