Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Increased Cyclic Adenosine Monophosphate Responsive Element is Closely Associated with the Pathogenesis of Drug-resistant Epilepsy

Author(s): Jing-Xuan Li, Dai Shi, Si-Ying Ren and Guo-Feng Wu*

Volume 21, Issue 1, 2024

Published on: 08 March, 2024

Page: [54 - 63] Pages: 10

DOI: 10.2174/0115672026290996240307072539

Price: $65

Abstract

Background: Drug-resistant epilepsy (DRE) is a refractory neurological disorder. There is ample evidence that suggest that γ-aminobutyric acid-a (GABAA) receptors could be one of the mechanisms responsible for the development of drug resistance in epilepsy. It is also known that the cAMP response element binding protein (CREB) plays a possible key role in the transcriptional regulation of GABAA.

Objective: This study explores the role of CREB in the development of DRE and the effect of CREB on GABA-related receptors in DRE.

Methods: The CREB expression was increased or decreased in the hippocampus of normal rats by lentiviral transfection, who then underwent the lithium-pilocarpine-induced epilepsy model. Phenobarbital (PB) sodium and carbamazepine (CBZ) were used to select a drug-resistant epileptic model. The expression levels of GABAA receptor α1, β2, and γ2 subunits and CREB protein were measured in the rat hippocampus by western blot and fluorescent quantitative PCR.

Results: The frequency and duration of seizures increased in the overexpression group compared to that in the control group. In addition, the severity, frequency, and duration of seizures decreased in the group with decreased expression. The hippocampus analysis of the expression levels of the CREB protein and CREB mRNA yielded similar findings. Altering the CREB protein expression in the rat hippocampus could negatively regulate the expression and transcript levels of GABAA receptors α1, β2, and γ2, suggesting that CREB may serve as a potential target for the development of treatment protocols and drugs for epilepsy.

Conclusion: Our study shows that enhanced CREB expression promotes the development of DRE and negatively regulates GABAA receptor levels and that the inhibition of CREB expression may reduce the incidence of DRE.

[1]
Falco-Walter JJ, Scheffer IE, Fisher RS. The new definition and classification of seizures and epilepsy. Epilepsy Res 2018; 139: 73-9.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.11.015] [PMID: 29197668]
[2]
Yang Y, Zhou M, Niu Y, et al. Epileptic seizure prediction based on permutation entropy. Front Comput Neurosci 2018; 12: 55-5.
[http://dx.doi.org/10.3389/fncom.2018.00055] [PMID: 30072886]
[3]
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014; 55(4): 475-82.
[http://dx.doi.org/10.1111/epi.12550] [PMID: 24730690]
[4]
Beretta S, Carone D, Zanchi C, et al. Long‐term applicability of the new ILAE definition of epilepsy. Results from the PRO ‐ LONG study. Epilepsia 2017; 58(9): 1518-23.
[http://dx.doi.org/10.1111/epi.13854] [PMID: 28786106]
[5]
Tatum WO IV. Mesial temporal lobe epilepsy. J Clin Neurophysiol 2012; 29(5): 356-65.
[http://dx.doi.org/10.1097/WNP.0b013e31826b3ab7] [PMID: 23027091]
[6]
Liu C, Wen XW, Ge Y, et al. Responsive neurostimulation for the treatment of medically intractable epilepsy. Brain Res Bull 2013; 97: 39-47.
[http://dx.doi.org/10.1016/j.brainresbull.2013.05.010] [PMID: 23735806]
[7]
Chow J, Jensen M, Amini H, et al. Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med 2019; 11(1): 65-5.
[http://dx.doi.org/10.1186/s13073-019-0678-y] [PMID: 31653223]
[8]
Lehn A, Gelauff J, Hoeritzauer I, et al. Functional neurological disorders: Mechanisms and treatment. J Neurol 2016; 263(3): 611-20.
[http://dx.doi.org/10.1007/s00415-015-7893-2] [PMID: 26410744]
[9]
Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of DRE: A systematic review and meta-analysis. J Epilepsia 2018; 59: 2179-93.
[http://dx.doi.org/10.1111/epi.14596] [PMID: 30426482]
[10]
Katyayan A, Diaz-Medina G. Epilepsy. Neurol Clin 2021; 39(3): 779-95.
[http://dx.doi.org/10.1016/j.ncl.2021.04.002] [PMID: 34215386]
[11]
Zavala-Tecuapetla C, Cuellar-Herrera M, Luna-Munguia H. Insights into potential targets for therapeutic intervention in epilepsy. Int J Mol Sci 2020; 21(22): 8573.
[http://dx.doi.org/10.3390/ijms21228573] [PMID: 33202963]
[12]
Arain FM, Boyd KL, Gallagher MJ. Decreased viability and absence‐like epilepsy in mice lacking or deficient in the GABA A receptor α1 subunit. Epilepsia 2012; 53(8): e161-5.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03596.x] [PMID: 22812724]
[13]
Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 2006; 26(44): 11342-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3329-06.2006] [PMID: 17079662]
[14]
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146: 63-86.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.07.008] [PMID: 30086482]
[15]
Zhang G, Raol YH, Hsu FC, Coulter DA, Brooks-Kayal AR. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 2004; 125(2): 299-303.
[http://dx.doi.org/10.1016/j.neuroscience.2004.01.040] [PMID: 15062973]
[16]
Drexel M, Kirchmair E, Sperk G. Changes in the expression of GABAA receptor subunit mRNAs in parahippocampal areas after kainic acid induced seizures. Front Neural Circuits 2013; 7: 142-2.
[http://dx.doi.org/10.3389/fncir.2013.00142] [PMID: 24065890]
[17]
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 2020; 72(3): 606-38.
[http://dx.doi.org/10.1124/pr.120.019539] [PMID: 32540959]
[18]
Shetty AK, Upadhya D. GABA-ergic cell therapy for epilepsy: Advances, limitations and challenges. Neurosci Biobehav Rev 2016; 62: 35-47.
[http://dx.doi.org/10.1016/j.neubiorev.2015.12.014] [PMID: 26748379]
[19]
Xu K, Liu Z, Wang L, Wu G, Liu T. Influence of hippocampal low-frequency stimulation on GABAA R α1, ICER and BNDF expression level in brain tissues of amygdala-kindled drug-resistant temporal lobe epileptic rats. Brain Res 2018; 1698: 195-203.
[http://dx.doi.org/10.1016/j.brainres.2018.08.013] [PMID: 30118718]
[20]
Wu G, Liu Z, Wang L, Zhou X, Li T. Hippocampal low-frequency stimulation decreased camp response element-binding protein and increased GABAA receptor subunit α1 in amygdala-kindled pharmacoresistant epileptic rats. Neuropsychiatry 2017; 7(6): 983-93.
[http://dx.doi.org/10.4172/Neuropsychiatry.1000306]
[21]
Zhu X, Han X, Blendy JA, Porter BE. Decreased CREB levels suppress epilepsy. Neurobiol Dis 2012; 45(1): 253-63.
[http://dx.doi.org/10.1016/j.nbd.2011.08.009] [PMID: 21867753]
[22]
Yu Y, Jiang J. COX‐2/PGE2 axis regulates hippocampal BDNF/TrkB signaling via EP2 receptor after prolonged seizures. Epilepsia Open 2020; 5(3): 418-31.
[http://dx.doi.org/10.1002/epi4.12409] [PMID: 32913950]
[23]
Kamida T, Kong S, Eshima N, Abe T, Fujiki M, Kobayashi H. Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats. Behav Brain Res 2011; 217(1): 99-103.
[http://dx.doi.org/10.1016/j.bbr.2010.08.050] [PMID: 20826186]
[24]
Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3): 281-94.
[http://dx.doi.org/10.1016/0013-4694(72)90177-0] [PMID: 4110397]
[25]
Brandt C, Volk HA, Löscher W. Striking differences in individual anticonvulsant response to phenobarbital in rats with spontaneous seizures after status epilepticus. Epilepsia 2004; 45(12): 1488-97.
[http://dx.doi.org/10.1111/j.0013-9580.2004.16904.x] [PMID: 15571506]
[26]
Bethmann K, Brandt C, Löscher W. Resistance to phenobarbital extends to phenytoin in a rat model of temporal lobe epilepsy. Epilepsia 2007; 48(4): 816-26.
[http://dx.doi.org/10.1111/j.1528-1167.2007.00980.x] [PMID: 17319923]
[27]
Cristina de Brito Toscano E, Leandro Marciano Vieira É, Boni Rocha Dias B, et al. NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 2021; 1752: 147230-0.
[http://dx.doi.org/10.1016/j.brainres.2020.147230] [PMID: 33385378]
[28]
Ma J, Tanaka KF, Shimizu T, et al. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination. J Neurosci Res 2011; 89(5): 639-49.
[http://dx.doi.org/10.1002/jnr.22567] [PMID: 21344476]
[29]
Pansani AP, Ghazale PP, dos Santos EG, et al. The number and periodicity of seizures induce cardiac remodeling and changes in micro-RNA expression in rats submitted to electric amygdala kindling model of epilepsy. Epilepsy Behav 2021; 116: 107784.
[http://dx.doi.org/10.1016/j.yebeh.2021.107784] [PMID: 33548915]
[30]
Qiu J, Li Q, Bell KA, et al. Small‐molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase‐associated malignant glioma growth. Br J Pharmacol 2019; 176(11): 1680-99.
[http://dx.doi.org/10.1111/bph.14622] [PMID: 30761522]
[31]
Pennacchio P, Noé F, Gnatkovsky V, et al. Increased p CREB expression and the spontaneous epileptiform activity in a BCNU ‐treated rat model of cortical dysplasia. Epilepsia 2015; 56(9): 1343-54.
[http://dx.doi.org/10.1111/epi.13070] [PMID: 26174319]
[32]
Roy PL, Ronquillo LH, Ladino LD, Tellez-Zenteno JF. Risk factors associated with drug resistant focal epilepsy in adults: A case control study. Seizure 2019; 73: 46-50.
[http://dx.doi.org/10.1016/j.seizure.2019.10.020] [PMID: 31734466]
[33]
Wang G, Zhu Z, Xu D, Sun L. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy. Clin Neurol Neurosurg 2020; 196: 106018.
[http://dx.doi.org/10.1016/j.clineuro.2020.106018] [PMID: 32574967]
[34]
Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J Biol Chem 2008; 283(14): 9328-40.
[http://dx.doi.org/10.1074/jbc.M705110200] [PMID: 18180303]
[35]
Impey S, McCorkle SR, Cha-Molstad H, et al. Defining the CREB regulon. Cell 2004; 119(7): 1041-54.
[http://dx.doi.org/10.1016/j.cell.2004.10.032] [PMID: 15620361]
[36]
Vasquez A, Farias-Moeller R, Tatum W. Pediatric refractory and super-refractory status epilepticus. Seizure 2019; 68: 62-71.
[http://dx.doi.org/10.1016/j.seizure.2018.05.012] [PMID: 29941225]
[37]
Yu XW, Oh MM, Disterhoft JF. CREB, cellular excitability, and cognition: Implications for aging. Behav Brain Res 2017; 322(Pt B): 206-11.
[http://dx.doi.org/10.1016/j.bbr.2016.07.042]
[38]
Zhang H, Kong Q, Wang J, Jiang Y, Hua H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp Hematol Oncol 2020; 9(1): 32.
[http://dx.doi.org/10.1186/s40164-020-00191-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy