Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Targeted Bacterial Keratitis Treatment with Polyethylene Glycol-Dithiothreitol-Boric Acid Hydrogel and Gatifloxacin

Author(s): Xiao Shen, Chunlian Huang*, Jianhai Bai and Jing Wen

Volume 21, Issue 11, 2024

Published on: 29 February, 2024

Page: [1548 - 1558] Pages: 11

DOI: 10.2174/0115672018279105240226050253

Price: $65

Abstract

Introduction/Objective: To prolong the ocular residence time of gatifloxacin and enhance its efficacy against bacterial keratitis, this study developed a velocity-controlled polyethylene glycol-dithiothreitol-boric acid (PDB) hydrogel loaded with gatifloxacin.

Methods: First, the basic properties of the synthesized PDB hydrogel and the gatifloxacin-loaded PDB hydrogel were assessed. Secondly, the in vitro degradation rate of the drug-loaded PDB was measured in a simulated body fluid environment with pH 7.4/5.5. The release behavior of the drug-loaded PDB was studied using a dialysis method with PBS solution of pH 7.4/5.5 as the release medium. Finally, a mouse model of bacterial keratitis was established, and tissue morphology was observed using hematoxylin-eosin staining. Additionally, mouse tear fluid was extracted to observe the antibacterial effect of the gatifloxacin-loaded PDB hydrogel.

Results: The results showed that the PDB hydrogel had a particle size of 124.9 nm and a zeta potential of -23.3 mV, with good porosity, thermosensitivity, viscosity distribution, rheological properties, and high cell compatibility. The encapsulation of gatifloxacin did not alter the physical properties of the PDB hydrogel and maintained appropriate swelling and stability, with a high drug release rate in acidic conditions. Furthermore, animal experiments demonstrated that the gatifloxacin- loaded PDB hydrogel exhibited superior therapeutic effects compared to gatifloxacin eye drops and displayed strong antibacterial capabilities against bacterial keratitis.

Conclusion: This study successfully synthesized PDB hydrogel and developed a gatifloxacin drug release system. The hydrogel exhibited good thermosensitivity, pH responsiveness, stability, and excellent biocompatibility, which can enhance drug retention, utilization, and therapeutic effects on the ocular surface.

« Previous
[1]
Galvis, V.; Tello, A.; Laiton, A.N.; Salcedo, S.L.L. Indications and techniques of corneal transplantation in a referral center in Colombia, South America (2012–2016). Int. Ophthalmol., 2019, 39(8), 1723-1733.
[http://dx.doi.org/10.1007/s10792-018-0994-z] [PMID: 30047076]
[2]
Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye, 2021, 35(4), 1084-1101.
[http://dx.doi.org/10.1038/s41433-020-01339-3] [PMID: 33414529]
[3]
Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Correction to: Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye, 2021, 35(10), 2908.
[http://dx.doi.org/10.1038/s41433-021-01568-0] [PMID: 33976404]
[4]
Shah, A.; Sachdev, A.; Coggon, D.; Hossain, P. Geographic variations in microbial keratitis: an analysis of the peer-reviewed literature. Br. J. Ophthalmol., 2011, 95(6), 762-767.
[http://dx.doi.org/10.1136/bjo.2009.169607] [PMID: 21478201]
[5]
Keay, L.; Edwards, K.; Naduvilath, T.; Taylor, H.R.; Snibson, G.R.; Forde, K.; Stapleton, F. Microbial keratitis. Ophthalmology, 2006, 113(1), 109-116.
[http://dx.doi.org/10.1016/j.ophtha.2005.08.013] [PMID: 16360210]
[6]
Ung, L.; Chodosh, J. Foundational concepts in the biology of bacterial keratitis Exp Eye Res, 2021.
[http://dx.doi.org/10.1016/j.exer.2021.108647]
[7]
Galvis, V.; Tello, A.; Guerra, A.; Acuna, M.F.; Villarreal, D. Antibiotic susceptibility patterns of bacteria isolated from keratitis and intraocular infections at Fundacion Oftalmologica de Santander (FOSCAL), Floridablanca, Colombia. Biomedica, 2014, 34, 123-133.
[8]
Han, H.; Gao, Y.; Chai, M.; Zhang, X.; Liu, S.; Huang, Y.; Jin, Q.; Grzybowski, A.; Ji, J.; Yao, K. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. J. Control. Release, 2020, 327, 676-687.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.014] [PMID: 32920078]
[9]
Lakhundi, S.; Siddiqui, R.; Khan, N.A. Pathogenesis of microbial keratitis. Microb. Pathog., 2017, 104, 97-109.
[http://dx.doi.org/10.1016/j.micpath.2016.12.013] [PMID: 27998732]
[10]
Cabrera-Aguas, M.; Khoo, P.; Watson, S.L. Infectious keratitis: A review. Clin. Exp. Ophthalmol., 2022, 50(5), 543-562.
[http://dx.doi.org/10.1111/ceo.14113] [PMID: 35610943]
[11]
Alvarez-Lorenzo, C.; Hiratani, H.; Gómez-Amoza, J.L.; Martínez-Pacheco, R.; Souto, C.; Concheiro, A. Soft contact lenses capable of sustained delivery of timolol. J. Pharm. Sci., 2002, 91(10), 2182-2192.
[http://dx.doi.org/10.1002/jps.10209] [PMID: 12226845]
[12]
Kapoor, Y.; Thomas, J.C.; Tan, G.; John, V.T.; Chauhan, A. Surfactant-laden soft contact lenses for extended delivery of ophthalmic drugs. Biomaterials, 2009, 30(5), 867-878.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.032] [PMID: 19010533]
[13]
Ibrahim, H.K.; El-Leithy, I.S.; Makky, A.A. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol. Pharm., 2010, 7(2), 576-585.
[http://dx.doi.org/10.1021/mp900279c] [PMID: 20163167]
[14]
Sanfilippo, C.M.; Allaire, C.M.; DeCory, H.H. Besifloxacin ophthalmic suspension 0.6% compared with gatifloxacin ophthalmic solution 0.3% for the treatment of bacterial conjunctivitis in neonates. Drugs R D., 2017, 17(1), 167-175.
[http://dx.doi.org/10.1007/s40268-016-0164-6] [PMID: 28078599]
[15]
Daniell, M. Overview: Initial antimicrobial therapy for microbial keratitis. Br. J. Ophthalmol., 2003, 87(9), 1172-1174.
[http://dx.doi.org/10.1136/bjo.87.9.1172] [PMID: 12928292]
[16]
Lin, A.; Rhee, M.K.; Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S. Bacterial keratitis preferred practice pattern®. Ophthalmology, 2019, 126(1), P1-P55.
[http://dx.doi.org/10.1016/j.ophtha.2018.10.018] [PMID: 30366799]
[17]
Binkhathlan, Z.; Ali, R.; Alomrani, A.H.; Abul Kalam, M.; Alshamsan, A.; Lavasanifar, A. Role of polymeric micelles in ocular drug delivery: An overview of decades of research. Mol. Pharm., 2023, 20(11), 5359-5382.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00598] [PMID: 37769017]
[18]
Nasr, M.; Saber, S.; Bazeed, A.Y.; Ramadan, H.A.; Ebada, A.; Ciorba, A.L.; Cavalu, S.; Elagamy, H.I. Advantages of cubosomal formulation for gatifloxacin delivery in the treatment of bacterial keratitis: In vitro and in vivo approach using clinical isolate of methicillin-resistant staphylococcus aureus. Materials, 2022, 15(9), 3374.
[http://dx.doi.org/10.3390/ma15093374] [PMID: 35591708]
[19]
Parmar, P.; Salman, A.; Kalavathy, C.M.; Kaliamurthy, J.; Prasanth, D.A.; Thomas, P.A.; Jesudasan, C.A.N. Comparison of topical gatifloxacin 0.3% and ciprofloxacin 0.3% for the treatment of bacterial keratitis. Am. J. Ophthalmol., 2006, 141(2), 282-286.e1.
[http://dx.doi.org/10.1016/j.ajo.2005.08.081] [PMID: 16458681]
[20]
Lee, S.; Lee, J. H.; Park, J. H.; Yoon, Y.; Chung, W. K.; Tchah, H.; Kim, M. J.; Kim, K. H. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy. Sci Rep, 2016, 625339.
[http://dx.doi.org/10.1038/srep25339]
[21]
Shi, Y.; Lv, H.; Fu, Y.; Lu, Q.; Zhong, J.; Ma, D.; Huang, Y.; Xue, W. Preparation and characterization of a hydrogel carrier to deliver gatifloxacin and its application as a therapeutic contact lens for bacterial keratitis therapy. Biomed. Mater., 2013, 8(5), 055007.
[http://dx.doi.org/10.1088/1748-6041/8/5/055007] [PMID: 24057809]
[22]
Singh, R. B.; Das, S.; Chodosh, J.; Sharma, N.; Zegans, M. E.; Kowalski, R. P.; Jhanji, V. Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Prog Retin Eye Res, 2022. 88101028
[http://dx.doi.org/10.1016/j.preteyeres.2021.101028]
[23]
Schultz, C. Gatifloxacin ophthalmic solution for treatment of bacterial conjunctivitis: Safety, efficacy and patient perspective. Ophthalmol. Eye Dis., 2012, 4, OED.S7383.
[http://dx.doi.org/10.4137/OED.S7383] [PMID: 23650458]
[24]
Kass, L.E.; Nguyen, J. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(2), e1756.
[http://dx.doi.org/10.1002/wnan.1756] [PMID: 34532989]
[25]
Ho, T.C.; Chang, C.C.; Chan, H.P.; Chung, T.W.; Shu, C.W.; Chuang, K.P.; Duh, T.H.; Yang, M.H.; Tyan, Y.C. Hydrogels: Properties and applications in biomedicine. Molecules, 2022, 27(9), 2902.
[http://dx.doi.org/10.3390/molecules27092902] [PMID: 35566251]
[26]
Luo, Y.; Li, Z.; Wang, X.; Wang, J.; Duan, X.; Li, R.; Peng, Y.; Ye, Q.; He, Y. Characteristics of culture-condition stimulated exosomes or their loaded hydrogels in comparison with other extracellular vesicles or MSC lysates. Front Bioeng Biotechnol, 2022, 101016833.
[http://dx.doi.org/10.3389/fbioe.2022.1016833]
[27]
Jindal, S.; Awasthi, R.; Goyal, K.; Kulkarni, G.T. Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatol. Ther., 2022, 35(11), e15830.
[http://dx.doi.org/10.1111/dth.15830] [PMID: 36106409]
[28]
Qian, Y.; Lu, S.; Meng, J.; Chen, W.; Li, J. Thermo‐responsive hydrogels coupled with photothermal agents for biomedical applications. Macromol. Biosci., 2023, 23(12), 2300214.
[http://dx.doi.org/10.1002/mabi.202300214] [PMID: 37526220]
[29]
Chang, D.; Park, K.; Famili, A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov. Today, 2019, 24(8), 1470-1482.
[http://dx.doi.org/10.1016/j.drudis.2019.05.037] [PMID: 31202673]
[30]
Wu, Y.; Wang, Y.; Long, L.; Hu, C.; Kong, Q.; Wang, Y. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J. Control. Release, 2022, 341, 147-165.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.027] [PMID: 34813880]
[31]
Wang, J.; Zhu, M.; Hu, Y.; Chen, R.; Hao, Z.; Wang, Y.; Li, J. Exosome‐hydrogel system in bone tissue engineering: A promising therapeutic strategy. Macromol. Biosci., 2023, 23(4), 2200496.
[http://dx.doi.org/10.1002/mabi.202200496] [PMID: 36573715]
[32]
Hoque, J.; Sangaj, N.; Varghese, S. Stimuli‐responsive supramolecular hydrogels and their applications in regenerative medicine. Macromol. Biosci., 2019, 19(1), 1800259.
[http://dx.doi.org/10.1002/mabi.201800259] [PMID: 30295012]
[33]
Li, Z.; Fan, Z.; Xu, Y.; Lo, W.; Wang, X.; Niu, H.; Li, X.; Xie, X.; Khan, M.; Guan, J. pH-sensitive and thermosensitive hydrogels as stem-cell carriers for cardiac therapy. ACS Appl. Mater. Interfaces, 2016, 8(17), 10752-10760.
[http://dx.doi.org/10.1021/acsami.6b01374] [PMID: 27064934]
[34]
Yang, Y.; Feng, G.; Wang, J.; Zhang, R.; Zhong, S.; Wang, J.; Cui, X. Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. Int. J. Biol. Macromol., 2023, 227, 1038-1047.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.279] [PMID: 36460241]
[35]
Hendi, A.; Umair Hassan, M.; Elsherif, M.; Alqattan, B.; Park, S.; Yetisen, A.K.; Butt, H. Healthcare applications of ph-sensitive hydrogel-based devices: A review. Int. J. Nanomedicine, 2020, 15, 3887-3901.
[http://dx.doi.org/10.2147/IJN.S245743] [PMID: 32581536]
[36]
van Dam, E.P.; Yuan, H.; Kouwer, P.H.J.; Bakker, H.J. Structure and dynamics of a temperature-sensitive hydrogel. J. Phys. Chem. B, 2021, 125(29), 8219-8224.
[http://dx.doi.org/10.1021/acs.jpcb.1c03121] [PMID: 34279949]
[37]
Norouzi, M.; Nazari, B.; Miller, D.W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today, 2016, 21(11), 1835-1849.
[http://dx.doi.org/10.1016/j.drudis.2016.07.006] [PMID: 27423369]
[38]
Yang, K.; Wan, S.; Chen, B.; Gao, W.; Chen, J.; Liu, M.; He, B.; Wu, H. Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Carbohydr. Polym., 2016, 136, 300-306.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.096] [PMID: 26572359]
[39]
Pan, G.; Zhang, J.; Liang, Y.; Guo, B. Latest findings on stimuli-responsive hydrogel wound dressings applied in diabetic chronic wound repair. SI Department and ax u ex UE BAOy IX UE ban, 2023, 54(4), 726-730.
[http://dx.doi.org/10.12182/20230760206] [PMID: 37545064]
[40]
Lin, D.; Lei, L.; Shi, S.; Li, X. Stimulus‐responsive hydrogel for ophthalmic drug delivery. Macromol. Biosci., 2019, 19(6), 1900001.
[http://dx.doi.org/10.1002/mabi.201900001] [PMID: 31026123]
[41]
Wang, D.; Yang, X.; Liu, Q.; Yu, L.; Ding, J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(38), 6067-6079.
[http://dx.doi.org/10.1039/C8TB01949E] [PMID: 32254817]
[42]
Ai, Y.; She, W.; Wu, S.; Shao, Q.; Jiang, Z.; Chen, P.; Mei, L.; Zou, C.; Peng, Y.; He, Y. AM1241-loaded poly(ethylene glycol)-dithiothreitol hydrogel repairs cranial bone defects by promoting vascular endothelial growth factor and COL-1 expression. Front Cell Dev Biol, 2022, 10888598.
[http://dx.doi.org/10.3389/fcell.2022.888598]
[43]
D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275.
[http://dx.doi.org/10.1080/17425247.2016.1182485] [PMID: 27116988]
[44]
Yin, L.; Pang, Y.; Shan, L.; Gu, J. The in vivo pharmacokinetics of block copolymers containing polyethylene glycol used in nanocarrier drug delivery systems. Drug Metab. Dispos., 2022, 50(6), 827-836.
[http://dx.doi.org/10.1124/dmd.121.000568] [PMID: 35066464]
[45]
Shah, N.; Hussain, M.; Rehan, T.; Khan, A.; Khan, Z.U. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr. Pharm. Des., 2022, 28(5), 352-367.
[http://dx.doi.org/10.2174/1381612827666210910104333] [PMID: 34514984]
[46]
Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev, 2016, 99, 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[47]
Fjelstrup, S.; Andersen, M.; Thomsen, J.; Wang, J.; Stougaard, M.; Pedersen, F.; Ho, Y.P.; Hede, M.; Knudsen, B. The effects of dithiothreitol on DNA. Sensors, 2017, 17(6), 1201.
[http://dx.doi.org/10.3390/s17061201] [PMID: 28538659]
[48]
Abdussalam, A.; Chen, Y.; Yuan, F.; Ma, X.; Lou, B.; Xu, G. Dithiothreitol–lucigenin chemiluminescent system for ultrasensitive dithiothreitol and superoxide dismutase detection. Anal. Chem., 2022, 94(31), 11023-11029.
[http://dx.doi.org/10.1021/acs.analchem.2c01690] [PMID: 35878317]
[49]
Whitely, M.; Cereceres, S.; Dhavalikar, P.; Salhadar, K.; Wilems, T.; Smith, B.; Mikos, A.; Cosgriff-Hernandez, E. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185, 194-204.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.027] [PMID: 30245387]
[50]
Tanpichai, S.; Phoothong, F.; Boonmahitthisud, A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci. Rep., 2022, 12(1), 8920.
[http://dx.doi.org/10.1038/s41598-022-12688-2] [PMID: 35618796]
[51]
He, L.; Szopinski, D.; Wu, Y.; Luinstra, G.A.; Theato, P. Toward self-healing hydrogels using one-pot thiol–ene click and borax-diol chemistry. ACS Macro Lett., 2015, 4(7), 673-678.
[http://dx.doi.org/10.1021/acsmacrolett.5b00336] [PMID: 35596485]
[52]
Liu, C.; Lei, F.; Li, P.; Wang, K.; Jiang, J. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int. J. Biol. Macromol., 2021, 182, 1179-1191.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.090] [PMID: 33895176]
[53]
Liu, Y.; Mao, J.; Guo, Z.; Hu, Y.; Wang, S. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties. Int. J. Biol. Macromol., 2022, 220, 211-222.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.08.061] [PMID: 35970368]
[54]
Cheng, H.; Fan, Z.; Wang, Z.; Guo, Z.; Jiang, J.; Xie, Y. Highly stretchable, fast self-healing nanocellulose hydrogel combining borate ester bonds and acylhydrazone bonds. Int J Biol Macromol, 2023, 245, 125471.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125471]
[55]
Han, J.; Lei, T.; Wu, Q. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: Dynamic rheological properties and hydrogel formation mechanism. Carbohydr. Polym., 2014, 102, 306-316.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.045] [PMID: 24507286]
[56]
Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal blindness: A global perspective. Bull. World Health Organ., 2001, 79(3), 214-221. [J].
[PMID: 11285665]
[57]
Thomas, P.A.; Geraldine, P. Infectious keratitis. Curr. Opin. Infect. Dis., 2007, 20(2), 129-141.
[http://dx.doi.org/10.1097/QCO.0b013e328017f878] [PMID: 17496570]
[58]
Egrilmez, S.; Yildirim-Theveny, Ş. Treatment-resistant bacterial keratitis: Challenges and solutions. Clin. Ophthalmol., 2020, 14, 287-297.
[http://dx.doi.org/10.2147/OPTH.S181997] [PMID: 32099313]
[59]
Mah, F.; Cervantes Clinical use of gatifloxacin ophthalmic solution for treatment of bacterial conjunctivitis. Clin. Ophthalmol., 2011, 5, 495-502.
[http://dx.doi.org/10.2147/OPTH.S13778] [PMID: 21573098]
[60]
Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436(7054), 1171-1175.
[http://dx.doi.org/10.1038/nature03912] [PMID: 16121184]
[61]
Yuan, X.; Marcano, D.C.; Shin, C.S.; Hua, X.; Isenhart, L.C.; Pflugfelder, S.C.; Acharya, G. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano, 2015, 9(2), 1749-1758.
[http://dx.doi.org/10.1021/nn506599f] [PMID: 25585134]
[62]
Huang, Q.; Zou, Y.; Arno, M.C.; Chen, S.; Wang, T.; Gao, J.; Dove, A.P.; Du, J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem. Soc. Rev., 2017, 46(20), 6255-6275.
[http://dx.doi.org/10.1039/C6CS00052E] [PMID: 28816316]
[63]
Gutierrez, A.M.; Frazar, E.M.; X Klaus, M.V.; Paul, P.; Hilt, J.Z. Hydrogels and hydrogel nanocomposites: Enhancing healthcare through human and environmental treatment. Adv. Healthc. Mater., 2022, 11(7), e2101820.
[http://dx.doi.org/10.1002/adhm.202101820] [PMID: 34811960]
[64]
Gao, W.; Zhang, Y.; Zhang, Q.; Zhang, L. Nanoparticle-hydrogel: A hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng., 2016, 44(6), 2049-2061.
[http://dx.doi.org/10.1007/s10439-016-1583-9] [PMID: 26951462]
[65]
Makhathini, S.S.; Mdanda, S.; Kondiah, P.J.; Kharodia, M.E.; Rumbold, K.; Alagidede, I.; Pathak, Y.; Bulbulia, Z.; Rants’o, T.A.; Kondiah, P.P.D. Biomedicine innovations and its nanohydrogel classifications. Pharmaceutics, 2022, 14(12), 2839.
[http://dx.doi.org/10.3390/pharmaceutics14122839] [PMID: 36559335]
[66]
Granata, G.; Petralia, S.; Forte, G.; Conoci, S.; Consoli, G. M. L. Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4]arene derivative and curcumin for a sustained drug release. Mater Sci Eng C Mater Biol Appl, 2020, 111, 110842.
[http://dx.doi.org/10.1016/j.msec.2020.110842]
[67]
Xiao, Y.; Gu, Y.; Qin, L.; Chen, L.; Chen, X.; Cui, W.; Li, F.; Xiang, N.; He, X. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces., 2021, 200, 111581.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111581]
[68]
Lv, H.; Wu, B.; Song, J.; Wu, W.; Cai, W.; Xu, J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(33), 6536-6552.
[http://dx.doi.org/10.1039/D1TB01005K] [PMID: 34324619]
[69]
Wu, Y.; Li, Y.; Han, R.; Long, Z.; Si, P.; Zhang, D. Dual-cross-linked PEI/PVA hydrogel for pH-responsive drug delivery. Biomacromolecules, 2023, 24(11), 5364-5370.
[http://dx.doi.org/10.1021/acs.biomac.3c00824] [PMID: 37906107]
[70]
Zhou, J.; Wang, H.; Chen, H.; Ling, Y.; Xi, Z.; Lv, M.; Chen, J. pH-responsive nanocomposite hydrogel for simultaneous prevention of postoperative adhesion and tumor recurrence. Acta Biomater., 2023, 158, 228-238.
[http://dx.doi.org/10.1016/j.actbio.2022.12.025] [PMID: 36563777]
[71]
Xue, C.; Xu, X.; Zhang, L.; Liu, Y.; Liu, S.; Liu, Z.; Wu, M.; Shuai, Q. Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing Colloids Surf B Biointerfaces, 2022, 218, 112738.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112738]
[72]
Raza, F.; Zhu, Y.; Chen, L.; You, X.; Zhang, J.; Khan, A.; Khan, M.W.; Hasnat, M.; Zafar, H.; Wu, J.; Ge, L. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater. Sci., 2019, 7(5), 2023-2036.
[http://dx.doi.org/10.1039/C9BM00139E] [PMID: 30839983]
[73]
Li, Y.; Bui, Q.N.; Duy, L.T.M.; Yang, H.Y.; Lee, D.S. One-step preparation of ph-responsive polymeric nanogels as intelligent drug delivery systems for tumor therapy. Biomacromolecules, 2018, 19(6), 2062-2070.
[http://dx.doi.org/10.1021/acs.biomac.8b00195] [PMID: 29625005]
[74]
Huang, Y.; Chen, Y.; Lu, Z.; Yu, B.; Zou, L.; Song, X.; Han, H.; Jin, Q.; Ji, J. Facile synthesis of self-targeted Zn(2+) -gallic acid nanoflowers for specific adhesion and elimination of gram-positive bacteria Small, 2023, e2302578.
[http://dx.doi.org/10.1002/smll.202302578]
[75]
Sautrot-Ba, P.; Razza, N.; Breloy, L.; Andaloussi, S.A.; Chiappone, A.; Sangermano, M.; Hélary, C.; Belbekhouche, S.; Coradin, T.; Versace, D.L. Photoinduced chitosan–PEG hydrogels with long-term antibacterial properties. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(42), 6526-6538.
[http://dx.doi.org/10.1039/C9TB01170F] [PMID: 31578530]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy