Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

DNA Methylation-Based Diagnosis and Treatment of Breast Cancer

In Press, (this is not the final "Version of Record"). Available online 01 March, 2024
Author(s): Xintong Peng, Jingfan Zheng, Tianzi Liu, Ziwen Zhou, Chen Song, Danyan Zhang, Xinlong Zhang and Yan Huang*
Published on: 01 March, 2024

DOI: 10.2174/0115680096278978240204162353

Abstract

DNA methylation is a key epigenetic modifier involved in tumor formation, invasion, and metastasis. The development of breast cancer is a complex process, and many studies have now confirmed the involvement of DNA methylation in breast cancer. Moreover, the number of genes identified as aberrantly methylated in breast cancer is rapidly increasing, and the accumulation of epigenetic alterations becomes a chronic factor in the development of breast cancer. The combined effects of external environmental factors and the internal tumor microenvironment promote epigenetic alterations that drive tumorigenesis. This article focuses on the relevance of DNA methylation to breast cancer, describing the role of detecting DNA methylation in the early diagnosis, prediction, progression, metastasis, treatment, and prognosis of breast cancer, as well as recent advances. The reversibility of DNA methylation is utilized to target specific methylation aberrant promoters as well as related enzymes, from early prevention to late targeted therapy, to understand the journey of DNA methylation in breast cancer with a more comprehensive perspective. Meanwhile, methylation inhibitors in combination with other therapies have a wide range of prospects, providing hope to drug-resistant breast cancer patients.

[1]
Thakur, C.; Qiu, Y.; Fu, Y.; Bi, Z.; Zhang, W.; Ji, H.; Chen, F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front. Oncol., 2022, 12, 971288.
[http://dx.doi.org/10.3389/fonc.2022.971288] [PMID: 36185256]
[2]
Park, M.; Kim, D.; Ko, S.; Kim, A.; Mo, K.; Yoon, H. Breast cancer metastasis: Mechanisms and therapeutic implications. Int. J. Mol. Sci., 2022, 23(12), 6806.
[http://dx.doi.org/10.3390/ijms23126806] [PMID: 35743249]
[3]
Huo, Q.; Wang, J.; Xie, N. High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis. BMC Cancer, 2023, 23(1), 501.
[http://dx.doi.org/10.1186/s12885-023-10983-3] [PMID: 37268925]
[4]
Loyfer, N.; Magenheim, J.; Peretz, A.; Cann, G.; Bredno, J.; Klochendler, A.; Fox-Fisher, I.; Shabi-Porat, S.; Hecht, M.; Pelet, T.; Moss, J.; Drawshy, Z.; Amini, H.; Moradi, P.; Nagaraju, S.; Bauman, D.; Shveiky, D.; Porat, S.; Dior, U.; Rivkin, G.; Or, O.; Hirshoren, N.; Carmon, E.; Pikarsky, A.; Khalaileh, A.; Zamir, G.; Grinbaum, R.; Abu Gazala, M.; Mizrahi, I.; Shussman, N.; Korach, A.; Wald, O.; Izhar, U.; Erez, E.; Yutkin, V.; Samet, Y.; Rotnemer Golinkin, D.; Spalding, K.L.; Druid, H.; Arner, P.; Shapiro, A.M.J.; Grompe, M.; Aravanis, A.; Venn, O.; Jamshidi, A.; Shemer, R.; Dor, Y.; Glaser, B.; Kaplan, T. A DNA methylation atlas of normal human cell types. Nature, 2023, 613(7943), 355-364.
[http://dx.doi.org/10.1038/s41586-022-05580-6] [PMID: 36599988]
[5]
Saviana, M.; Le, P.; Micalo, L.; Del Valle-Morales, D.; Romano, G.; Acunzo, M.; Li, H.; Nana-Sinkam, P. Crosstalk between miRNAs and DNA methylation in Cancer. Genes, 2023, 14(5), 1075.
[http://dx.doi.org/10.3390/genes14051075] [PMID: 37239435]
[6]
Liu, Y.; Leng, P.; Liu, Y.; Guo, J.; Zhou, H. Crosstalk between methylation and ncRNAs in breast cancer: Therapeutic and diagnostic implications. Int. J. Mol. Sci., 2022, 23(24), 15759.
[http://dx.doi.org/10.3390/ijms232415759] [PMID: 36555400]
[7]
Nishiyama, A.; Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet., 2021, 37(11), 1012-1027.
[http://dx.doi.org/10.1016/j.tig.2021.05.002] [PMID: 34120771]
[8]
Ma, L.; Li, C.; Yin, H.; Huang, J.; Yu, S.; Zhao, J.; Tang, Y.; Yu, M.; Lin, J.; Ding, L.; Cui, Q. The mechanism of DNA Methylation and miRNA in breast cancer. Int. J. Mol. Sci., 2023, 24(11), 9360.
[http://dx.doi.org/10.3390/ijms24119360] [PMID: 37298314]
[9]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[10]
Li, L.; Li, S.; Qin, S.; Gao, Y.; Wang, C.; Du, J.; Zhang, N.; Chen, Y.; Han, Z.; Yu, Y.; Wang, F.; Zhao, Y. Diet, sports, and psychological stress as modulators of breast cancer risk: Focus on OPRM1 methylation. Front. Nutr., 2021, 8, 747964.
[http://dx.doi.org/10.3389/fnut.2021.747964] [PMID: 35024367]
[11]
Ruscito, I.; Gasparri, M.L.; De Marco, M.P.; Costanzi, F.; Besharat, A.R.; Papadia, A.; Kuehn, T.; Gentilini, O.D.; Bellati, F.; Caserta, D. The clinical and pathological profile of BRCA1 gene methylated breast cancer women: A meta-analysis. Cancers, 2021, 13(6), 1391.
[http://dx.doi.org/10.3390/cancers13061391] [PMID: 33808555]
[12]
Selli, C.; Turnbull, A.K.; Pearce, D.A.; Li, A.; Fernando, A.; Wills, J.; Renshaw, L.; Thomas, J.S.; Dixon, J.M.; Sims, A.H. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res., 2019, 21(1), 2.
[http://dx.doi.org/10.1186/s13058-018-1089-5] [PMID: 30616553]
[13]
Florath, I.; Butterbach, K.; Müller, H.; Bewerunge-Hudler, M.; Brenner, H. Cross-sectional and longitudinal changes in DNA methylation with age: An epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet., 2014, 23(5), 1186-1201.
[http://dx.doi.org/10.1093/hmg/ddt531] [PMID: 24163245]
[14]
Rozenblit, M.; Hofstatter, E.; Liu, Z.; O’Meara, T.; Storniolo, A.M.; Dalela, D.; Singh, V.; Pusztai, L.; Levine, M. Evidence of accelerated epigenetic aging of breast tissues in patients with breast cancer is driven by CpGs associated with polycomb-related genes. Clin. Epigenetics, 2022, 14(1), 30.
[http://dx.doi.org/10.1186/s13148-022-01249-z] [PMID: 35209953]
[15]
Siddig, A.; Tengku Din, T.A.D.A.A.; Mohd Nafi, S.N.; Yahya, M.M.; Sulong, S.; Rahman, W.H.W.F. The unique biology behind the early onset of breast cancer. Genes, 2021, 12(3), 372.
[http://dx.doi.org/10.3390/genes12030372] [PMID: 33807872]
[16]
Oltra, S.S.; Peña-Chilet, M.; Vidal-Tomas, V.; Flower, K.; Martinez, M.T.; Alonso, E.; Burgues, O.; Lluch, A.; Flanagan, J.M.; Ribas, G. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women. Sci. Rep., 2018, 8(1), 14373.
[http://dx.doi.org/10.1038/s41598-018-32393-3] [PMID: 30258192]
[17]
Nguyen, N.M.; de Oliveira Andrade, F.; Jin, L.; Zhang, X.; Macon, M.; Cruz, M.I.; Benitez, C.; Wehrenberg, B.; Yin, C.; Wang, X.; Xuan, J.; de Assis, S.; Hilakivi-Clarke, L. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice. Breast Cancer Res., 2017, 19(1), 77.
[http://dx.doi.org/10.1186/s13058-017-0866-x] [PMID: 28673325]
[18]
Pierobon, M.; Frankenfeld, C.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis. Breast Cancer Res. Treat., 2013, 137(1), 307-314.
[http://dx.doi.org/10.1007/s10549-012-2339-3] [PMID: 23179600]
[19]
Pang, Y.; Wei, Y.; Kartsonaki, C. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: A systematic review and meta-analysis. Breast Cancer, 2022, 29(4), 575-588.
[http://dx.doi.org/10.1007/s12282-022-01355-z] [PMID: 35579841]
[20]
Xiong, Z.; Li, X.; Yang, L.; Wu, L.; Xie, Y.; Xu, F.; Xie, X. Integrative analysis of gene expression and DNA methylation depicting the impact of obesity on breast cancer. Front. Cell Dev. Biol., 2022, 10, 818082.
[http://dx.doi.org/10.3389/fcell.2022.818082] [PMID: 35350384]
[21]
Donovan, M.G.; Wren, S.N.; Cenker, M.; Selmin, O.I.; Romagnolo, D.F. Dietary fat and obesity as modulators of breast cancer risk: Focus on DNA methylation. Br. J. Pharmacol., 2020, 177(6), 1331-1350.
[http://dx.doi.org/10.1111/bph.14891] [PMID: 31691272]
[22]
Metovic, J.; Borella, F.; D’Alonzo, M.; Biglia, N.; Mangherini, L.; Tampieri, C.; Bertero, L.; Cassoni, P.; Castellano, I. FOXA1 in breast cancer: A luminal marker with promising prognostic and predictive impact. Cancers, 2022, 14(19), 4699.
[http://dx.doi.org/10.3390/cancers14194699] [PMID: 36230619]
[23]
Rangel, N.; Fortunati, N.; Osella-Abate, S.; Annaratone, L.; Isella, C.; Catalano, M.G.; Rinella, L.; Metovic, J.; Boldorini, R.; Balmativola, D.; Ferrando, P.; Marano, F.; Cassoni, P.; Sapino, A.; Castellano, I. FOXA1 and AR in invasive breast cancer: New findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer, 2018, 18(1), 703.
[http://dx.doi.org/10.1186/s12885-018-4624-y] [PMID: 29970021]
[24]
Gong, C.; Fujino, K.; Monteiro, L.J.; Gomes, A.R.; Drost, R.; Davidson-Smith, H.; Takeda, S.; Khoo, U.S.; Jonkers, J.; Sproul, D.; Lam, E.W-F. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer. Oncogene, 2015, 34(39), 5012-5024.
[http://dx.doi.org/10.1038/onc.2014.421] [PMID: 25531315]
[25]
Basree, M.M.; Shinde, N.; Koivisto, C.; Cuitino, M.; Kladney, R.; Zhang, J.; Stephens, J.; Palettas, M.; Zhang, A.; Kim, H.K.; Acero-Bedoya, S.; Trimboli, A.; Stover, D.G.; Ludwig, T.; Ganju, R.; Weng, D.; Shields, P.; Freudenheim, J.; Leone, G.W.; Sizemore, G.M.; Majumder, S.; Ramaswamy, B. Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res., 2019, 21(1), 80.
[http://dx.doi.org/10.1186/s13058-019-1163-7] [PMID: 31315645]
[26]
Ambrosone, C.B.; Higgins, M.J. Relationships between breast feeding and breast cancer subtypes: Lessons learned from studies in humans and in mice. Cancer Res., 2020, 80(22), 4871-4877.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0077] [PMID: 32816853]
[27]
McCullough, L.E.; Collin, L.J.; Conway, K.; White, A.J.; Cho, Y.H.; Shantakumar, S.; Terry, M.B.; Teitelbaum, S.L.; Neugut, A.I.; Santella, R.M.; Chen, J.; Gammon, M.D. Reproductive characteristics are associated with gene-specific promoter methylation status in breast cancer. BMC Cancer, 2019, 19(1), 926.
[http://dx.doi.org/10.1186/s12885-019-6120-4] [PMID: 31533668]
[28]
Sahay, D.; Terry, M.B.; Miller, R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics, 2019, 11(6), 701-714.
[http://dx.doi.org/10.2217/epi-2018-0158] [PMID: 31070457]
[29]
Callahan, C.L.; Bonner, M.R.; Nie, J.; Han, D.; Wang, Y.; Tao, M.H.; Shields, P.G.; Marian, C.; Eng, K.H.; Trevisan, M.; Beyea, J.; Freudenheim, J.L. Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors. Environ. Res., 2018, 161, 418-424.
[http://dx.doi.org/10.1016/j.envres.2017.11.040] [PMID: 29197760]
[30]
Ritonja, J.A.; Aronson, K.J.; Flaten, L.; Topouza, D.G.; Duan, Q.L.; Durocher, F.; Tranmer, J.E.; Bhatti, P. Exploring the impact of night shift work on methylation of circadian genes. Epigenetics, 2022, 17(10), 1259-1268.
[http://dx.doi.org/10.1080/15592294.2021.2009997] [PMID: 34825628]
[31]
Xiang, S.; Dauchy, R.T.; Hoffman, A.E.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer. J. Pineal Res., 2019, 67(2), e12586.
[http://dx.doi.org/10.1111/jpi.12586] [PMID: 31077613]
[32]
Zubidat, A.E.; Fares, B.; Fares, F.; Haim, A. Artificial light at night of different spectral compositions differentially affects tumor growth in mice: Interaction with melatonin and epigenetic pathways. Cancer Contr., 2018, 25(1)
[http://dx.doi.org/10.1177/1073274818812908] [PMID: 30477310]
[33]
Gillman, A.S.; Helmuth, T.; Koljack, C.E.; Hutchison, K.E.; Kohrt, W.M.; Bryan, A.D. The effects of exercise duration and intensity on breast cancer-related DNA methylation: A randomized controlled trial. Cancers, 2021, 13(16), 4128.
[http://dx.doi.org/10.3390/cancers13164128] [PMID: 34439282]
[34]
Zhou, X.; Yu, L.; Wang, L.; Xiao, J.; Sun, J.; Zhou, Y.; Xu, X.; Xu, W.; Spiliopoulou, A.; Timofeeva, M.; Zhang, X.; He, Y.; Yang, H.; Campbell, H.; Zhang, B.; Zhu, Y.; Theodoratou, E.; Li, X. Alcohol consumption, blood DNA methylation and breast cancer: A Mendelian randomisation study. Eur. J. Epidemiol., 2022, 37(7), 701-712.
[http://dx.doi.org/10.1007/s10654-022-00886-1] [PMID: 35708873]
[35]
Rahman, M.M.; Brane, A.C.; Tollefsbol, T.O. MicroRNAs and epigenetics strategies to reverse breast cancer. Cells, 2019, 8(10), 1214.
[http://dx.doi.org/10.3390/cells8101214] [PMID: 31597272]
[36]
Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; Brannigan, B.W.; Kapur, R.; Stott, S.L.; Shioda, T.; Ramaswamy, S.; Ting, D.T.; Lin, C.P.; Toner, M.; Haber, D.A.; Maheswaran, S. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 2014, 158(5), 1110-1122.
[http://dx.doi.org/10.1016/j.cell.2014.07.013] [PMID: 25171411]
[37]
Gkountela, S.; Castro-Giner, F.; Szczerba, B.M.; Vetter, M.; Landin, J.; Scherrer, R.; Krol, I.; Scheidmann, M.C.; Beisel, C.; Stirnimann, C.U.; Kurzeder, C.; Heinzelmann-Schwarz, V.; Rochlitz, C.; Weber, W.P.; Aceto, N. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 2019, 176(1-2), 98-112.e14.
[http://dx.doi.org/10.1016/j.cell.2018.11.046] [PMID: 30633912]
[38]
Luo, J.; Chen, S.; Chen, J.; Zhou, Y.; He, F.; Wang, E. Identification and validation of DNA methylation markers to predict axillary lymph node metastasis of breast cancer. PLoS One, 2022, 17(12), e0278270.
[http://dx.doi.org/10.1371/journal.pone.0278270] [PMID: 36454866]
[39]
Stelzer, K. Epidemiology and prognosis of brain metastases. Surg. Neurol. Int., 2013, 4(5), 192.
[http://dx.doi.org/10.4103/2152-7806.111296] [PMID: 23717790]
[40]
Ivanova, M.; Porta, F.M.; Giugliano, F.; Frascarelli, C.; Sajjadi, E.; Venetis, K.; Cursano, G.; Mazzarol, G.; Guerini-Rocco, E.; Curigliano, G.; Criscitiello, C.; Fusco, N. Breast cancer with brain metastasis: Molecular insights and clinical management. Genes, 2023, 14(6), 1160.
[http://dx.doi.org/10.3390/genes14061160] [PMID: 37372340]
[41]
Barciszewska, A.M. Global DNA demethylation as an epigenetic marker of human brain metastases. Biosci. Rep., 2018, 38(5), BSR20180731.
[http://dx.doi.org/10.1042/BSR20180731] [PMID: 30254100]
[42]
Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest., 2009, 119(6), 1429-1437.
[http://dx.doi.org/10.1172/JCI36183] [PMID: 19487819]
[43]
Butler, C.; Sprowls, S.; Szalai, G.; Arsiwala, T.; Saralkar, P.; Straight, B.; Hatcher, S.; Tyree, E.; Yost, M.; Kohler, W.J.; Wolff, B.; Putnam, E.; Lockman, P.; Liu, T. Hypomethylating agent azacitidine is effective in treating brain metastasis triple-negative breast cancer through regulation of DNA methylation of keratin 18 gene. Transl. Oncol., 2020, 13(6), 100775.
[http://dx.doi.org/10.1016/j.tranon.2020.100775] [PMID: 32408199]
[44]
Lehmann, B.D.; Pietenpol, J.A. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J. Pathol., 2014, 232(2), 142-150.
[http://dx.doi.org/10.1002/path.4280] [PMID: 24114677]
[45]
Peto, R.; Davies, C.; Godwin, J.; Gray, R.; Pan, H.C.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Taylor, C.; Wang, Y.C.; Bergh, J.; Di Leo, A.; Albain, K.; Swain, S.; Piccart, M.; Pritchard, K. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100 000 women in 123 randomised trials. Lancet, 2012, 379(9814), 432-444.
[http://dx.doi.org/10.1016/S0140-6736(11)61625-5] [PMID: 22152853]
[46]
Yu, J.; Zayas, J.; Qin, B.; Wang, L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics, 2019, 20(16), 1151-1157.
[http://dx.doi.org/10.2217/pgs-2019-0078] [PMID: 31755366]
[47]
Sharma, M.; Arora, I.; Chen, M.; Wu, H.; Crowley, M.R.; Tollefsbol, T.O.; Li, Y. Therapeutic effects of dietary soybean genistein on triple-negative breast cancer via regulation of epigenetic mechanisms. Nutrients, 2021, 13(11), 3944.
[http://dx.doi.org/10.3390/nu13113944] [PMID: 34836197]
[48]
Roll, J.D.; Rivenbark, A.G.; Sandhu, R.; Parker, J.S.; Jones, W.D.; Carey, L.A.; Livasy, C.A.; Coleman, W.B. Dysregulation of the epigenome in triple-negative breast cancers: Basal-like and claudin-low breast cancers express aberrant DNA hypermethylation. Exp. Mol. Pathol., 2013, 95(3), 276-287.
[http://dx.doi.org/10.1016/j.yexmp.2013.09.001] [PMID: 24045095]
[49]
Segura-Pacheco, B.; Perez-Cardenas, E.; Taja-Chayeb, L.; Chavez-Blanco, A.; Revilla-Vazquez, A.; Benitez-Bribiesca, L.; Duenas-González, A. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J. Transl. Med., 2006, 4(1), 32.
[http://dx.doi.org/10.1186/1479-5876-4-32] [PMID: 16893460]
[50]
Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Liu, T.; Qin, S.; Zhuang, Y.; Liu, D.; Lu, S.W.; Kalari, K.R.; Visscher, D.W.; Copland, J.A.; McLaughlin, S.A.; Moreno-Aspitia, A.; Northfelt, D.W.; Gray, R.J.; Lou, Z.; Suman, V.J.; Weinshilboum, R.; Boughey, J.C.; Goetz, M.P.; Wang, L. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J. Clin. Invest., 2018, 128(6), 2376-2388.
[http://dx.doi.org/10.1172/JCI97924] [PMID: 29708513]
[51]
Gajulapalli, V.N.R.; Malisetty, V.L.; Chitta, S.K.; Manavathi, B. Oestrogen receptor negativity in breast cancer: A cause or consequence? Biosci. Rep., 2016, 36(6), e00432.
[http://dx.doi.org/10.1042/BSR20160228] [PMID: 27884978]
[52]
Jang, M.H.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Park, S.Y. Expression of epithelial-mesenchymal transition–related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum. Pathol., 2015, 46(9), 1267-1274.
[http://dx.doi.org/10.1016/j.humpath.2015.05.010] [PMID: 26170011]
[53]
Su, Y.; Hopfinger, N.R.; Nguyen, T.D.; Pogash, T.J.; Santucci-Pereira, J.; Russo, J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. J. Exp. Clin. Cancer Res., 2018, 37(1), 314.
[http://dx.doi.org/10.1186/s13046-018-0988-8] [PMID: 30547810]
[54]
Pang, Y.; Liu, J.; Li, X.; Xiao, G.; Wang, H.; Yang, G.; Li, Y.; Tang, S.C.; Qin, S.; Du, N.; Zhang, H.; Liu, D.; Sun, X.; Ren, H. MYC and DNMT 3A-mediated DNA methylation represses micro RNA -200b in triple negative breast cancer. J. Cell. Mol. Med., 2018, 22(12), 6262-6274.
[http://dx.doi.org/10.1111/jcmm.13916] [PMID: 30324719]
[55]
Gianni, C.; Palleschi, M.; Merloni, F.; Bleve, S.; Casadei, C.; Sirico, M.; Di Menna, G.; Sarti, S.; Cecconetto, L.; Mariotti, M.; De Giorgi, U. Potential impact of preoperative circulating biomarkers on individual escalating/de-escalating strategies in early breast cancer. Cancers, 2022, 15(1), 96.
[http://dx.doi.org/10.3390/cancers15010096] [PMID: 36612091]
[56]
Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer, 2017, 17(4), 223-238.
[http://dx.doi.org/10.1038/nrc.2017.7] [PMID: 28233803]
[57]
Hai, L.; Li, L.; Liu, Z.; Tong, Z.; Sun, Y. Whole-genome circulating tumor DNA methylation landscape reveals sensitive biomarkers of breast cancer. MedComm, 2022, 3(3), e134.
[58]
Zhang, X.; Zhao, D.; Yin, Y.; Yang, T.; You, Z.; Li, D.; Chen, Y.; Jiang, Y.; Xu, S.; Geng, J.; Zhao, Y.; Wang, J.; Li, H.; Tao, J.; Lei, S.; Jiang, Z.; Chen, Z.; Yu, S.; Fan, J.B.; Pang, D. Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis. NPJ Breast Cancer, 2021, 7(1), 106.
[http://dx.doi.org/10.1038/s41523-021-00316-7] [PMID: 34400642]
[59]
Salta, S.; P Nunes, S.; Fontes-Sousa, M.; Lopes, P.; Freitas, M.; Caldas, M.; Antunes, L.; Castro, F.; Antunes, P.; Palma de Sousa, S.; Henrique, R.; Jerónimo, C. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J. Clin. Med., 2018, 7(11), 420.
[http://dx.doi.org/10.3390/jcm7110420] [PMID: 30405052]
[60]
Klein, E.A.; Beer, T.M.; Seiden, M. The promise of multicancer early detection. Comment on Pons-Belda et al. Can circulating tumor DNA support a successful screening test for early cancer detection? the grail paradigm. Diagnostics 2021, 11, 2171 . Diagnostics, 2022, 12(5), 1243.
[http://dx.doi.org/10.3390/diagnostics12051243] [PMID: 35626398]
[61]
Liang, R.; Li, X.; Li, W.; Zhu, X.; Li, C. DNA methylation in lung cancer patients: Opening a “window of life” under precision medicine. Biomed. Pharmacother., 2021, 144, 112202.
[http://dx.doi.org/10.1016/j.biopha.2021.112202] [PMID: 34654591]
[62]
Xu, R.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K.; Zheng, L.; Zhang, H.; Caughey, B.A.; Zhao, Q.; Hou, J.; Zhang, R.; Xu, Y.; Cai, H.; Li, G.; Hou, R.; Zhong, Z.; Lin, D.; Fu, X.; Zhu, J.; Duan, Y.; Yu, M.; Ying, B.; Zhang, W.; Wang, J.; Zhang, E.; Zhang, C.; Li, O.; Guo, R.; Carter, H.; Zhu, J.; Hao, X.; Zhang, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater., 2017, 16(11), 1155-1161.
[http://dx.doi.org/10.1038/nmat4997] [PMID: 29035356]
[63]
Luo, H.; Zhao, Q.; Wei, W.; Zheng, L.; Yi, S.; Li, G.; Wang, W.; Sheng, H.; Pu, H.; Mo, H.; Zuo, Z.; Liu, Z.; Li, C.; Xie, C.; Zeng, Z.; Li, W.; Hao, X.; Liu, Y.; Cao, S.; Liu, W.; Gibson, S.; Zhang, K.; Xu, G.; Xu, R. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med., 2020, 12(524), eaax7533.
[http://dx.doi.org/10.1126/scitranslmed.aax7533] [PMID: 31894106]
[64]
Lennon, A.M.; Buchanan, A.H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A.T.; Ledbetter, D.H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; Adonizio, C.S.; Hwang, H.J.; Lahouel, K.; Cohen, J.D.; Douville, C.; Patel, A.A.; Hagmann, L.N.; Rolston, D.D.; Malani, N.; Zhou, S.; Bettegowda, C.; Diehl, D.L.; Urban, B.; Still, C.D.; Kann, L.; Woods, J.I.; Salvati, Z.M.; Vadakara, J.; Leeming, R.; Bhattacharya, P.; Walter, C.; Parker, A.; Lengauer, C.; Klein, A.; Tomasetti, C.; Fishman, E.K.; Hruban, R.H.; Kinzler, K.W.; Vogelstein, B.; Papadopoulos, N. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science, 2020, 369(6499), eabb9601.
[http://dx.doi.org/10.1126/science.abb9601] [PMID: 32345712]
[65]
Xu, Z.; Sandler, D.P.; Taylor, J.A. Blood DNA methylation and breast cancer: A prospective case-cohort analysis in the sister study. J. Natl. Cancer Inst., 2020, 112(1), 87-94.
[http://dx.doi.org/10.1093/jnci/djz065] [PMID: 30989176]
[66]
Terry, M.B.; McDonald, J.A.; Wu, H.C.; Eng, S.; Santella, R.M. Epigenetic biomarkers of breast cancer risk: Across the breast cancer prevention continuum. Adv. Exp. Med. Biol., 2016, 882, 33-68.
[http://dx.doi.org/10.1007/978-3-319-22909-6_2] [PMID: 26987530]
[67]
Liu, J.; Zhao, H.; Huang, Y.; Xu, S.; Zhou, Y.; Zhang, W.; Li, J.; Ming, Y.; Wang, X.; Zhao, S.; Li, K.; Dong, X.; Ma, Y.; Qian, T.; Chen, X.; Xing, Z.; Zhang, Y.; Chen, H.; Liu, Z.; Pang, D.; Zhou, M.; Wu, Z.; Wang, X.; Wang, X.; Wu, N.; Su, J. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Mol. Cancer, 2021, 20(1), 36.
[http://dx.doi.org/10.1186/s12943-021-01330-w] [PMID: 33608029]
[68]
Wang, T.; Li, P.; Qi, Q.; Zhang, S.; Xie, Y.; Wang, J.; Liu, S.; Ma, S.; Li, S.; Gong, T.; Xu, H.; Xiong, M.; Li, G.; You, C.; Luo, Z.; Li, J.; Du, L.; Wang, C. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat. Commun., 2023, 14(1), 4724.
[http://dx.doi.org/10.1038/s41467-023-40389-5] [PMID: 37550304]
[69]
Peng, S.; Zhang, X.; Wu, Y. Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(5), 188941.
[http://dx.doi.org/10.1016/j.bbcan.2023.188941] [PMID: 37329994]
[70]
Muse, M.E.; Carroll, C.D.; Salas, L.A.; Karagas, M.R.; Christensen, B.C. Application of novel breast biospecimen cell-type adjustment identifies shared DNA methylation alterations in breast tissue and milk with breast cancer–risk factors. Cancer Epidemiol. Biomarkers Prev., 2023, 32(4), 550-560.
[http://dx.doi.org/10.1158/1055-9965.EPI-22-0405] [PMID: 36780234]
[71]
Furrer, D.; Dragic, D.; Chang, S.L.; Fournier, F.; Droit, A.; Jacob, S.; Diorio, C. Association between genome-wide epigenetic and genetic alterations in breast cancer tissue and response to HER2-targeted therapies in HER2-positive breast cancer patients: new findings and a systematic review. Cancer Drug Resist., 2022, 5(4), 995-1015.
[http://dx.doi.org/10.20517/cdr.2022.63] [PMID: 36627894]
[72]
Absmaier, M.; Napieralski, R.; Schuster, T.; Aubele, M.; Walch, A.; Magdolen, V.; Dorn, J.; Gross, E.; Harbeck, N.; Noske, A.; Kiechle, M.; Schmitt, M. PITX2 DNA-methylation predicts response to anthracycline-based adjuvant chemotherapy in triple-negative breast cancer patients. Int. J. Oncol., 2018, 52(3), 755-767.
[http://dx.doi.org/10.3892/ijo.2018.4241] [PMID: 29328369]
[73]
Napieralski, R.; Schricker, G.; Auer, G.; Aubele, M.; Perkins, J.; Magdolen, V.; Ulm, K.; Hamann, M.; Walch, A.; Weichert, W.; Kiechle, M.; Wilhelm, O.G. PITX2 DNA-methylation: Predictive versus prognostic value for anthracycline-based chemotherapy in triple-negative breast cancer patients. Breast Care, 2021, 16(5), 523-531.
[http://dx.doi.org/10.1159/000510468] [PMID: 34720812]
[74]
Zhang, J.; Zhang, J.; Xu, S.; Zhang, X.; Wang, P.; Wu, H.; Xia, B.; Zhang, G.; Lei, B.; Wan, L.; Zhang, D.; Pang, D. Hypoxia-induced TPM2 methylation is associated with chemoresistance and poor prognosis in breast cancer. Cell. Physiol. Biochem., 2018, 45(2), 692-705.
[http://dx.doi.org/10.1159/000487162] [PMID: 29414807]
[75]
Luo, L.; Fu, S.; Du, W.; He, L.; Zhang, X.; Wang, Y.; Zhou, Y.; Hong, S. LRRC3B and its promoter hypomethylation status predicts response to anti-PD-1 based immunotherapy. Front. Immunol., 2023, 14, 959868.
[http://dx.doi.org/10.3389/fimmu.2023.959868] [PMID: 36798137]
[76]
Assumpção, J.H.M.; Takeda, A.A.S.; Sforcin, J.M.; Rainho, C.A. Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: Potential involvement of epigenetic mechanisms. Molecules, 2020, 25(6), 1289.
[http://dx.doi.org/10.3390/molecules25061289] [PMID: 32178333]
[77]
Szczepanek, J.; Skorupa, M.; Jarkiewicz-Tretyn, J.; Cybulski, C.; Tretyn, A. Harnessing epigenetics for breast cancer therapy: The role of DNA methylation, histone modifications, and MicroRNA. Int. J. Mol. Sci., 2023, 24(8), 7235.
[http://dx.doi.org/10.3390/ijms24087235] [PMID: 37108398]
[78]
Buocikova, V.; Longhin, E.M.; Pilalis, E.; Mastrokalou, C.; Miklikova, S.; Cihova, M.; Poturnayova, A.; Mackova, K.; Babelova, A.; Trnkova, L.; El Yamani, N.; Zheng, C.; Rios-Mondragon, I.; Labudova, M.; Csaderova, L.; Kuracinova, K.M.; Makovicky, P.; Kucerova, L.; Matuskova, M.; Cimpan, M.R.; Dusinska, M.; Babal, P.; Chatziioannou, A.; Gabelova, A.; Rundén-Pran, E.; Smolkova, B. Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models. Biomed. Pharmacother., 2022, 147, 112662.
[http://dx.doi.org/10.1016/j.biopha.2022.112662] [PMID: 35091237]
[79]
Chequin, A.; Costa, L.E.; de Campos, F.F.; Moncada, A.D.B.; de Lima, L.T.F.; Sledz, L.R.; Picheth, G.F.; Adami, E.R.; Acco, A.; Gonçalves, M.B.; Manica, G.C.M.; Valdameri, G.; de Noronha, L.; Telles, J.E.Q.; Jandrey, E.H.F.; Costa, E.T.; Costa, F.F.; de Souza, E.M.; Ramos, E.A.S.; Klassen, G. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem. Biol. Interact., 2021, 349, 109641.
[http://dx.doi.org/10.1016/j.cbi.2021.109641] [PMID: 34534549]
[80]
Pathania, R.; Ramachandran, S.; Elangovan, S.; Padia, R.; Yang, P.; Cinghu, S.; Veeranan-Karmegam, R.; Arjunan, P.; Gnana-Prakasam, J.P.; Sadanand, F.; Pei, L.; Chang, C.S.; Choi, J.H.; Shi, H.; Manicassamy, S.; Prasad, P.D.; Sharma, S.; Ganapathy, V.; Jothi, R.; Thangaraju, M. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat. Commun., 2015, 6(1), 6910.
[http://dx.doi.org/10.1038/ncomms7910] [PMID: 25908435]
[81]
Chu, W.; Zhang, X.; Qi, L.; Fu, Y.; Wang, P.; Zhao, W.; Du, J.; Zhang, J.; Zhan, J.; Wang, Y.; Zhu, W.G.; Yu, Y.; Zhang, H. The EZH2–PHACTR2–AS1–ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer. Cancer Res., 2020, 80(13), 2737-2750.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3326] [PMID: 32312833]
[82]
Fu, Y.; Zhang, X.; Liu, X.; Wang, P.; Chu, W.; Zhao, W.; Wang, Y.; Zhou, G.; Yu, Y.; Zhang, H. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis. Signal Transduct. Target. Ther., 2022, 7(1), 81.
[http://dx.doi.org/10.1038/s41392-022-00896-1] [PMID: 35307730]
[83]
Smit, L.; Berns, K.; Spence, K.; Ryder, W.D.; Zeps, N.; Madiredjo, M.; Beijersbergen, R.; Bernards, R.; Clarke, R.B. An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation. Oncotarget, 2016, 7(3), 2596-2610.
[http://dx.doi.org/10.18632/oncotarget.6354] [PMID: 26595803]
[84]
Liu, H.; Song, Y.; Qiu, H.; Liu, Y.; Luo, K.; Yi, Y.; Jiang, G.; Lu, M.; Zhang, Z.; Yin, J.; Zeng, S.; Chen, X.; Deng, M.; Jia, X.; Gu, Y.; Chen, D.; Zheng, G.; He, Z. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ., 2020, 27(3), 966-983.
[http://dx.doi.org/10.1038/s41418-019-0389-3] [PMID: 31296961]
[85]
El Helou, R.; Wicinski, J.; Guille, A.; Adélaïde, J.; Finetti, P.; Bertucci, F.; Chaffanet, M.; Birnbaum, D.; Charafe-Jauffret, E.; Ginestier, C. Brief reports: A distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome. Stem Cells, 2014, 32(11), 3031-3036.
[http://dx.doi.org/10.1002/stem.1792] [PMID: 25069843]
[86]
Thillainadesan, G.; Chitilian, J.M.; Isovic, M.; Ablack, J.N.G.; Mymryk, J.S.; Tini, M.; Torchia, J. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol. Cell, 2012, 46(5), 636-649.
[http://dx.doi.org/10.1016/j.molcel.2012.03.027] [PMID: 22560925]
[87]
Hajibabaei, S.; Sotoodehnejadnematalahi, F.; Nafissi, N.; Zeinali, S.; Azizi, M. Aberrant promoter hypermethylation of miR-335 and miR-145 is involved in breast cancer PD-L1 overexpression. Sci. Rep., 2023, 13(1), 1003.
[http://dx.doi.org/10.1038/s41598-023-27415-8] [PMID: 36653507]
[88]
Metaxas, G.; Tsiambas, E.; Marinopoulos, S.; Adamopoulou, M.; Spyropoulou, D.; Falidas, E.; Davris, D.; Manaios, L.; Fotiades, P.; Mastronikoli, S.; Peschos, D.; Dimitrakakis, C. DNA Mismatch Repair System Imbalances in Breast Adenocarcinoma. Cancer Diagnosis & Prognosis, 2023, 3(2), 169-174.
[http://dx.doi.org/10.21873/cdp.10197] [PMID: 36875308]
[89]
Seok, H.J.; Choi, J.Y.; Yi, J.M.; Bae, I.H. Targeting miR-5088-5p attenuates radioresistance by suppressing Slug. Noncoding RNA Res., 2023, 8(2), 164-173.
[http://dx.doi.org/10.1016/j.ncrna.2022.12.005] [PMID: 36632615]
[90]
Montenegro, M.F.; González-Guerrero, R.; Sánchez-del-Campo, L.; Piñero-Madrona, A.; Cabezas-Herrera, J.; Rodríguez-López, J.N. PRMT1-dependent methylation of BRCA1 contributes to the epigenetic defense of breast cancer cells against ionizing radiation. Sci. Rep., 2020, 10(1), 13275.
[http://dx.doi.org/10.1038/s41598-020-70289-3] [PMID: 32764667]
[91]
Weyrich, A.; Lenz, D.; Fickel, J. Environmental Change-Dependent Inherited Epigenetic Response. Genes (Basel), 2018, 10(1), 4.
[http://dx.doi.org/10.3390/genes10010004] [PMID: 30583460]
[92]
Montgomery, M.; Srinivasan, A. Epigenetic gene regulation by dietary compounds in cancer prevention. Adv. Nutr., 2019, 10(6), 1012-1028.
[http://dx.doi.org/10.1093/advances/nmz046] [PMID: 31100104]
[93]
Fabianowska-Majewska, K.; Kaufman-Szymczyk, A.; Szymanska-Kolba, A.; Jakubik, J.; Majewski, G.; Lubecka, K. Curcumin from Turmeric Rhizome: A Potential Modulator of DNA Methylation Machinery in Breast Cancer Inhibition. Nutrients, 2021, 13(2), 332.
[http://dx.doi.org/10.3390/nu13020332] [PMID: 33498667]
[94]
Al-Yousef, N.; Shinwari, Z.; Al-Shahrani, B.; Al-Showimi, M.; Al-Moghrabi, N. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncol. Rep., 2020, 43(3), 827-838.
[http://dx.doi.org/10.3892/or.2020.7473] [PMID: 32020216]
[95]
Liang, F.; Zhang, H.; Gao, H.; Cheng, D.; Zhang, N.; Du, J.; Yue, J.; Du, P.; Zhao, B.; Yin, L. Liquiritigenin decreases tumorigenesis by inhibiting DNMT activity and increasing BRCA1 transcriptional activity in triple-negative breast cancer. Exp. Biol. Med. (Maywood), 2021, 246(4), 459-466.
[http://dx.doi.org/10.1177/1535370220957255] [PMID: 32938226]
[96]
Vázquez-Arreguín, K.; Tantin, D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(6), 792-804.
[http://dx.doi.org/10.1016/j.bbagrm.2016.02.007] [PMID: 26877236]
[97]
Harandi-Zadeh, S.; Boycott, C.; Beetch, M.; Yang, T.; Martin, B.J.E.; Ren, K.; Kwasniak, A.; Dupuis, J.H.; Lubecka, K.; Yada, R.Y.; Howe, L.J.; Stefanska, B. Pterostilbene changes epigenetic marks at enhancer regions of oncogenes in breast cancer cells. Antioxidants, 2021, 10(8), 1232.
[http://dx.doi.org/10.3390/antiox10081232] [PMID: 34439480]
[98]
Beetch, M.; Boycott, C.; Harandi-Zadeh, S.; Yang, T.; Martin, B.J.E.; Dixon-McDougall, T.; Ren, K.; Gacad, A.; Dupuis, J.H.; Ullmer, M.; Lubecka, K.; Yada, R.Y.; Brown, C.J.; Howe, L.J.; Stefanska, B. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. J. Nutr. Biochem., 2021, 98, 108815.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108815] [PMID: 34242723]
[99]
Su, Z.; Wang, C.; Chang, D.; Zhu, X.; Sai, C.; Pei, J. Limonin attenuates the stemness of breast cancer cells via suppressing MIR216A methylation. Biomed. Pharmacother., 2019, 112, 108699.
[http://dx.doi.org/10.1016/j.biopha.2019.108699] [PMID: 30970511]
[100]
Pils, D.; Steindl, E.; Bachmayr-Heyda, A.; Dekan, S.; Aust, S. A global gene body methylation measure correlates independently with overall survival in solid cancer types. Cancers, 2020, 12(8), 2257.
[http://dx.doi.org/10.3390/cancers12082257] [PMID: 32806596]
[101]
Sher, G.; Salman, N.A.; Khan, A.Q.; Prabhu, K.S.; Raza, A.; Kulinski, M.; Dermime, S.; Haris, M.; Junejo, K.; Uddin, S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin. Cancer Biol., 2022, 83, 152-165.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.009] [PMID: 32858230]
[102]
de Ruijter, T.C.; van der Heide, F.; Smits, K.M.; Aarts, M.J.; van Engeland, M.; Heijnen, V.C.G. Prognostic DNA methylation markers for hormone receptor breast cancer: A systematic review. Breast Cancer Res., 2020, 22(1), 13.
[http://dx.doi.org/10.1186/s13058-020-1250-9] [PMID: 32005275]
[103]
Pedersen, C.A.; Cao, M.D.; Fleischer, T.; Rye, M.B.; Knappskog, S.; Eikesdal, H.P.; Lønning, P.E.; Tost, J.; Kristensen, V.N.; Tessem, M.B.; Giskeødegård, G.F.; Bathen, T.F. DNA methylation changes in response to neoadjuvant chemotherapy are associated with breast cancer survival. Breast Cancer Res., 2022, 24(1), 43.
[http://dx.doi.org/10.1186/s13058-022-01537-9] [PMID: 35751095]
[104]
Fan, Y.; Xie, G.; Wang, Z.; Wang, Y.; Wang, Y.; Zheng, H.; Zhong, X. PTEN promoter methylation predicts 10-year prognosis in hormone receptor-positive early breast cancer patients who received adjuvant tamoxifen endocrine therapy. Breast Cancer Res. Treat., 2022, 192(1), 33-42.
[http://dx.doi.org/10.1007/s10549-021-06463-6] [PMID: 34978016]
[105]
Gao, B.; Liu, X.; Li, Z.; Zhao, L.; Pan, Y. Overexpression of EZH2/NSD2 histone methyltransferase axis predicts poor prognosis and accelerates tumor progression in triple-negative breast cancer. Front. Oncol., 2021, 10, 600514.
[http://dx.doi.org/10.3389/fonc.2020.600514] [PMID: 33665162]
[106]
Li, Z.; Wang, D.; Chen, X.; Wang, W.; Wang, P.; Hou, P.; Li, M.; Chu, S.; Qiao, S.; Zheng, J.; Bai, J. PRMT1-mediated EZH2 methylation promotes breast cancer cell proliferation and tumorigenesis. Cell Death Dis., 2021, 12(11), 1080.
[http://dx.doi.org/10.1038/s41419-021-04381-5] [PMID: 34775498]
[107]
Duan, D.; Shang, M.; Han, Y.; Liu, J.; Liu, J.; Kong, S.H.; Hou, J.; Huang, B.; Lu, J.; Zhang, Y. EZH2–CCF–cGAS axis promotes breast cancer metastasis. Int. J. Mol. Sci., 2022, 23(3), 1788.
[http://dx.doi.org/10.3390/ijms23031788] [PMID: 35163710]
[108]
Verma, A.; Singh, A.; Singh, M.P.; Nengroo, M.A.; Saini, K.K.; Satrusal, S.R.; Khan, M.A.; Chaturvedi, P.; Sinha, A.; Meena, S.; Singh, A.K.; Datta, D. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nat. Commun., 2022, 13(1), 7344.
[http://dx.doi.org/10.1038/s41467-022-35059-x] [PMID: 36446780]
[109]
Zhang, L.; Qu, J.; Qi, Y.; Duan, Y.; Huang, Y.W.; Zhou, Z.; Li, P.; Yao, J.; Huang, B.; Zhang, S.; Yu, D. EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat. Commun., 2022, 13(1), 2543.
[http://dx.doi.org/10.1038/s41467-022-30105-0] [PMID: 35538070]
[110]
Wang, Y.; Yu, L.; Hu, Z.; Fang, Y.; Shen, Y.; Song, M.; Chen, Y. Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death Dis., 2022, 13(8), 748.
[http://dx.doi.org/10.1038/s41419-022-05169-x] [PMID: 36038549]
[111]
Campoy, E.M.; Branham, M.T.; Mayorga, L.S.; Roqué, M. Intratumor heterogeneity index of breast carcinomas based on DNA methylation profiles. BMC Cancer, 2019, 19(1), 328.
[http://dx.doi.org/10.1186/s12885-019-5550-3] [PMID: 30953488]
[112]
Vini, R.; Rajavelu, A.; Sreeharshan, S. 27-Hydroxycholesterol, the estrogen receptor modulator, alters DNA methylation in breast cancer. Front. Endocrinol., 2022, 13, 783823.
[http://dx.doi.org/10.3389/fendo.2022.783823] [PMID: 35360070]
[113]
Li, Z.; Wang, P.; Cui, W.; Yong, H.; Wang, D.; Zhao, T.; Wang, W.; Shi, M.; Zheng, J.; Bai, J. Tumour-associated macrophages enhance breast cancer malignancy via inducing ZEB1-mediated DNMT1 transcriptional activation. Cell Biosci., 2022, 12(1), 176.
[http://dx.doi.org/10.1186/s13578-022-00913-4] [PMID: 36273188]
[114]
Mathot, P.; Grandin, M.; Devailly, G.; Souaze, F.; Cahais, V.; Moran, S.; Campone, M.; Herceg, Z.; Esteller, M.; Juin, P.; Mehlen, P.; Dante, R. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis, 2017, 6(10), e390.
[http://dx.doi.org/10.1038/oncsis.2017.88] [PMID: 29058695]
[115]
Lee, Y.T.; Tan, Y.J.; Falasca, M.; Oon, C.E. Cancer-associated fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers, 2020, 12(10), 2949.
[http://dx.doi.org/10.3390/cancers12102949] [PMID: 33066013]
[116]
Masuelli, S.; Real, S.; Campoy, E.; Branham, M.T.; Marzese, D.M.; Salomon, M.; De Blas, G.; Arias, R.; Levin, M.; Roqué, M. When left does not seem right: Epigenetic and bioelectric differences between left- and right-sided breast cancer. Mol. Med., 2022, 28(1), 15.
[http://dx.doi.org/10.1186/s10020-022-00440-5] [PMID: 35123413]
[117]
Masuelli, S.; Real, S.; McMillen, P.; Oudin, M.; Levin, M.; Roqué, M. The Yin and yang of breast cancer: Ion channels as determinants of left–right functional differences. Int. J. Mol. Sci., 2023, 24(13), 11121.
[http://dx.doi.org/10.3390/ijms241311121] [PMID: 37446299]

© 2025 Bentham Science Publishers | Privacy Policy