Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

HAND2-AS1 Promotes Ferroptosis to Reverse Lenvatinib Resistance in Hepatocellular Carcinoma by TLR4/NOX2/DUOX2 Axis

In Press, (this is not the final "Version of Record"). Available online 07 March, 2024
Author(s): Zheng Song, Yu Zhang, Wei Luo, Chao Sun, Caihong Lv, Sihao Wang, Quanwei He, Ran Xu, Zhaofang Bai*, Xiujuan Chang* and Yongping Yang*
Published on: 07 March, 2024

DOI: 10.2174/0115680096279597240219055135

Abstract

Introduction: Lenvatinib resistance causes less than 40% of the objective response rate. Therefore, it is urgent to explore new therapeutic targets to reverse the lenvatinib resistance for HCC. HAND2-AS1 is a critical tumor suppressor gene in various cancers.

Methods: Here, we investigated the role of HAND2-AS1 in the molecular mechanism of lenvatinib resistance in HCC. It was found that HAND2-AS1 was lowly expressed in the HepG2 lenvatinib resistance (HepG2-LR) cells and HCC tissues and associated with progression-free intervals via TCGA. Overexpression of HAND2-AS1 (OE-HAND2-AS1) decreased the IC50 of lenvatinib in HepG2-LR cells to reverse lenvatinib resistance. Moreover, OE-HAND2-AS1 induced intracellular concentrations of malondialdehyde (MDA) and lipid ROS and decreased the ratio of glutathione to glutathione disulfide (GSH/GSSG) to promote ferroptosis.

Results: A xenograft model in which nude mice were injected with OE-HAND2-AS1 HepG2-LR cells confirmed that OE-HAND2-AS1 could reverse lenvatinib resistance and decrease tumor formation in vivo. HAND2-AS1 promoted the expression of ferroptosis-related genes (TLR4, NOX2, and DUOX2) and promoted ferroptosis to reverse lenvatinib resistance by increasing TLR4/ NOX2/DUOX2 via competing endogenous miR-219a-1-3p in HCC cells. Besides, patients with a low HAND2-AS1 level had early recurrence after resection.

Conclusion: These findings suggested that HAND2-AS1 may be a potential therapeutic target and an indicator of early recurrence for HCC.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Poh, W.; Wong, W.; Ong, H.; Aung, M.O.; Lim, S.G.; Chua, B.T.; Ho, H.K. Klotho-beta overexpression as a novel target for suppressing proliferation and fibroblast growth factor receptor-4 signaling in hepatocellular carcinoma. Mol. Cancer, 2012, 11(1), 14.
[http://dx.doi.org/10.1186/1476-4598-11-14] [PMID: 22439738]
[3]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[4]
Tan, X.P.; He, Y.; Yang, J.; Wei, X.; Fan, Y.L.; Zhang, G.G.; Zhu, Y.D.; Li, Z.Q.; Liao, H.X.; Qin, D.J.; Guan, X.Y.; Li, B. Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct. Target. Ther., 2023, 8(1), 14.
[http://dx.doi.org/10.1038/s41392-022-01248-9] [PMID: 36617552]
[5]
Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; Blanc, J.F.; Vogel, A.; Komov, D.; Evans, T.R.J.; Lopez, C.; Dutcus, C.; Guo, M.; Saito, K.; Kraljevic, S.; Tamai, T.; Ren, M.; Cheng, A.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet, 2018, 391(10126), 1163-1173.
[http://dx.doi.org/10.1016/S0140-6736(18)30207-1] [PMID: 29433850]
[6]
Alsina, A.; Kudo, M.; Vogel, A.; Cheng, A.L.; Tak, W.Y.; Ryoo, B.Y.; Evans, T.R.J.; López López, C.; Daniele, B.; Misir, S.; Ren, M.; Izumi, N.; Qin, S.; Finn, R.S. Effects of subsequent systemic anticancer medication following first-line lenvatinib: A post hoc responder analysis from the phase 3 REFLECT study in unresectable hepatocellular carcinoma. Liver Cancer, 2020, 9(1), 93-104.
[http://dx.doi.org/10.1159/000504624] [PMID: 32071913]
[7]
Hu, B.; Zou, T.; Qin, W.; Shen, X.; Su, Y.; Li, J.; Chen, Y.; Zhang, Z.; Sun, H.; Zheng, Y.; Wang, C.Q.; Wang, Z.; Li, T.E.; Wang, S.; Zhu, L.; Wang, X.; Fu, Y.; Ren, X.; Dong, Q.; Qin, L.X. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by sTAT3–ABCB1 signaling in hepatocellular carcinoma. Cancer Res., 2022, 82(20), 3845-3857.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-4140] [PMID: 36066408]
[8]
Deng, H.; Kan, A.; Lyu, N.; He, M.; Huang, X.; Qiao, S.; Li, S.; Lu, W.; Xie, Q.; Chen, H.; Lai, J.; Chen, Q.; Jiang, X.; Liu, S.; Zhang, Z.; Zhao, M. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J. Immunother. Cancer, 2021, 9(6), e002305.
[http://dx.doi.org/10.1136/jitc-2020-002305] [PMID: 34168004]
[9]
Green, Y.S.; Ferreira dos Santos, M.C.; Fuja, D.G.; Reichert, E.C.; Campos, A.R.; Cowman, S.J.; Acuña Pilarte, K.; Kohan, J.; Tripp, S.R.; Leibold, E.A.; Sirohi, D.; Agarwal, N.; Liu, X.; Koh, M.Y. ISCA2 inhibition decreases HIF and induces ferroptosis in clear cell renal carcinoma. Oncogene, 2022, 41(42), 4709-4723.
[http://dx.doi.org/10.1038/s41388-022-02460-1] [PMID: 36097192]
[10]
Luo, Y.; Huang, S.; Wei, J.; Zhou, H.; Wang, W.; Yang, J.; Deng, Q.; Wang, H.; Fu, Z. Long noncoding RNA LINC01606 protects colon cancer cells from ferroptotic cell death and promotes stemness by SCD1-Wnt/β-catenin-TFE3 feedback loop signalling. Clin. Transl. Med., 2022, 12(4), e752.
[http://dx.doi.org/10.1002/ctm2.752] [PMID: 35485210]
[11]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[12]
Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47.
[http://dx.doi.org/10.1186/s12943-022-01530-y] [PMID: 35151318]
[13]
Zhou, N.; Yuan, X.; Du, Q.; Zhang, Z.; Shi, X.; Bao, J.; Ning, Y.; Peng, L. FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res., 2023, 51(D1), D571-D582.
[http://dx.doi.org/10.1093/nar/gkac935] [PMID: 36305834]
[14]
Qu, X.; Liu, B.; Wang, L.; Liu, L.; Zhao, W.; Liu, C.; Ding, J.; Zhao, S.; Xu, B.; Yu, H.; Zhang, X.; Chai, J. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist. Updat., 2023, 68, 100936.
[http://dx.doi.org/10.1016/j.drup.2023.100936] [PMID: 36764075]
[15]
Nojima, T.; Proudfoot, N.J. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 389-406.
[http://dx.doi.org/10.1038/s41580-021-00447-6] [PMID: 35079163]
[16]
Leng, X.; Ma, J.; Liu, Y.; Shen, S.; Yu, H.; Zheng, J.; Liu, X.; Liu, L.; Chen, J.; Zhao, L.; Ruan, X.; Xue, Y. Mechanism of piR-DQ590027/MIR17HG regulating the permeability of glioma conditioned normal BBB. J. Exp. Clin. Cancer Res., 2018, 37(1), 246.
[http://dx.doi.org/10.1186/s13046-018-0886-0] [PMID: 30305135]
[17]
Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[18]
Guo, M.; Xiao, Z.D.; Dai, Z.; Zhu, L.; Lei, H.; Diao, L.T.; Xiong, Y. The landscape of long noncoding RNA-involved and tumor-specific fusions across various cancers. Nucleic Acids Res., 2020, 48(22), 12618-12631.
[http://dx.doi.org/10.1093/nar/gkaa1119] [PMID: 33275145]
[19]
Gu, X.; Zheng, Q.; Chu, Q.; Zhu, H. HAND2-AS1: A functional cancer-related long non-coding RNA. Biomed. Pharmacother., 2021, 137, 111317.
[http://dx.doi.org/10.1016/j.biopha.2021.111317] [PMID: 33556872]
[20]
Jiang, Z.; Li, L.; Hou, Z.; Liu, W.; Wang, H.; Zhou, T.; Li, Y.; Chen, S. LncRNA HAND2-AS1 inhibits 5-fluorouracil resistance by modulating miR-20a/PDCD4 axis in colorectal cancer. Cell. Signal., 2020, 66, 109483.
[http://dx.doi.org/10.1016/j.cellsig.2019.109483] [PMID: 31760170]
[21]
Li, L.; Li, L.; Hu, L.; Li, T.; Xie, D.; Liu, X. Long non-coding RNA HAND2-AS1/miR-106a/PTEN axis re-sensitizes cisplatin-resistant ovarian cells to cisplatin treatment. Mol. Med. Rep., 2021, 24(5), 762.
[http://dx.doi.org/10.3892/mmr.2021.12402] [PMID: 34476500]
[22]
Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.08.017] [PMID: 28943315]
[23]
Varghese, F.; Bukhari, A.B.; Malhotra, R.; De, A. IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One, 2014, 9(5), e96801.
[http://dx.doi.org/10.1371/journal.pone.0096801] [PMID: 24802416]
[24]
Chou, H.C.; Chen, C.M. Cathelicidin attenuates hyperoxia-induced lung injury by inhibiting ferroptosis in newborn rats. Antioxidants, 2022, 11(12), 2405.
[http://dx.doi.org/10.3390/antiox11122405] [PMID: 36552613]
[25]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[26]
Luo, X.; Gong, H.B.; Gao, H.Y.; Wu, Y.P.; Sun, W.Y.; Li, Z.Q.; Wang, G.; Liu, B.; Liang, L.; Kurihara, H.; Duan, W.J.; Li, Y.F.; He, R.R. Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ., 2021, 28(6), 1971-1989.
[http://dx.doi.org/10.1038/s41418-020-00719-2] [PMID: 33432112]
[27]
Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309.
[http://dx.doi.org/10.1038/s41589-020-0472-6] [PMID: 32080622]
[28]
Zheng, X.; Wang, Q.; Zhou, Y.; Zhang, D.; Geng, Y.; Hu, W.; Wu, C.; Shi, Y.; Jiang, J. N‐acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4‐acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun., 2022, 42(12), 1347-1366.
[http://dx.doi.org/10.1002/cac2.12363] [PMID: 36209353]
[29]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[30]
Huang, Z.P.; Ding, Y.; Chen, J.; Wu, G.; Kataoka, M.; Hu, Y.; Yang, J.H.; Liu, J.; Drakos, S.G.; Selzman, C.H.; Kyselovic, J.; Qu, L.H.; dos Remedios, C.G.; Pu, W.T.; Wang, D.Z. Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovasc. Res., 2016, 112(2), 543-554.
[http://dx.doi.org/10.1093/cvr/cvw201] [PMID: 27557636]
[31]
Yang, K.; Zhang, W.; Zhong, L.; Xiao, Y.; Sahoo, S.; Fassan, M.; Zeng, K.; Magee, P.; Garofalo, M.; Shi, L. Long non-coding RNA HIF1A-As2 and MYC form a double-positive feedback loop to promote cell proliferation and metastasis in KRAS-driven non-small cell lung cancer. Cell Death Differ., 2023, 30(6), 1533-1549.
[http://dx.doi.org/10.1038/s41418-023-01160-x] [PMID: 37041291]
[32]
Huang, J.; Wang, J.; He, H.; Huang, Z.; Wu, S.; Chen, C.; Liu, W.; Xie, L.; Tao, Y.; Cong, L.; Jiang, Y. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int. J. Biol. Sci., 2021, 17(15), 4493-4513.
[http://dx.doi.org/10.7150/ijbs.66181] [PMID: 34803512]
[33]
Jing, G.Y.; Zheng, X.Z.; Ji, X.X. lncRNA HAND2-AS1 overexpression inhibits cancer cell proliferation in hepatocellular carcinoma by downregulating RUNX2 expression. J. Clin. Lab. Anal., 2021, 35(4), e23717.
[http://dx.doi.org/10.1002/jcla.23717] [PMID: 33566427]
[34]
Bi, H.Q.; Li, Z.H.; Zhang, H. Long noncoding RNA HAND2-AS1 reduced the viability of hepatocellular carcinoma via targeting microRNA-300/SOCS5 axis. Hepatobiliary Pancreat. Dis. Int., 2020, 19(6), 567-574.
[http://dx.doi.org/10.1016/j.hbpd.2020.02.011] [PMID: 32224127]
[35]
Jiang, L.; He, Y.; Shen, G.; Ni, J.; Xia, Z.; Liu, H.; Cao, Y.; Li, X. lncRNA HAND2-AS1 mediates the downregulation of ROCK2 in hepatocellular carcinoma and inhibits cancer cell proliferation, migration and invasion. Mol. Med. Rep., 2020, 21(3), 1304-1309.
[http://dx.doi.org/10.3892/mmr.2020.10928] [PMID: 31922232]
[36]
Iseda, N.; Itoh, S.; Toshida, K.; Tomiyama, T.; Morinaga, A.; Shimokawa, M.; Shimagaki, T.; Wang, H.; Kurihara, T.; Toshima, T.; Nagao, Y.; Harada, N.; Yoshizumi, T.; Mori, M. Ferroptosis is induced by lenvatinib through fibroblast growth factor receptor-4 inhibition in hepatocellular carcinoma. Cancer Sci., 2022, 113(7), 2272-2287.
[http://dx.doi.org/10.1111/cas.15378] [PMID: 35466502]
[37]
Bo, W.; Chen, Y. Lenvatinib resistance mechanism and potential ways to conquer. Front. Pharmacol., 2023, 14, 1153991.
[http://dx.doi.org/10.3389/fphar.2023.1153991] [PMID: 37153782]
[38]
Zhang, Q.; Xiong, L.; Wei, T.; Liu, Q.; Yan, L.; Chen, J.; Dai, L.; Shi, L.; Zhang, W.; Yang, J.; Roessler, S.; Liu, L. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma. Oncogene, 2023, 42(19), 1509-1523.
[http://dx.doi.org/10.1038/s41388-023-02665-y] [PMID: 36932115]
[39]
Nevola, R.; Ruocco, R.; Criscuolo, L.; Villani, A.; Alfano, M.; Beccia, D.; Imbriani, S.; Claar, E.; Cozzolino, D.; Sasso, F.C.; Marrone, A.; Adinolfi, L.E.; Rinaldi, L. Predictors of early and late hepatocellular carcinoma recurrence. World J. Gastroenterol., 2023, 29(8), 1243-1260.
[http://dx.doi.org/10.3748/wjg.v29.i8.1243] [PMID: 36925456]
[40]
Wei, W.; Jian, P.E.; Li, S.H.; Guo, Z.X.; Zhang, Y.F.; Ling, Y.H.; Lin, X.J.; Xu, L.; Shi, M.; Zheng, L.; Chen, M.S.; Guo, R.P. Adjuvant transcatheter arterial chemoembolization after curative resection for hepatocellular carcinoma patients with solitary tumor and microvascular invasion: A randomized clinical trial of efficacy and safety. Cancer Commun., 2018, 38(1), 1-12.
[http://dx.doi.org/10.1186/s40880-018-0331-y] [PMID: 30305149]
[41]
Marasco, G.; Colecchia, A.; Colli, A.; Ravaioli, F.; Casazza, G.; Bacchi Reggiani, M.L.; Cucchetti, A.; Cescon, M.; Festi, D. Role of liver and spleen stiffness in predicting the recurrence of hepatocellular carcinoma after resection. J. Hepatol., 2019, 70(3), 440-448.
[http://dx.doi.org/10.1016/j.jhep.2018.10.022] [PMID: 30389551]
[42]
Wang, Q.; Qiao, W.; Zhang, H.; Liu, B.; Li, J.; Zang, C.; Mei, T.; Zheng, J.; Zhang, Y. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma. Front. Immunol., 2022, 13, 1019638.
[http://dx.doi.org/10.3389/fimmu.2022.1019638] [PMID: 36505501]
[43]
Ji, G.W.; Zhu, F.P.; Xu, Q.; Wang, K.; Wu, M.Y.; Tang, W.W.; Li, X.C.; Wang, X.H. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: A multi-institutional study. Radiology, 2020, 294(3), 568-579.
[http://dx.doi.org/10.1148/radiol.2020191470] [PMID: 31934830]
[44]
Ho, M.C.; Hasegawa, K.; Chen, X.P.; Nagano, H.; Lee, Y.J.; Chau, G.Y.; Zhou, J.; Wang, C.C.; Choi, Y.R.; Poon, R.T.P.; Kokudo, N. Surgery for intermediate and advanced hepatocellular carcinoma: A consensus report from the 5th asia-pacific primary liver cancer expert meeting (APPLE 2014). Liver Cancer, 2016, 5(4), 245-256.
[http://dx.doi.org/10.1159/000449336] [PMID: 27781197]

© 2025 Bentham Science Publishers | Privacy Policy