Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Neurodevelopmental and Neuropsychiatric Perspectives on Respiratory Control: Understanding Congenital and Developmental Disorders

In Press, (this is not the final "Version of Record"). Available online 29 February, 2024
Author(s): Greta Amore, Maria Grella*, Arianna Currò, Maria Pia Lizio and Gabriella Di Rosa
Published on: 29 February, 2024

DOI: 10.2174/011573398X283376240222051823

Price: $95

Abstract

Breathing is an automatic process generated by the central nervous system, crucial for the homeostasis of several body processes. This vital process is underpinned by an intricate network in which distinct functional and anatomical factors and structures play a role. Transcription factors (i.e., PHOX2B and Pbx proteins), as well as neuromodulators (i.e., serotonin, noradrenaline, GABA, and glycine), have been demonstrated as implicated in the regulation of breathing. Besides, the several intertwined excitatory and inhibitory brainstem neural circuits comprising the so-called central pattern generator (CPG) have recently demonstrated a potential role of cerebellar structures and circuits in coordinating the complex and coordinated respiratory act in eupnea. A disruption affecting one of these components, which may also occur on a genetic basis, may indeed result in complex and heterogeneous disorders, including neurodevelopmental ones (such as Rett and Prader-Willi syndrome), which may also present with neuropsychiatric and breathing manifestations and potentially lead to sudden infant death syndrome (SIDS). Herein, we discuss the main factors and systems involved in respiratory control and modulation, outlining some of the associated neurodevelopmental disorders (NDDs) deriving from an impairment in their expression/ function. Further studies are needed to deepen our knowledge of the complexity underpinning “breathing” and the relation between respiratory implications and congenital and developmental disorders.

[1]
Dutschmann M, Dick TE. Pontine mechanisms of respiratory control. Compr Physiol 2012; 2(4): 2443-69.
[http://dx.doi.org/10.1002/cphy.c100015] [PMID: 23720253]
[2]
Smith JC. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms. Handb Clin Neurol 2022; 188: 1-35.
[http://dx.doi.org/10.1016/B978-0-323-91534-2.00004-7] [PMID: 35965022]
[3]
Bellingham MC. Driving respiration: The respiratory central pattern generator. Clin Exp Pharmacol Physiol 1998; 25(10): 847-56.
[http://dx.doi.org/10.1111/j.1440-1681.1998.tb02166.x] [PMID: 9784928]
[4]
Richter DW. Generation and maintenance of the respiratory rhythm. J Exp Biol 1982; 100(1): 93-107.
[http://dx.doi.org/10.1242/jeb.100.1.93] [PMID: 6757372]
[5]
Dutschmann M, Jones SE, Subramanian HH, Stanic D, Bautista TG. The physiological significance of postinspiration in respiratory control. Prog Brain Res 2014; 212: 113-30.
[http://dx.doi.org/10.1016/B978-0-444-63488-7.00007-0] [PMID: 25194196]
[6]
Macey PM, Woo MA, Macey KE, et al. Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome. J Appl Physiol 2005; 98(3): 958-69.
[http://dx.doi.org/10.1152/japplphysiol.00969.2004]
[7]
Parsons LM, Egan G, Liotti M, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci 2001; 98(4): 2041-6.
[http://dx.doi.org/10.1073/pnas.98.4.2041] [PMID: 11172072]
[8]
Gaytán SP, Pásaro R. Connections of the rostral ventral respiratory neuronal cell group: An anterograde and retrograde tracing study in the rat. Brain Res Bull 1998; 47(6): 625-42.
[http://dx.doi.org/10.1016/S0361-9230(98)00125-7] [PMID: 10078619]
[9]
Zhu JN, Yung WH, Chow KCB, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Brain Res Rev 2006; 52(1): 93-106.
[http://dx.doi.org/10.1016/j.brainresrev.2006.01.003] [PMID: 16497381]
[10]
Liu Y, Qi S, Thomas F, et al. Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing. Biol Open 2020; 9(4): bio.048785.
[http://dx.doi.org/10.1242/bio.048785] [PMID: 32086251]
[11]
Bonham AC. Neurotransmitters in the CNS control of breathing. Respir Physiol 1995; 101(3): 219-30.
[http://dx.doi.org/10.1016/0034-5687(95)00045-F] [PMID: 8606995]
[12]
Liljestrand G. Acetylcholine and Respiration. Acta Physiol Scand 1951; 24(2-3): 225-46.
[http://dx.doi.org/10.1111/j.1748-1716.1951.tb00841.x] [PMID: 14894264]
[13]
Bialkowska M, Boguszewski P, Pokorski M. Breathing in parkinsonism in the rat. Adv Exp Med Biol 2015; 884: 1-11.
[http://dx.doi.org/10.1007/5584_2015_177] [PMID: 26542599]
[14]
Bialkowska M, Zajac D, Mazzatenta A, Di Giulio C, Pokorski M. Inhibition of peripheral dopamine metabolism and the ventilatory response to hypoxia in the rat. Adv Exp Med Biol 2014; 837: 9-17.
[http://dx.doi.org/10.1007/5584_2014_72] [PMID: 25310955]
[15]
Hilaire G. Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS. Auton Neurosci 2006; 126-127: 320-31.
[http://dx.doi.org/10.1016/j.autneu.2006.01.021] [PMID: 16603418]
[16]
Paterson DS, Trachtenberg FL, Thompson EG, et al. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 2006; 296(17): 2124-32.
[http://dx.doi.org/10.1001/jama.296.17.2124] [PMID: 17077377]
[17]
Viemari JC, Tryba AK. Bioaminergic neuromodulation of respiratory rhythm in vitro. Respir Physiol Neurobiol 2009; 168(1-2): 69-75.
[http://dx.doi.org/10.1016/j.resp.2009.03.011] [PMID: 19538922]
[18]
Weese-Mayer DE, Zhou L, Kravis BEM, Maher BS, Silvestri JM, Marazita ML. Association of the serotonin transporter gene with sudden infant death syndrome: A haplotype analysis. Am J Med Genet A 2003; 122A(3): 238-45.
[http://dx.doi.org/10.1002/ajmg.a.20427] [PMID: 12966525]
[19]
Zanella S, Watrin F, Mebarek S, et al. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: Implication for Prader-Willi syndrome. J Neurosci 2008; 28(7): 1745-55.
[http://dx.doi.org/10.1523/JNEUROSCI.4334-07.2008] [PMID: 18272695]
[20]
Stettner GM, Zanella S, Huppke P, Gärtner J, Hilaire G, Dutschmann M. Spontaneous central apneas occur in the C57BL/6J mouse strain. Respir Physiol Neurobiol 2008; 160(1): 21-7.
[http://dx.doi.org/10.1016/j.resp.2007.07.011] [PMID: 17869191]
[21]
Yamanishi T, Takao K, Koizumi H, et al. Alpha2-adrenoceptors coordinate swallowing and respiration. J Dent Res 2010; 89(3): 258-63.
[http://dx.doi.org/10.1177/0022034509360312] [PMID: 20139342]
[22]
Ezure K, Tanaka I, Kondo M. Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat. J Neurosci 2003; 23(26): 8941-8.
[http://dx.doi.org/10.1523/JNEUROSCI.23-26-08941.2003] [PMID: 14523096]
[23]
Koizumi H, Koshiya N, Chia JX, et al. Structural-functional properties of identified excitatory and inhibitory interneurons within pre-Botzinger complex respiratory microcircuits. J Neurosci 2013; 33(7): 2994-3009.
[http://dx.doi.org/10.1523/JNEUROSCI.4427-12.2013] [PMID: 23407957]
[24]
Marchenko V, Koizumi H, Mosher B, et al. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within pre-bötzinger and bötzinger complexes. eNeuro 2016; 3(2): ENEURO.0011-16.
[http://dx.doi.org/10.1523/ENEURO.0011-16.2016]
[25]
Ghali MGZ, Beshay S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol Cell Neurosci 2019; 100: 103400.
[http://dx.doi.org/10.1016/j.mcn.2019.103400] [PMID: 31472222]
[26]
Duffin J. Functional organization of respiratory neurones: A brief review of current questions and speculations. Exp Physiol 2004; 89(5): 517-29.
[http://dx.doi.org/10.1113/expphysiol.2004.028027] [PMID: 15258123]
[27]
Ezure K. Reflections on respiratory rhythm generation. Prog Brain Res 2004; 143: 67-74.
[http://dx.doi.org/10.1016/S0079-6123(03)43007-0] [PMID: 14653152]
[28]
Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 2008; 164(1-2): 3-11.
[http://dx.doi.org/10.1016/j.resp.2008.07.014] [PMID: 18706532]
[29]
Shaweesh AJM, Dreshaj IA, Haxhiu MA, Martin RJ. Central GABAergic mechanisms are involved in apnea induced by SLN stimulation in piglets. J Appl Physiol 2001; 90(4): 1570-6.
[http://dx.doi.org/10.1152/jappl.2001.90.4.1570]
[30]
Miller MJ, Haxhiu MA, Haxhiu-Poskurica B, Dreshaj IA, DiFiore JM, Martin RJ. Recurrent hypoxic exposure and reflex responses during development in the piglet. Respir Physiol 2000; 123(1-2): 51-61.
[http://dx.doi.org/10.1016/S0034-5687(00)00149-3] [PMID: 10996187]
[31]
Dreshaj IA, Haxhiu MA, Abu-Shaweesh J, Carey RE, Martin RJ. CO2-induced prolongation of expiratory time during early development. Respir Physiol 1999; 116(2-3): 125-32.
[http://dx.doi.org/10.1016/S0034-5687(99)00039-0] [PMID: 10487298]
[32]
Cannavò L, Perrone S, Viola V, Marseglia L, Rosa DG, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[33]
Di Rosa G, Cavallaro T, Alibrandi A, et al. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants. Early Hum Dev 2016; 101: 49-55.
[http://dx.doi.org/10.1016/j.earlhumdev.2016.04.012] [PMID: 27405056]
[34]
Ballanyi K, Völker A, Richter DW. Anoxia induced functional inactivation of neonatal respiratory neurones in vitro. Neuroreport 1994; 6(1): 165-8.
[http://dx.doi.org/10.1097/00001756-199412300-00042] [PMID: 7703406]
[35]
Gao X, Liu Q, Liu Q, Wong-Riley MTT. Excitatory–inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat. J Physiol 2011; 589(8): 1991-2006.
[http://dx.doi.org/10.1113/jphysiol.2010.198945] [PMID: 21486774]
[36]
Singer JH, Talley EM, Bayliss DA, Berger AJ. Development of glycinergic synaptic transmission to rat brain stem motoneurons. J Neurophysiol 1998; 80(5): 2608-20.
[http://dx.doi.org/10.1152/jn.1998.80.5.2608] [PMID: 9819267]
[37]
Rybak IA, Shevtsova NA, Ptak K, McCrimmon DR. Intrinsic bursting activity in the pre-bötzinger complex: Role of persistent sodium and potassium currents. Biol Cybern 2004; 90(1): 59-74.
[http://dx.doi.org/10.1007/s00422-003-0447-1] [PMID: 14762725]
[38]
Koizumi H, Smith JC. Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J Neurosci 2008; 28(7): 1773-85.
[http://dx.doi.org/10.1523/JNEUROSCI.3916-07.2008] [PMID: 18272697]
[39]
Feldman JL, Negro DCA. Looking for inspiration: New perspectives on respiratory rhythm. Nat Rev Neurosci 2006; 7(3): 232-41.
[http://dx.doi.org/10.1038/nrn1871] [PMID: 16495944]
[40]
Pfeiffer A, Zhang W. Postnatal development of GABAB-receptor- mediated modulation of potassium currents in brainstem respiratory network of mouse. Respir Physiol Neurobiol 2007; 158(1): 22-9.
[http://dx.doi.org/10.1016/j.resp.2007.03.002] [PMID: 17428748]
[41]
Ritter B, Zhang W. Early postnatal maturation of GABA A -mediated inhibition in the brainstem respiratory rhythm-generating network of the mouse. Eur J Neurosci 2000; 12(8): 2975-84.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00152.x] [PMID: 10971638]
[42]
Delpire E. Cation-chloride cotransporters in neuronal communication. Int Union Physiol Sci/AmPhysiol Soc 2000; 15(6): 309-12.
[http://dx.doi.org/10.1152/physiologyonline.2000.15.6.309]
[43]
Russell JM. Sodium-potassium-chloride cotransport. Physiol Rev 2000; 80(1): 211-76.
[http://dx.doi.org/10.1152/physrev.2000.80.1.211] [PMID: 10617769]
[44]
Riley WMTT, Liu Q. Neurochemical development of brain stem nuclei involved in the control of respiration. Respir Physiol Neurobiol 2005; 149(1-3): 83-98.
[http://dx.doi.org/10.1016/j.resp.2005.01.011] [PMID: 16203213]
[45]
Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991; 254(5032): 726-9.
[http://dx.doi.org/10.1126/science.1683005] [PMID: 1683005]
[46]
Smith JC, Ballanyi K, Richter DW. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro. Neurosci Lett 1992; 134(2): 153-6.
[http://dx.doi.org/10.1016/0304-3940(92)90504-Z] [PMID: 1589140]
[47]
Moon RY, Horne RSC, Hauck FR. Sudden infant death syndrome. Lancet 2007; 370(9598): 1578-87.
[http://dx.doi.org/10.1016/S0140-6736(07)61662-6] [PMID: 17980736]
[48]
Brunet JF, Pattyn A. Phox2 genes — From patterning to connectivity. Curr Opin Genet Dev 2002; 12(4): 435-40.
[http://dx.doi.org/10.1016/S0959-437X(02)00322-2] [PMID: 12100889]
[49]
Wrobel LJ, Ogier M, Chatonnet F, et al. Abnormal inspiratory depth in Phox2a haploinsufficient mice. Neuroscience 2007; 145(1): 384-92.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.055] [PMID: 17218061]
[50]
Amiel J, Laudier B, Bitach AT, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003; 33(4): 459-61.
[http://dx.doi.org/10.1038/ng1130] [PMID: 12640453]
[51]
Bachetti T, Matera I, Borghini S, Duca MD, Ravazzolo R, Ceccherini I. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet 2005; 14(13): 1815-24.
[http://dx.doi.org/10.1093/hmg/ddi188] [PMID: 15888479]
[52]
Abbott SBG, Stornetta RL, Fortuna MG, et al. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 2009; 29(18): 5806-19.
[http://dx.doi.org/10.1523/JNEUROSCI.1106-09.2009] [PMID: 19420248]
[53]
Matera I, Bachetti T, Puppo F, et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet 2004; 41(5): 373-80.
[http://dx.doi.org/10.1136/jmg.2003.015412] [PMID: 15121777]
[54]
de Pontual L, Népote V, Bitach AT, et al. Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). Hum Mol Genet 2003; 12(23): 3173-80.
[http://dx.doi.org/10.1093/hmg/ddg339] [PMID: 14532329]
[55]
Rhee JW, Arata A, Selleri L, et al. Pbx3 deficiency results in central hypoventilation. Am J Pathol 2004; 165(4): 1343-50.
[http://dx.doi.org/10.1016/S0002-9440(10)63392-5] [PMID: 15466398]
[56]
Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry 2017; 4(4): 339-46.
[http://dx.doi.org/10.1016/S2215-0366(16)30376-5] [PMID: 27979720]
[57]
Morris-Rosendahl DJ, Crocq MA. Neurodevelopmental disorders—the history and future of a diagnostic concept. Dialogues Clin Neurosci 2020; 22(1): 65-72.
[http://dx.doi.org/10.31887/DCNS.2020.22.1/macrocq] [PMID: 32699506]
[58]
Tarquinio DC, Hou W, Neul JL, et al. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 2018; 40(7): 515-29.
[http://dx.doi.org/10.1016/j.braindev.2018.03.010] [PMID: 29657083]
[59]
Oldfors A, Sourander P, Armstrong DL, Percy AK, Engerström WI, Hagberg BA. Rett syndrome: Cerebellar pathology. Pediatr Neurol 1990; 6(5): 310-4.
[http://dx.doi.org/10.1016/0887-8994(90)90022-S] [PMID: 2242172]
[60]
Murakami JW, Courchesne E, Haas RH, Press GA, Courchesne YR. Cerebellar and cerebral abnormalities in Rett syndrome: A quantitative MR analysis. AJR Am J Roentgenol 1992; 159(1): 177-83.
[http://dx.doi.org/10.2214/ajr.159.1.1609693] [PMID: 1609693]
[61]
Ebert D, Hefter H, Dohle C, Freund HJ. Ataxic breathing during alternating forearm movements of various frequencies in cerebellar patients. Neurosci Lett 1995; 193(3): 145-8.
[http://dx.doi.org/10.1016/0304-3940(95)11674-L] [PMID: 7478169]
[62]
Zoghbi HY, Percy AK, Glaze DG, Butler IJ, Riccardi VM. Reduction of biogenic amine levels in the Rett syndrome. N Engl J Med 1985; 313(15): 921-4.
[http://dx.doi.org/10.1056/NEJM198510103131504] [PMID: 2412119]
[63]
Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol 2014; 4(4): 1511-62.
[http://dx.doi.org/10.1002/cphy.c140004] [PMID: 25428853]
[64]
Toward MA, Abdala AP, Knopp SJ, Paton JFR, Bissonnette JM. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice. Exp Physiol 2013; 98(3): 842-9.
[http://dx.doi.org/10.1113/expphysiol.2012.069872] [PMID: 23180809]
[65]
Roux JC, Dura E, Moncla A, Mancini J, Villard L. Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome. Eur J Neurosci 2007; 25(7): 1915-22.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05466.x] [PMID: 17439480]
[66]
Lioy DT, Garg SK, Monaghan CE, et al. A role for glia in the progression of Rett’s syndrome. Nature 2011; 475(7357): 497-500.
[http://dx.doi.org/10.1038/nature10214] [PMID: 21716289]
[67]
Turovsky E, Karagiannis A, Abdala AP, Gourine AV. Impaired CO 2 sensitivity of astrocytes in a mouse model of Rett syndrome. J Physiol 2015; 593(14): 3159-68.
[http://dx.doi.org/10.1113/JP270369] [PMID: 25981852]
[68]
Stafler P, Wallis C. Prader-Willi syndrome: Who can have growth hormone? Arch Dis Child 2008; 93(4): 341-5.
[http://dx.doi.org/10.1136/adc.2007.126334] [PMID: 18089632]
[69]
Miller JL, Couch J, Schwenk K, et al. Early childhood obesity is associated with compromised cerebellar development. Dev Neuropsychol 2009; 34(3): 272-83.
[http://dx.doi.org/10.1080/87565640802530961] [PMID: 19437203]
[70]
Chander V, Wangler M, Gibbs R, Murdock D. Xia-gibbs syndrome. Adam MP. Seattle: GeneReviews®. University of Washington 2021.
[71]
Goyal C, Naqvi WM, Sahu A, Aujla AS. Xia-gibbs syndrome: A review of literature. Cureus 2020; 12(12): e12352.
[http://dx.doi.org/10.7759/cureus.12352] [PMID: 33520547]
[72]
Zweier C, Sticht H, Bijlsma EK, et al. Further delineation of Pitt-Hopkins syndrome: Phenotypic and genotypic description of 16 novel patients. J Med Genet 2008; 45(11): 738-44.
[http://dx.doi.org/10.1136/jmg.2008.060129] [PMID: 18728071]
[73]
Amiel J, Rio M, Pontual L, et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 2007; 80(5): 988-93.
[http://dx.doi.org/10.1086/515582] [PMID: 17436254]
[74]
Mainieri G, Montini A, Nicotera A, Rosa DG, Provini F, Loddo G. The genetics of sleep disorders in children: A narrative review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[75]
Manti S, Cutrupi MC, Cuppari C, et al. Inflammatory biomarkers and intellectual disability in patients with Down syndrome. J Intellect Disabil Res 2018; 62(5): 382-90.
[http://dx.doi.org/10.1111/jir.12470] [PMID: 29349839]
[76]
Kazachkov M, Palma JA, Kaufmann NL, et al. Respiratory care in familial dysautonomia: Systematic review and expert consensus recommendations. Respir Med 2018; 141: 37-46.
[77]
Palma J A, Kaufmann NL, Mora FC, Percival L, Santiesteban MC, Kaufmann H. Current treatments in familial dysautonomia. Expert Opin Pharmacother 2014; 15(18): 2653-71.
[http://dx.doi.org/10.1517/14656566.2014.970530]
[78]
Axelrod FB. Familial dysautonomia. Muscle & nerve 2004; 29(3): 352-63.
[http://dx.doi.org/10.1002/mus.1049]
[79]
Zabala LM, Guzzetta NA. Cyanotic congenital heart disease (CCHD): Focus on hypoxemia, secondary erythrocytosis, and coagulation alterations. Paediatr Anaesth 2015; 25(10): 981-9.
[http://dx.doi.org/10.1111/pan.12705]
[80]
Sadowska M, Hujar SB, Kopyta I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat 2020; 16: 1505-18.
[http://dx.doi.org/10.2147/NDT.S235165] [PMID: 32606703]
[81]
Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021; 15: 655164.
[http://dx.doi.org/10.3389/fnsys.2021.655164] [PMID: 34177475]
[82]
Marret S, Vanhulle C, Laquerriere A. Pathophysiology of cerebral palsy. Handb Clin Neurol 2013; 111: 169-76.
[http://dx.doi.org/10.1016/B978-0-444-52891-9.00016-6] [PMID: 23622161]
[83]
Manti S, Xerra F, Spoto G, et al. Neurotrophins: Expression of brain–lung axis development. Int J Mol Sci 2023; 24(8): 7089.
[http://dx.doi.org/10.3390/ijms24087089] [PMID: 37108250]
[84]
Marpole R, Blackmore AM, Gibson N, Cooper MS, Langdon K, Wilson AC. Evaluation and management of respiratory illness in children with cerebral palsy. Front Pediatr 2020; 8: 333.
[http://dx.doi.org/10.3389/fped.2020.00333] [PMID: 32671000]
[85]
Boel L, Pernet K, Toussaint M, et al. Respiratory morbidity in children with cerebral palsy: An overview. Dev Med Child Neurol 2019; 61(6): 646-53.
[http://dx.doi.org/10.1111/dmcn.14060] [PMID: 30320434]
[86]
Manti S, Galdo F, Parisi GF, et al. Long-term effects of bronchopulmonary dysplasia on lung function: A pilot study in preschool children’s cohort. J Asthma 2021; 58(9): 1186-93.
[http://dx.doi.org/10.1080/02770903.2020.1779289] [PMID: 32508174]
[87]
Bongiovanni A, Manti S, Parisi GF, et al. Focus on gastroesophageal reflux disease in patients with cystic fibrosis. World J Gastroenterol 2020; 26(41): 6322-34.
[http://dx.doi.org/10.3748/wjg.v26.i41.6322] [PMID: 33244195]
[88]
Pulvirenti G, Sortino V, Manti S, et al. Pathogenesis, diagnosis, dietary management, and prevention of gastrointestinal disorders in the paediatric population. Ital J Pediatr 2022; 48(1): 172.
[http://dx.doi.org/10.1186/s13052-022-01366-8] [PMID: 36089576]
[89]
Garcia J, Wical B, Wical W, et al. Obstructive sleep apnea in children with cerebral palsy and epilepsy. Dev Med Child Neurol 2016; 58(10): 1057-62.
[http://dx.doi.org/10.1111/dmcn.13091] [PMID: 26991829]
[90]
Elsayed R, Hasanein B, Sayyah H, El-Auoty M, Tharwat N, Belal T. Sleep assessment of children with cerebral palsy: Using validated sleep questionnaire. Ann Indian Acad Neurol 2013; 16(1): 62-5.
[http://dx.doi.org/10.4103/0972-2327.107708] [PMID: 23661965]
[91]
Romeo DM, Brogna C, Quintiliani M, et al. Sleep disorders in children with cerebral palsy: Neurodevelopmental and behavioral correlates. Sleep Med 2014; 15(2): 213-8.
[http://dx.doi.org/10.1016/j.sleep.2013.08.793] [PMID: 24424102]
[92]
Koh S, Ward SL, Lin M, Chen LS. Sleep apnea treatment improves seizure control in children with neurodevelopmental disorders. Pediatr Neurol 2000; 22(1): 36-9.
[http://dx.doi.org/10.1016/S0887-8994(99)00114-9] [PMID: 10669203]
[93]
Marseglia LM, Nicotera A, Salpietro V, et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns. Oxid Med Cell Longev 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/543134] [PMID: 25829992]
[94]
Kouchi H, Ogier M, Dieuset G, et al. Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system. Sci Rep 2022; 12(1): 10248.
[http://dx.doi.org/10.1038/s41598-022-14153-6] [PMID: 35715469]
[95]
Somboon T, Damberger GMM, Schaefer FN. Epilepsy and sleep-related breathing disturbances. Chest 2019; 156(1): 172-81.
[http://dx.doi.org/10.1016/j.chest.2019.01.016] [PMID: 30711481]
[96]
Spoto G, Valentini G, Saia MC, et al. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction. Front Neurol 2022; 13: 826211.
[http://dx.doi.org/10.3389/fneur.2022.826211] [PMID: 35350397]
[97]
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. Handb Clin Neurol 2022; 189: 153-76.
[http://dx.doi.org/10.1016/B978-0-323-91532-8.00012-4] [PMID: 36031303]
[98]
Verducci C, Hussain F, Donner E, et al. SUDEP in the north American SUDEP registry. Neurology 2019; 93(3): e227-36.
[http://dx.doi.org/10.1212/WNL.0000000000007778] [PMID: 31217259]
[99]
Spoto G, Saia MC, Amore G, et al. Neonatal seizures: An overview of genetic causes and treatment options. Brain Sci 2021; 11(10): 1295.
[http://dx.doi.org/10.3390/brainsci11101295] [PMID: 34679360]
[100]
Oliveira AJ, Zamagni M, Dolso P, Bassetti MA, Gigli GL. Respiratory disorders during sleep in patients with epilepsy: Effect of ventilatory therapy on EEG interictal epileptiform discharges. Clin Neurophysiol 2000; 111(S2): S141-5.
[http://dx.doi.org/10.1016/S1388-2457(00)00415-6] [PMID: 10996568]
[101]
Guilmatre A, Legallic S, Steel G, et al. Type I hyperprolinemia: Genotype/phenotype correlations. Hum Mutat 2010; 31(8): 961-5.
[http://dx.doi.org/10.1002/humu.21296] [PMID: 20524212]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy