Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Unlocking the Immunomodulatory Potential of Rosmarinic Acid Isolated from Punica granatum L. using Bioactivity-Guided Approach: In Silico, In Vitro, and In Vivo Approaches

Author(s): Rupesh K. Gautam, Shailesh Mani Tripathi, Shopnil Akash, Sanjay Sharma, Komal Sharma, Swapnil Goyal, Sahar Behzad, Rohit Gundamaraju, Dinesh Kumar Mishra, Yingbo Zhang, Bairong Shen*, Sandeep Sundriyal* and Rajeev K. Singla*

Volume 31, Issue 36, 2024

Published on: 05 March, 2024

Page: [5969 - 5988] Pages: 20

DOI: 10.2174/0109298673291064240227094654

Price: $65

Abstract

Background: Punica granatum L. is well-known for its multifaceted therapeutic potential, including anti-inflammatory and immunomodulatory activities.

Aim: This study aimed to characterize an immunomodulatory compound isolated from Punica granatum L. using a bioactivity-guided approach.

Methods: Chromatographic techniques were adopted for isolation and purification of secondary metabolites. In silico, in vitro, and in vivo methods were performed to characterize the therapeutic potential of the isolated compound.

Results: Using preparative thin-layer chromatography, rosmarinic acid was isolated from F4 (column chromatography product obtained from a butanolic fraction of the extract). The impact of rosmarinic acid was assessed in rats using the neutrophil adhesion test, DTH response, and phagocytic index. In immunized rats, rosmarinic acid demonstrated significant immunomodulatory potential. Computational experiments, like molecular docking and molecular dynamics, were also conducted against two targeted receptors, Cereblon (PDB ID: 8AOQ) and human CD22 (PDB ID: 5VKM). Computational studies suggested that an increase in phagocytic index by rosmarinic acid could be attributed to inhibiting Cereblon and CD22. Pharmacokinetics and toxicity prediction also suggested the drug-likeness of rosmarinic acid.

Conclusion: Rosmarinic acid is a potential candidate, but extensive research needs to be done to translate this molecule from bench to bedside.

[1]
Wagner, H.; Hikino, H.; Farnsworth, N. Economic and Medicinal Plant Research, 3rd ed.; Elsevier, 1989.
[2]
Singla, R.K.; Guimarães, A.G.; Zengin, G. Editorial: Application of plant secondary metabolites to pain neuromodulation, volume III. Front. Pharmacol., 2023, 14, 1166272.
[http://dx.doi.org/10.3389/fphar.2023.1166272] [PMID: 36895948]
[3]
Singla, R.K.; Joon, S.; Sinha, B.; Kamal, M.A.; Simal-Gandara, J.; Xiao, J.; Shen, B. Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci. Biobehav. Rev., 2023, 147, 105106.
[http://dx.doi.org/10.1016/j.neubiorev.2023.105106] [PMID: 36828163]
[4]
Babbar, R.; Kaur, R.; Rana, P.; Arora, S.; Behl, T.; Albratty, M.; Najmi, A.; Meraya, A.M.; Alhazmi, H.A.; Singla, R.K.; Parajuli, N. The current landscape of bioactive molecules against DENV: A systematic review. Evid. Based Complement. Alternat. Med., 2023, 2023, 1-17.
[http://dx.doi.org/10.1155/2023/2236210] [PMID: 36818227]
[5]
Kumar, D.; Singla, R.K.; Sharma, R.; Sharma, P.; Kumar, L.; Kaur, N.; Dhawan, R.K.; Sharma, S.; Dua, K. Phytochemistry and polypharmacological potential of Colebrookea oppositifolia smith. Curr. Top. Med. Chem., 2023, 23(5), 334-348.
[http://dx.doi.org/10.2174/1568026623666221202112414] [PMID: 36476430]
[6]
Singla, R.K.; De, R.; Efferth, T.; Mezzetti, B.; Sahab Uddin, M. The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis. Phytomedicine, 2023, 108, 154520.
[7]
Singla, R.K.; Dubey, A.K. Phytochemical profiling, GC-MS analysis and α-amylase inhibitory potential of ethanolic extract of Cocos nucifera linn. endocarp. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 419-442.
[http://dx.doi.org/10.2174/1871530319666181128100206] [PMID: 30484412]
[8]
Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted effects of lycopene: A boulevard to the multitarget-based treatment for cancer. Molecules, 2021, 26(17), 5333.
[http://dx.doi.org/10.3390/molecules26175333] [PMID: 34500768]
[9]
Singla, R.K.; Sai, C.S.; Chopra, H.; Behzad, S.; Bansal, H.; Goyal, R.; Gautam, R.K.; Tsagkaris, C.; Joon, S.; Singla, S.; Shen, B. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front. Cell Dev. Biol., 2021, 9, 745177.
[http://dx.doi.org/10.3389/fcell.2021.745177] [PMID: 34805155]
[10]
Patel, P.; Asdaq, S.M.B. Immunomodulatory activity of methanolic fruit extract of Aegle marmelos in experimental animals. Saudi Pharm. J., 2010, 18(3), 161-165.
[http://dx.doi.org/10.1016/j.jsps.2010.05.006] [PMID: 23964175]
[11]
Neelam Balekar, S.B.; Mohan, V.; Prasad, A. Modulatory activity of a polyphenolic fraction of Cinnamomum zeylanicum L. bark on multiple arms of immunity in normal and immunocompromised mice. J. Appl. Pharm. Sci., 2014, 4(7), 114-122.
[12]
Alhazmi, H.A.; Najmi, A.; Javed, S.A.; Sultana, S.; Al Bratty, M.; Makeen, H.A.; Meraya, A.M.; Ahsan, W.; Mohan, S.; Taha, M.M.E.; Khalid, A. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front. Immunol., 2021, 12, 637553.
[13]
Zebeaman, M.; Tadesse, M.G.; Bachheti, R.K.; Bachheti, A.; Gebeyhu, R.; Chaubey, K.K.; Li, M.H. Plants and plant-derived molecules as natural immunomodulators. BioMed Res. Int., 2023, 2023, 1-14.
[http://dx.doi.org/10.1155/2023/7711297] [PMID: 37313550]
[14]
Satyavati, G.V.; Gupta, A.K.; Tandon, N.; Seth, S.D. Medicinal Plants of India; Indian Council of Medical Research, 1987, 2, p. 262.
[15]
Morzelle, M.C.; Salgado, J.M.; Telles, M.; Mourelle, D.; Bachiega, P.; Buck, H.S.; Viel, T.A. Neuroprotective effects of pomegranate peel extract after chronic infusion with amyloid-β peptide in mice. PLoS One, 2016, 11(11), e0166123.
[http://dx.doi.org/10.1371/journal.pone.0166123] [PMID: 27829013]
[16]
Venkatrao, N.; Koroth, S.M.; Satyanarayana, S.; Hemamalini, K.; Kumar, S.M.S. Antidiarrhoeal and anti-inflammatory activity of fruit rind extracts of Punica granatum. Indian Drugs, 2007, 44(12), 909-914.
[17]
Das, S.; Singh, S.R.; Ahmed, S.; Kanodia, L. Analgesic and anti-inflammatory activities of ethanolic extract of leaves of Punica granatum L. on experimental animal models. Pharmacologyonline, 2011, 3, 379-385.
[18]
Labsi, M.; Khelifi, L.; Mezioug, D.; Soufli, I.; Touil-Boukoffa, C. Antihydatic and immunomodulatory effects of Punica granatum peel aqueous extract in a murine model of echinococcosis. Asian Pac. J. Trop. Med., 2016, 9(3), 211-220.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.038] [PMID: 26972390]
[19]
Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci., 2011, 1(1), 98-106.
[20]
Wang, J.; Rani, N.; Jakhar, S.; Redhu, R.; Kumar, S.; Kumar, S.; Kumar, S.; Devi, B.; Simal-Gandara, J.; Shen, B.; Singla, R.K. Opuntia ficus-indica (L.) Mill. - anticancer properties and phytochemicals: current trends and future perspectives. Front. Plant Sci., 2023, 14, 1236123.
[http://dx.doi.org/10.3389/fpls.2023.1236123]
[21]
Singla, R.K.; Singh, D.; Verma, R.; Kaushik, D.; Echeverría, J.; Garg, V.; Gupta, P.; Rahman, M.A.; Sharma, A.; Mittal, V.; Shen, B. Fermented formulation of silybum marianum seeds: Optimization, heavy metal analysis, and hepatoprotective assessment. Phytomedicine, 2023.
[PMID: 38241906]
[22]
Singla, R.K.; Zhang, Y.; Singla, S.; Shen, B. Bibliometric and temporal trend analysis of nipah virus- an emerging zoonotic disease: what do we know so far. bioRxiv, 2023.
[http://dx.doi.org/10.1101/2023.10.17.562837]
[23]
Hajiluian, G.; Karegar, S.J.; Shidfar, F.; Aryaeian, N.; Salehi, M.; Lotfi, T.; Farhangnia, P.; Heshmati, J.; Delbandi, A.A. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. Phytomedicine, 2023, 121, 155094.
[http://dx.doi.org/10.1016/j.phymed.2023.155094] [PMID: 37806153]
[24]
Ghadimi, M.; Foroughi, F.; Hashemipour, S.; Nooshabadi, R.M.; Ahmadi, M.H.; Ahadi Nezhad, B.; Khadem Haghighian, H. Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother. Res., 2021, 35(2), 1023-1032.
[http://dx.doi.org/10.1002/ptr.6867] [PMID: 32909365]
[25]
Barghchi, H.; Milkarizi, N.; Belyani, S.; Norouzian Ostad, A.; Askari, V.R.; Rajabzadeh, F.; Goshayeshi, L.; Ghelichi Kheyrabadi, S.Y.; Razavidarmian, M.; Dehnavi, Z.; Sobhani, S.R.; Nematy, M. Pomegranate (Punica granatum L.) peel extract ameliorates metabolic syndrome risk factors in patients with non-alcoholic fatty liver disease: A randomized double-blind clinical trial. Nutr. J., 2023, 22(1), 40.
[http://dx.doi.org/10.1186/s12937-023-00869-2] [PMID: 37605174]
[26]
Gautam, R.K.; Gupta, G.; Sharma, S.; Hatware, K.; Patil, K.; Sharma, K.; Goyal, S.; Chellappan, D.K.; Dua, K. Rosmarinic acid attenuates inflammation in experimentally induced arthritis in Wistar rats, using Freund’s complete adjuvant. Int. J. Rheum. Dis., 2019, 22(7), 1247-1254.
[http://dx.doi.org/10.1111/1756-185X.13602] [PMID: 31155849]
[27]
Kokate, C.K.; Purohit, A.P.; Gohkale, S.B. Pharmacognosy, 21 ed.; Nirali Prakashan: Pune, India, Med. J., 2002, 43(2), pp. 007-085.
[28]
Yadav, R.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol., 2011, 3(12), 10-14.
[29]
Gautam, R.K.; Sharma, S.; Sharma, K. Comparative evaluation of anti-arthritic activity of Salvadora persica linn. and Asparagus racemosus willd: an in-vitro study. IAJPR, 2013, 3(10), 8222-8227.
[30]
Wilkinson, P. Neutrophil adhesion test. In: In Handbook of experimental pharmacology, I, 1st ed.; Springer: Berlin, 1978; p. 109.
[31]
Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Ethnopharmacol., 2015, 4(2), 147-179.
[http://dx.doi.org/10.5455/jice.20150313021918] [PMID: 26401403]
[32]
Rajput, K.; Dubey, R.C.; Kumar, A. Probiotic potential and immunomodulatory properties in Enterococcus faecium GMB24 and Enterococcus hirae SMB16 isolated from goat and sheep milk. Arch. Microbiol., 2022, 204(10), 619.
[http://dx.doi.org/10.1007/s00203-022-03217-w] [PMID: 36098848]
[33]
Kumar, H.; Vasudeva, N. Immunomodulatory potential of Nyctanthes abrortristis stem bark. J. Ayurveda Integr. Med., 2022, 13(2), 100556.
[http://dx.doi.org/10.1016/j.jaim.2022.100556] [PMID: 35653920]
[34]
Shen, X.; Zeng, Y.; Li, J.; Tang, C.; Zhang, Y.; Meng, X. The anti-arthritic activity of total glycosides from Pterocephalus hookeri, a traditional Tibetan herbal medicine. Pharm. Biol., 2017, 55(1), 560-570.
[http://dx.doi.org/10.1080/13880209.2016.1263869] [PMID: 27937009]
[35]
Upadhyay, R.K. Anti-arthritic potential of plant natural products; its use in joint pain medications and anti-inflammatory drug formulations. Int. J. Green. Pharm., 2016, 10(3), S120-S130.
[36]
Muthuraman, A.; Sood, S.; Singla, S.K. The antiinflammatory potential of phenolic compounds from Emblica officinalis L. in rat. Inflammopharmacology, 2011, 19(6), 327-334.
[http://dx.doi.org/10.1007/s10787-010-0041-9] [PMID: 20596897]
[37]
Cheng, W.; Li, J.; You, T.; Hu, C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J. Ethnopharmacol., 2005, 101(1-3), 334-337.
[http://dx.doi.org/10.1016/j.jep.2005.04.035] [PMID: 16029939]
[38]
Shukla, S.; Mehta, A.; John, J.; Mehta, P.; Vyas, S.P.; Shukla, S. Immunomodulatory activities of the ethanolic extract of Caesalpinia bonducella seeds. J. Ethnopharmacol., 2009, 125(2), 252-256.
[http://dx.doi.org/10.1016/j.jep.2009.07.002] [PMID: 19607900]
[39]
Anonymous Schrödinger Release. 2023. Available from: https://www.schrodinger.com/citations#LigPrep
[40]
Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110(6), 1657-1666.
[http://dx.doi.org/10.1021/ja00214a001] [PMID: 27557051]
[41]
Anonymous Schrödinger Release. Available from: https://www.schrodinger.com/citations#Epik
[42]
Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A.K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; Mahmoudi, A.; Cathers, B.; Rychak, E.; Gaidarova, S.; Chen, R.; Schafer, P.H.; Handa, H.; Daniel, T.O.; Evans, J.F.; Chopra, R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11), 2326-2335.
[http://dx.doi.org/10.1038/leu.2012.119] [PMID: 22552008]
[43]
Carrancio, S.; Groocock, L.; Janardhanan, P.; Jankeel, D.; Galasso, R.; Guarinos, C.; Narla, R.K.; Groza, M.; Leisten, J.; Pierce, D.W.; Rolfe, M.; Lopez-Girona, A. CC-99282 is a novel cereblon (CRBN) E3 Ligase Modulator (CELMoD) agent with enhanced tumoricidal activity in preclinical models of lymphoma. Blood, 2021, 138(S1), 1200-1200.
[http://dx.doi.org/10.1182/blood-2021-148068]
[44]
Moon, H.; Min, C.; Kim, G.; Kim, D.; Kim, K.; Lee, S.A.; Moon, B.; Yang, S.; Lee, J.; Yang, S.J.; Cho, S.K.; Lee, G.; Lee, C.S.; Park, C.S.; Park, D. Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat. Commun., 2020, 11(1), 5489.
[http://dx.doi.org/10.1038/s41467-020-19272-0] [PMID: 33127885]
[45]
Pluvinage, J.V.; Haney, M.S.; Smith, B.A.H.; Sun, J.; Iram, T.; Bonanno, L.; Li, L.; Lee, D.P.; Morgens, D.W.; Yang, A.C.; Shuken, S.R.; Gate, D.; Scott, M.; Khatri, P.; Luo, J.; Bertozzi, C.R.; Bassik, M.C.; Wyss-Coray, T. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature, 2019, 568(7751), 187-192.
[http://dx.doi.org/10.1038/s41586-019-1088-4] [PMID: 30944478]
[46]
Aires, V.; Coulon-Bainier, C.; Pavlovic, A.; Ebeling, M.; Schmucki, R.; Schweitzer, C.; Kueng, E.; Gutbier, S.; Harde, E. CD22 blockage restores age-related impairments of microglia surveillance capacity. Front. Immunol., 2021, 12, 684430.
[http://dx.doi.org/10.3389/fimmu.2021.684430] [PMID: 34140954]
[47]
Rossi, E.A.; Goldenberg, D.M.; Michel, R.; Rossi, D.L.; Wallace, D.J.; Chang, C.H. Trogocytosis of multiple B- cell surface markers by CD22 targeting with epratuzumab. Blood, 2013, 122(17), 3020-3029.
[http://dx.doi.org/10.1182/blood-2012-12-473744] [PMID: 23821660]
[48]
Enterina, J.R.; Jung, J.; Macauley, M.S. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed. J., 2019, 42(4), 218-232.
[http://dx.doi.org/10.1016/j.bj.2019.07.010] [PMID: 31627864]
[49]
Krasavin, M.; Adamchik, M.; Bubyrev, A.; Heim, C.; Maiwald, S.; Zhukovsky, D.; Zhmurov, P.; Bunev, A.; Hartmann, M.D. Synthesis of novel glutarimide ligands for the E3 ligase substrate receptor Cereblon (CRBN): Investigation of their binding mode and antiproliferative effects against myeloma cell lines. Eur. J. Med. Chem., 2023, 246, 114990.
[http://dx.doi.org/10.1016/j.ejmech.2022.114990] [PMID: 36476642]
[50]
Ereño-Orbea, J.; Sicard, T.; Cui, H.; Mazhab-Jafari, M.T.; Benlekbir, S.; Guarné, A.; Rubinstein, J.L.; Julien, J.P. Molecular basis of human CD22 function and therapeutic targeting. Nat. Commun., 2017, 8(1), 764.
[http://dx.doi.org/10.1038/s41467-017-00836-6] [PMID: 28970495]
[51]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[52]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[53]
Raj, P.; Selvam, K.; Roy, K.; Mani Tripathi, S.; Kesharwani, S.; Gopal, B.; Varshney, U.; Sundriyal, S. Identification of a new and diverse set of Mycobacterium tuberculosis uracil-DNA glycosylase (MtUng) inhibitors using structure-based virtual screening: Experimental validation and molecular dynamics studies. Bioorg. Med. Chem. Lett., 2022, 76, 129008.
[http://dx.doi.org/10.1016/j.bmcl.2022.129008] [PMID: 36174837]
[54]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[55]
Vanommeslaeghe, K.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model., 2012, 52(12), 3144-3154.
[http://dx.doi.org/10.1021/ci300363c] [PMID: 23146088]
[56]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[57]
Schiffrin, B.; Radford, S.E.; Brockwell, D.J.; Calabrese, A.N. PYXLINKVIEWER : A flexible tool for visualization of protein chemical crosslinking data within the PYMOL molecular graphics system. Protein Sci., 2020, 29(8), 1851-1857.
[http://dx.doi.org/10.1002/pro.3902] [PMID: 32557917]
[58]
Tripathi, S.M.; Akash, S.; Rahman, M.A.; Sundriyal, S. Identification of synthetically tractable MERS-CoV main protease inhibitors using structure-based virtual screening and molecular dynamics potential of mean force (PMF) calculations. J. Biomol. Struct. Dyn., 2023, 1-11.
[http://dx.doi.org/10.1080/07391102.2023.2283780] [PMID: 37978909]
[59]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[60]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[61]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[62]
Ambriz-Perez, D.L.; Leyva-Lopez, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B.; Yildiz, F. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric., 2016, 2(1), 1131412.
[63]
do Nascimento, R.F.; de Oliveira Formiga, R.; Machado, F.D.F.; de Sales, I.R.P.; de Lima, G.M.; Alves Júnior, E.B.; Vieira, G.C.; Pereira, R.F.; de Araújo, A.A.; de Araújo Junior, R.F.; Barbosa Filho, J.M.; Batista, L.M. Rosmarinic acid prevents gastric ulcers via sulfhydryl groups reinforcement, antioxidant and immunomodulatory effects. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(12), 2265-2278.
[http://dx.doi.org/10.1007/s00210-020-01894-2] [PMID: 32642876]
[64]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[65]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[66]
Lataliza, A.A.B.; de Assis, P.M.; da Rocha Laurindo, L.; Gonçalves, E.C.D.; Raposo, N.R.B.; Dutra, R.C. Antidepressant-like effect of rosmarinic acid during LPS -induced neuroinflammatory model: The potential role of cannabinoid receptors/ PPAR -γ signaling pathway. Phytother. Res., 2021, 35(12), 6974-6989.
[http://dx.doi.org/10.1002/ptr.7318] [PMID: 34709695]
[67]
Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic acid-human pharmacokinetics and health benefits. Planta Med., 2021, 87(4), 273-282.
[http://dx.doi.org/10.1055/a-1301-8648] [PMID: 33285594]
[68]
Kim, S.B.; Kim, K.S.; Kim, D.D.; Yoon, I.S. Metabolic interactions of rosmarinic acid with human cytochrome P450 monooxygenases and uridine diphosphate glucuronosyltransferases. Biomed. Pharmacother., 2019, 110, 111-117.
[http://dx.doi.org/10.1016/j.biopha.2018.11.040] [PMID: 30466000]
[69]
Yao, Y.; Li, R.; Liu, D.; Long, L.; He, N. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway. Ecotoxicol. Environ. Saf., 2022, 241, 113773.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113773] [PMID: 35753269]
[70]
Yu, Y.; Wu, Y.; Yan, H.; Xia, Z.; Wen, W.; Liu, D.; Wan, L. Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. Pharm. Biol., 2021, 59(1), 1284-1291.
[http://dx.doi.org/10.1080/13880209.2021.1974059] [PMID: 34517734]
[71]
Ahmadvand, H.; Jafaripour, L.; Naserzadeh, R.; Alizamani, E.; Javad Mashhadi, S.M.; Moghadam, E.R.; Nouryazdan, N. Effects of rosmarinic acid on methotrexate-induced nephrotoxicity and hepatotoxicity in wistar rats. Indian J. Nephrol., 2021, 31(3), 218-224.
[http://dx.doi.org/10.4103/ijn.IJN_14_20] [PMID: 34376933]
[72]
Elufioye, T.O.; Habtemariam, S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed. Pharmacother., 2019, 112, 108600.
[http://dx.doi.org/10.1016/j.biopha.2019.108600] [PMID: 30780110]
[73]
Renzulli, C.; Galvano, F.; Pierdomenico, L.; Speroni, E.; Guerra, M.C. Effects of rosmarinic acid against aflatoxin B 1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J. Appl. Toxicol., 2004, 24(4), 289-296.
[http://dx.doi.org/10.1002/jat.982] [PMID: 15300717]
[74]
Furtado, M.A.; de Almeida, L.C.F.; Furtado, R.A.; Cunha, W.R.; Tavares, D.C. Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2008, 657(2), 150-154.
[http://dx.doi.org/10.1016/j.mrgentox.2008.09.003] [PMID: 18926924]
[75]
Han, J.; Wang, D.; Ye, L.; Li, P.; Hao, W.; Chen, X.; Ma, J.; Wang, B.; Shang, J.; Li, D.; Zheng, Q. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma. Front. Pharmacol., 2017, 8, 456.
[http://dx.doi.org/10.3389/fphar.2017.00456] [PMID: 28744220]
[76]
Chen, C.; Ma, J.; Xu, Z.; Chen, L.; Sun, B.; Shi, Y.; Miao, Y.; Wu, T.; Qin, M.; Zhang, Y.; Zhang, M.; Cao, X. Rosmarinic acid inhibits platelet aggregation and neointimal hyperplasia in vivo and vascular smooth muscle cell dedifferentiation, proliferation, and migration in vitro via activation of the keap1-Nrf2-ARE antioxidant system. J. Agric. Food Chem., 2022, 70(24), 7420-7440.
[http://dx.doi.org/10.1021/acs.jafc.2c01176] [PMID: 35687823]
[77]
Fetoni, A.R.; Paciello, F.; Rolesi, R.; Eramo, S.L.M.; Mancuso, C.; Troiani, D.; Paludetti, G. Rosmarinic acid up-regulates the noise-activated Nrf2/HO-1 pathway and protects against noise-induced injury in rat cochlea. Free Radic. Biol. Med., 2015, 85, 269-281.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.021] [PMID: 25936352]
[78]
Deepti, B.; Suyog, G.; Beautikuma, S.; Ankita, P. Tannin rich fraction of Punica granatum linn. leaves ameliorates freund’s adjuvant induced arthritis in experimental animals. Pharmacologia, 2014, 5(1), 19-31.
[http://dx.doi.org/10.5567/pharmacologia.2014.19.31]
[79]
Petersen, M.; Simmonds, M.S.J. Rosmarinic acid. Phytochemistry, 2003, 62(2), 121-125.
[http://dx.doi.org/10.1016/S0031-9422(02)00513-7] [PMID: 12482446]
[80]
Boonyarikpunchai, W.; Sukrong, S.; Towiwat, P. Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacol. Biochem. Behav., 2014, 124, 67-73.
[http://dx.doi.org/10.1016/j.pbb.2014.05.004] [PMID: 24836183]
[81]
Ellis, B.E.; Towers, G.H.N. Biogenesis of rosmarinic acid in Mentha. Biochem. J., 1970, 118(2), 291-297.
[http://dx.doi.org/10.1042/bj1180291] [PMID: 5484678]
[82]
Weitzel, C.; Petersen, M. Cloning and characterisation of rosmarinic acid synthase from Melissa officinalis L. Phytochemistry, 2011, 72(7), 572-578.
[http://dx.doi.org/10.1016/j.phytochem.2011.01.039] [PMID: 21354582]
[83]
Fasolo, J.M.M.A.; Vizuete, A.F.K.; Rico, E.P.; Rambo, R.B.S.; Toson, N.S.B.; Santos, E.; de Oliveira, D.L.; Gonçalves, C.A.S.; Schapoval, E.E.S.; Heriques, A.T. Anti-inflammatory effect of rosmarinic acid isolated from Blechnum brasiliense in adult zebrafish brain. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 239, 108874.
[http://dx.doi.org/10.1016/j.cbpc.2020.108874] [PMID: 32805443]
[84]
Lin, L.; Dong, Y.; Zhao, H.; Wen, L.; Yang, B.; Zhao, M. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem., 2011, 129(3), 884-889.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.039] [PMID: 25212314]
[85]
Ulbrich, B.; Wiesner, W.; Arens, H. Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei benth. In: Primary and Secondary Metabolism of Plant Cell Cultures; Springer, 1985; pp. 293-303.
[http://dx.doi.org/10.1007/978-3-642-70717-9_28]
[86]
Zou, Z.W.; Xu, L.N.; Tian, J.Y. Antithrombotic and antiplatelet effects of rosmarinic acid, a water-soluble component isolated from radix Salviae miltiorrhizae (danshen). Yao Xue Xue Bao, 1993, 28(4), 241-245.
[PMID: 8213164]
[87]
Nakamura, Y.; Ohto, Y.; Murakami, A.; Ohigashi, H. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton Var. acuta f. viridis. J. Agric. Food Chem., 1998, 46(11), 4545-4550.
[http://dx.doi.org/10.1021/jf980557m]
[88]
Gohari, A.R.; Saeidnia, S.; Malmir, M.; Hadjiakhoondi, A.; Ajani, Y. Flavones and rosmarinic acid from Salvia limbata. Nat. Prod. Res., 2010, 24(20), 1902-1906.
[http://dx.doi.org/10.1080/14786411003766912] [PMID: 21108116]
[89]
Gamaro, G.D.; Suyenaga, E.; Borsoi, M.; Lermen, J.; Pereira, P.; Ardenghi, P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol., 2011, 2011, 1-6.
[http://dx.doi.org/10.5402/2011/451682] [PMID: 22084714]
[90]
Costa, R.S.; Carneiro, T.C.B.; Cerqueira-Lima, A.T.; Queiroz, N.V.; Alcântara-Neves, N.M.; Pontes-de-Carvalho, L.C.; Velozo, E.S.; Oliveira, E.J.; Figueiredo, C.A. Ocimum gratissimum Linn. and rosmarinic acid, attenuate eosinophilic airway inflammation in an experimental model of respiratory allergy to Blomia tropicalis. Int. Immunopharmacol., 2012, 13(1), 126-134.
[http://dx.doi.org/10.1016/j.intimp.2012.03.012] [PMID: 22465960]
[91]
Luo, C.; Zou, L.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Jin, Y.; Sun, S. A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front. Pharmacol., 2020, 11, 153.
[http://dx.doi.org/10.3389/fphar.2020.00153] [PMID: 32184728]
[92]
Zhao, L.; Zhang, Y.; Liu, G.; Hao, S.; Wang, C.; Wang, Y. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct., 2018, 9(5), 2796-2808.
[http://dx.doi.org/10.1039/C7FO01490B] [PMID: 29691532]
[93]
Shakeri, F.; Eftekhar, N.; Roshan, N.M.; Rezaee, R.; Moghimi, A.; Boskabady, M.H. Rosmarinic acid affects immunological and inflammatory mediator levels and restores lung pathological features in asthmatic rats. Allergol. Immunopathol., 2019, 47(1), 16-23.
[http://dx.doi.org/10.1016/j.aller.2018.04.004] [PMID: 29983238]
[94]
Kraus, R.F.; Gruber, M.A. Neutrophils-from bone marrow to first-line defense of the innate immune system. Front. Immunol., 2021, 12, 767175.
[http://dx.doi.org/10.3389/fimmu.2021.767175] [PMID: 35003081]
[95]
Singh, R.; Sharma, P.; Wadhwan, V. Neutrophils defending the defenders. J. Oral Maxillofac. Pathol., 2021, 25(1), 177-182.
[http://dx.doi.org/10.4103/jomfp.jomfp_495_20] [PMID: 34349432]
[96]
Bhattacharjee, S.; Ghosh, D.; Saha, R.; Sarkar, R.; Kumar, S.; Khokhar, M.; Pandey, R.K. Mechanism of immune evasion in mosquito-borne diseases. Pathogens, 2023, 12(5), 635.
[http://dx.doi.org/10.3390/pathogens12050635] [PMID: 37242305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy