Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Inhibition of MiR-155 Using Exosomal Delivery of Antagomir Can Up-Regulate PTEN in Triple Negative Breast Cancer

Author(s): Javad Razaviyan, Majid Sirati-Sabet, Ali Tafti, Razie Hadavi, Saeed Karima, Masoumeh Rajabibazl and Samira Mohammadi-Yeganeh*

Volume 24, Issue 14, 2024

Published on: 28 February, 2024

Page: [1664 - 1676] Pages: 13

DOI: 10.2174/0118715303289859240214103350

Price: $65

Abstract

Background: The most aggressive form of breast cancer (BC) is Triple-Negative BC (TNBC), with the poorest prognosis, accounting for nearly 15% of all cases. Since there is no effective treatment, novel strategies, especially targeted therapies, are essential to treat TNBC. Exosomes are nano-sized microvesicles derived from cells and transport various intracellular cargoes, including microRNAs (miRNAs). MiRNAs, small non-coding RNA, are an influential factor in the development of cancerous transformations in cells.

Method: Bioinformatics analysis of genes related to TNBC revealed that PTEN plays a crucial role in the disease. Relative expression of this gene was analyzed with RT-qPCR in 14 TNBC clinical samples. Electroporation was used to load miRNA antagomir into exosomes extracted from the conditioned medium. Then, the expression of miR-155 and PTEN was evaluated in MDA-MB-231 cells treated with antagomir-loaded exosomes.

Results: Based on the bioinformatics analysis, miR-155 is a potent inhibitor of PTEN. Following treatment with antagomir-loaded exosomes, RT-qPCR showed significantly reduced miR- 155 and increased PTEN levels in MDA-MB-231 cells.

Conclusion: Based on the results of this study, exosomes can be effectively used as a cargo of oligonucleotides like miRNA mimics and antagomirs in targeted therapies.

[1]
Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat., 2017, 161(2), 279-287.
[http://dx.doi.org/10.1007/s10549-016-4059-6] [PMID: 27888421]
[2]
Kumari, L.; Mishra, L.; Patel, P.; Sharma, N.; Gupta, G.D.; Kurmi, B.D. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J. Drug Target., 2023, 31(9), 889-907.
[http://dx.doi.org/10.1080/1061186X.2023.2245579] [PMID: 37539789]
[3]
Manjunath, M.; Choudhary, B. Triple negative breast cancer: A run through of features, classification and current therapies. (Review) Oncol. Lett., 2021, 22(1), 512.
[http://dx.doi.org/10.3892/ol.2021.12773] [PMID: 33986872]
[4]
Howard, F.M.; Olopade, O.I. Epidemiology of triple-negative breast cancer. Cancer J., 2021, 27(1), 8-16.
[http://dx.doi.org/10.1097/PPO.0000000000000500] [PMID: 33475288]
[5]
Almansour, N.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front. Mol. Biosci., 2022, 9, 836417.
[http://dx.doi.org/10.3389/fmolb.2022.836417] [PMID: 35145999]
[6]
Tzikas, A.K.; Nemes, S.; Linderholm, B.K. A comparison between young and old patients with triple-negative breast cancer: Biology, survival and metastatic patterns. Breast Cancer Res. Treat., 2020, 182(3), 643-654.
[http://dx.doi.org/10.1007/s10549-020-05727-x] [PMID: 32524352]
[7]
Jin, J.; Gao, Y.; Zhang, J.; Wang, L.; Wang, B.; Cao, J.; Shao, Z.; Wang, Z. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer. BMC Cancer, 2018, 18(1), 446.
[http://dx.doi.org/10.1186/s12885-018-4371-0] [PMID: 29673325]
[8]
Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of triple-negative breast cancer. Annu. Rev. Pathol., 2022, 17(1), 181-204.
[http://dx.doi.org/10.1146/annurev-pathol-042420-093238] [PMID: 35073169]
[9]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[10]
Singh, D.D.; Yadav, D.K. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy. Biomedicines, 2021, 9(8), 876.
[http://dx.doi.org/10.3390/biomedicines9080876] [PMID: 34440080]
[11]
Yang, R.; Li, Y.; Wang, H.; Qin, T.; Yin, X.; Ma, X. Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. Mol. Biomedicine, 2022, 3(1), 8.
[http://dx.doi.org/10.1186/s43556-022-00071-6] [PMID: 35243562]
[12]
Fremd, C.; Jaeger, D.; Schneeweiss, A. Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: Current knowledge and future perspectives. Expert Rev. Anticancer Ther., 2019, 19(1), 29-42.
[http://dx.doi.org/10.1080/14737140.2019.1537785] [PMID: 30351981]
[13]
Chang-Qing, Y.; Jie, L.; Shi-Qi, Z.; Kun, Z.; Zi-Qian, G.; Ran, X.; Hui-Meng, L.; Ren-Bin, Z.; Gang, Z.; Da-Chuan, Y.; Chen-Yan, Z. Recent treatment progress of triple negative breast cancer. Prog. Biophys. Mol. Biol., 2020, 151, 40-53.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.007] [PMID: 31761352]
[14]
Antimisiaris, S.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[15]
Negahdaripour, M.; Owji, H.; Eskandari, S.; Zamani, M.; Vakili, B.; Nezafat, N. Small extracellular vesicles (sEVs): Ciscovery, functions, applications, detection methods and various engineered forms. Expert Opin. Biol. Ther., 2021, 21(3), 371-394.
[http://dx.doi.org/10.1080/14712598.2021.1825677] [PMID: 32945228]
[16]
Geng, T.; Song, Z.Y.; Xing, J.X.; Wang, B.X.; Dai, S.P.; Xu, Z.S. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int. J. Nanomedicine, 2020, 15, 2647-2658.
[http://dx.doi.org/10.2147/IJN.S242908] [PMID: 32368046]
[17]
Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr. Biol., 2018, 28(8), R435-R444.
[http://dx.doi.org/10.1016/j.cub.2018.01.059] [PMID: 29689228]
[18]
Heo, J.; Kang, H. Exosome-based treatment for atherosclerosis. Int. J. Mol. Sci., 2022, 23(2), 1002.
[http://dx.doi.org/10.3390/ijms23021002] [PMID: 35055187]
[19]
Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88(1), 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[20]
Wu, Z.; Wang, L.; Li, J.; Wang, L.; Wu, Z.; Sun, X. Extracellular vesicle-mediated communication within host-parasite interactions. Front. Immunol., 2019, 9, 3066.
[http://dx.doi.org/10.3389/fimmu.2018.03066] [PMID: 30697211]
[21]
Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal., 2021, 19(1), 47.
[http://dx.doi.org/10.1186/s12964-021-00730-1] [PMID: 33892745]
[22]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8(1), 237-255.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[23]
Peng, H.; Ji, W.; Zhao, R.; Yang, J.; Lu, Z.; Li, Y.; Zhang, X. Exosome: A significant nano-scale drug delivery carrier. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(34), 7591-7608.
[http://dx.doi.org/10.1039/D0TB01499K] [PMID: 32697267]
[24]
Sun, X.; Lin, F.; Sun, W.; Zhu, W.; Fang, D.; Luo, L.; Li, S.; Zhang, W.; Jiang, L. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Mol. Ther. Nucleic Acids, 2021, 24, 164-174.
[http://dx.doi.org/10.1016/j.omtn.2021.02.022] [PMID: 33767913]
[25]
Ingenito, F.; Roscigno, G.; Affinito, A.; Nuzzo, S.; Scognamiglio, I.; Quintavalle, C.; Condorelli, G. The role of Exo-miRNAs in cancer: A focus on therapeutic and diagnostic applications. Int. J. Mol. Sci., 2019, 20(19), 4687.
[http://dx.doi.org/10.3390/ijms20194687] [PMID: 31546654]
[26]
Hadavi, R.; Mohammadi-Yeganeh, S.; Razaviyan, J.; Koochaki, A.; Kokhaei, P.; Bandegi, A. Expression of bioinformatically candidate miRNAs including, miR-576-5p, miR-501-3p and miR-3143, targeting PI3K pathway in triple-negative breast cancer. Galen Med. J., 2019, 8, 1646.
[http://dx.doi.org/10.31661/gmj.v8i0.1646] [PMID: 34466540]
[27]
Shirley, K.; Reichard, K.; Grover, N. Small noncoding RNA, microRNA in gene regulation, fundamentals of RNA structure and function; Springer, 2022, pp. 167-190.
[http://dx.doi.org/10.1007/978-3-030-90214-8_8]
[28]
Xu, J.; Wu, K.; Jia, Q.; Ding, X. Roles of miRNA and IncRNA in triple-negative breast cancer. J. Zhejiang Univ. Sci. B, 2020, 21(9), 673-689.
[http://dx.doi.org/10.1631/jzus.B1900709] [PMID: 32893525]
[29]
Huang, Y.; Wang, X.; Zheng, Y.; Chen, W.; Zheng, Y.; Li, G.; Lou, W.; Wang, X. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer. Aging, 2021, 13(1), 1153-1175.
[http://dx.doi.org/10.18632/aging.202254] [PMID: 33428596]
[30]
Fu, Y.; Yang, Q.; Yang, H.; Zhang, X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front. Mol. Biosci., 2023, 10, 1162463.
[http://dx.doi.org/10.3389/fmolb.2023.1162463] [PMID: 37122564]
[31]
Berti, F.C.B.; Tofolo, M.V.; Nunes-Souza, E.; Marchi, R.; Okano, L.M.; Ruthes, M.; Rosolen, D.; Malheiros, D.; Fonseca, A.S.; Cavalli, L.R. Extracellular vesicles-associated miRNAs in triple-negative breast cancer: From tumor biology to clinical relevance. Life Sci., 2024, 336, 122332.
[http://dx.doi.org/10.1016/j.lfs.2023.122332] [PMID: 38070862]
[32]
Jackson, R.J.; Standart, N. How do microRNAs regulate gene expression? Sci. STKE, 2007, 2007(367), re1-re1.
[http://dx.doi.org/10.1126/stke.3672007re1] [PMID: 17200520]
[33]
Harquail, J.; Benzina, S.; Robichaud, G.A. MicroRNAs and breast cancer malignancy: An overview of miRNA-regulated cancer processes leading to metastasis. Cancer Biomark., 2012, 11(6), 269-280.
[http://dx.doi.org/10.3233/CBM-120291] [PMID: 23248185]
[34]
Wong, J.S.; Cheah, Y.K. Potential miRNAs for miRNA-based therapeutics in breast cancer. Noncoding RNA, 2020, 6(3), 29.
[http://dx.doi.org/10.3390/ncrna6030029] [PMID: 32668603]
[35]
Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; Ludwig, N.; Fasching, P.A.; Strick, R.; Rübner, M.; Beckmann, M.W.; Meese, E.; Keller, A.; Schrauder, M.G. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep., 2018, 8(1), 11584.
[http://dx.doi.org/10.1038/s41598-018-29917-2] [PMID: 30072748]
[36]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[37]
Grimaldi, A.M.; Salvatore, M.; Incoronato, M. miRNA-based therapeutics in breast cancer: A systematic review. Front. Oncol., 2021, 11, 668464.
[http://dx.doi.org/10.3389/fonc.2021.668464] [PMID: 34026646]
[38]
Ors-Kumoglu, G.; Gulce-Iz, S.; Biray-Avci, C. Therapeutic microRNAs in human cancer. Cytotechnology, 2019, 71(1), 411-425.
[http://dx.doi.org/10.1007/s10616-018-0291-8] [PMID: 30600466]
[39]
Chekmenev, D.S.; Haid, C.; Kel, A.E. P-Match: Transcription factor binding site search by combining patterns and weight matrices. Nucleic Acids Res., 2005, 33, W432-W437.
[40]
Dong, R.; Pan, S.; Peng, Z.; Zhang, Y.; Yang, J. mTM-align: A server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res., 2018, 46(W1), W380-W386.
[http://dx.doi.org/10.1093/nar/gky430] [PMID: 29788129]
[41]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[42]
Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2105-4-2] [PMID: 12525261]
[43]
Ludwig, A.K.; De Miroschedji, K.; Doeppner, T.R.; Börger, V.; Ruesing, J.; Rebmann, V.; Durst, S.; Jansen, S.; Bremer, M.; Behrmann, E.; Singer, B.B.; Jastrow, H.; Kuhlmann, J.D.; El Magraoui, F.; Meyer, H.E.; Hermann, D.M.; Opalka, B.; Raunser, S.; Epple, M.; Horn, P.A.; Giebel, B. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J. Extracell. Vesicles, 2018, 7(1), 1528109.
[http://dx.doi.org/10.1080/20013078.2018.1528109] [PMID: 30357008]
[44]
Kia, V.; Paryan, M.; Mortazavi, Y.; Biglari, A.; Mohammadi-Yeganeh, S. Evaluation of exosomal miR‐9 and miR‐155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. J. Cell. Biochem., 2019, 120(4), 5666-5676.
[http://dx.doi.org/10.1002/jcb.27850] [PMID: 30335891]
[45]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[46]
Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[47]
O’Conor, C.J.; Chen, T.; González, I.; Cao, D.; Peng, Y. Cancer stem cells in triple-negative breast cancer: A potential target and prognostic marker. Biomarkers Med., 2018, 12(7), 813-820.
[http://dx.doi.org/10.2217/bmm-2017-0398] [PMID: 29902924]
[48]
Rakha, E.A.; Pareja, F.G. New advances in molecular breast cancer pathology, Seminars in cancer biology; Elsevier, 2021, pp. 102-113.
[49]
Rakha, E.A.; Chmielik, E.; Schmitt, F.C.; Tan, P.H.; Quinn, C.M.; Gallagy, G. Assessment of predictive biomarkers in breast cancer: Challenges and updates. Pathobiology, 2022, 89(5), 263-277.
[http://dx.doi.org/10.1159/000525092] [PMID: 35728576]
[50]
Dass, S.A.; Tan, K.L.; Selva Rajan, R.; Mokhtar, N.F.; Mohd Adzmi, E.R.; Wan Abdul Rahman, W.F.; Tengku Din, T.A.D.A.A.; Balakrishnan, V. Triple negative breast cancer: A review of present and future diagnostic modalities. Medicina, 2021, 57(1), 62.
[http://dx.doi.org/10.3390/medicina57010062] [PMID: 33445543]
[51]
Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health, 2020, 17(6), 2078.
[http://dx.doi.org/10.3390/ijerph17062078] [PMID: 32245065]
[52]
Howard, J.; Wyse, C.; Argyle, D.; Quinn, C.; Kelly, P.; McCann, A. Exosomes as biomarkers of human and feline mammary tumours; A comparative medicine approach to unravelling the aggressiveness of TNBC, biochimica et biophysica acta (BBA)-. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188431.
[http://dx.doi.org/10.1016/j.bbcan.2020.188431] [PMID: 32950643]
[53]
Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Di Lauro, V.; Fusco, G.; di Gioia, G.; Licenziato, M.; de Laurentiis, M. Biomarkers in triple-negative breast cancer: state-of-the-art and future perspectives. Int. J. Mol. Sci., 2020, 21(13), 4579.
[http://dx.doi.org/10.3390/ijms21134579] [PMID: 32605126]
[54]
Jimenez-Lopez, J.C.; Gachomo, E.W.; Sharma, S.; Kotchoni, S.O. Genome sequencing and next-generation sequence data analysis: A comprehensive compilation of bioinformatics tools and databases. Am. J. Mol. Biol., 2013, 3(2), 115-130.
[http://dx.doi.org/10.4236/ajmb.2013.32016]
[55]
Guo, Y.; Bao, Y.; Ma, M.; Yang, W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int. J. Mol. Sci., 2017, 18(4), 722.
[http://dx.doi.org/10.3390/ijms18040722] [PMID: 28350360]
[56]
Dahia, P.L. PTEN, a unique tumor suppressor gene. Endocr. Relat. Cancer, 2000, 7(2), 115-129.
[http://dx.doi.org/10.1677/erc.0.0070115] [PMID: 10903528]
[57]
Shen, W.H.; Balajee, A.S.; Wang, J.; Wu, H.; Eng, C.; Pandolfi, P.P.; Yin, Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell, 2007, 128(1), 157-170.
[http://dx.doi.org/10.1016/j.cell.2006.11.042] [PMID: 17218262]
[58]
Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[59]
Chai, C.; Wu, H.H.; Abuetabh, Y.; Sergi, C.; Leng, R. Regulation of the tumor suppressor PTEN in triple-negative breast cancer. Cancer Lett., 2022, 527, 41-48.
[http://dx.doi.org/10.1016/j.canlet.2021.12.003] [PMID: 34902523]
[60]
Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol., 2019, 30(7), 1051-1060.
[http://dx.doi.org/10.1093/annonc/mdz133] [PMID: 31050709]
[61]
Li, S.; Shen, Y.; Wang, M.; Yang, J.; Lv, M.; Li, P.; Chen, Z.; Yang, J. Loss of PTEN expression in breast cancer: Association with clinicopathological characteristics and prognosis. Oncotarget, 2017, 8(19), 32043-32054.
[http://dx.doi.org/10.18632/oncotarget.16761] [PMID: 28410191]
[62]
Gao, X.; Qin, T.; Mao, J.; Zhang, J.; Fan, S.; Lu, Y.; Sun, Z.; Zhang, Q.; Song, B.; Li, L. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 256.
[http://dx.doi.org/10.1186/s13046-019-1260-6] [PMID: 31196157]
[63]
Prvanović, M.; Nedeljković, M.; Tanić, N.; Tomić, T.; Terzić, T.; Milovanović, Z.; Maksimović, Z.; Tanić, N. Role of PTEN, PI3K, and mTOR in triple-negative breast cancer. Life, 2021, 11(11), 1247.
[http://dx.doi.org/10.3390/life11111247] [PMID: 34833123]
[64]
Wang, W.; Luo, Y. MicroRNAs in breast cancer: Oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B, 2015, 16(1), 18-31.
[http://dx.doi.org/10.1631/jzus.B1400184] [PMID: 25559952]
[65]
Mahesh, G.; Biswas, R. MicroRNA-155: A master regulator of inflammation. J. Interferon Cytokine Res., 2019, 39(6), 321-330.
[http://dx.doi.org/10.1089/jir.2018.0155] [PMID: 30998423]
[66]
Moutabian, H.; Radi, U.K.; Saleman, A.Y.; Adil, M.; Zabibah, R.S.; Chaitanya, M.N.L.; Saadh, M.J.; Jawad, M.J.; Hazrati, E.; Bagheri, H.; Pal, R.S.; Akhavan-Sigari, R. MicroRNA-155 and cancer metastasis: Regulation of invasion, migration, and epithelial-to-mesenchymal transition. Pathol. Res. Pract., 2023, 250, 154789.
[http://dx.doi.org/10.1016/j.prp.2023.154789] [PMID: 37741138]
[67]
Lü, L.; Mao, X.; Shi, P.; He, B.; Xu, K.; Zhang, S.; Wang, J. MicroRNAs in the prognosis of triple-negative breast cancer. Medicine, 2017, 96(22), e7085.
[http://dx.doi.org/10.1097/MD.0000000000007085] [PMID: 28562579]
[68]
Xin, X.; Lu, Y.; Xie, S.; Chen, Y.; Jiang, X.; Song, S.; Wang, L.; Pu, H.; Gui, X.; Li, T.; Xu, J.; Li, J.; Jia, S.; Lu, D. miR-155 accelerates the growth of human liver cancer cells by activating CDK2 via targeting H3F3A. Mol. Ther. Oncolytics, 2020, 17, 471-483.
[http://dx.doi.org/10.1016/j.omto.2020.05.002] [PMID: 32490171]
[69]
Pasculli, B.; Barbano, R.; Fontana, A.; Biagini, T.; Di Viesti, M.P.; Rendina, M.; Valori, V.M.; Morritti, M.; Bravaccini, S.; Ravaioli, S.; Maiello, E.; Graziano, P.; Murgo, R.; Copetti, M.; Mazza, T.; Fazio, V.M.; Esteller, M.; Parrella, P. Hsa-miR-155-5p up-regulation in breast cancer and its relevance for treatment with poly[ADP-Ribose] polymerase 1 (PARP-1) inhibitors. Front. Oncol., 2020, 10, 1415.
[http://dx.doi.org/10.3389/fonc.2020.01415] [PMID: 32903519]
[70]
Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther., 2020, 5(1), 145.
[http://dx.doi.org/10.1038/s41392-020-00261-0] [PMID: 32759948]
[71]
St-Denis-Bissonnette, F.; Khoury, R.; Mediratta, K.; El-Sahli, S.; Wang, L.; Lavoie, J.R. Applications of extracellular vesicles in triple-negative breast cancer. Cancers, 2022, 14(2), 451.
[http://dx.doi.org/10.3390/cancers14020451] [PMID: 35053616]
[72]
JIANG Y.; Weaver, J.W.; ZHANG, J.; Rojas, S.; Musich, P.R.; Yao, Z.Q. The application of exosomes in the treatment of triple-negative breast cancer. Front. Mol. Biosci., 2022, 1148.
[73]
Xu, W.; Song, C.; Wang, X.; Li, Y.; Bai, X.; Liang, X.; Wu, J.; Liu, J. Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging, 2021, 13(1), 228-240.
[http://dx.doi.org/10.18632/aging.103669] [PMID: 33472170]
[74]
Qiu, P.; Guo, Q.; Yao, Q.; Chen, J.; Lin, J. Characterization of exosome-related gene risk model to evaluate the tumor immune microenvironment and predict prognosis in triple-negative breast cancer. Front. Immunol., 2021, 12, 736030.
[http://dx.doi.org/10.3389/fimmu.2021.736030] [PMID: 34659224]
[75]
Tan, Y.; Luo, X.; Lv, W.; Hu, W.; Zhao, C.; Xiong, M.; Yi, Y.; Wang, D.; Wang, Y.; Wang, H.; Wu, Y.; Zhang, Q. Tumor-derived exosomal components: the multifaceted roles and mechanisms in breast cancer metastasis. Cell Death Dis., 2021, 12(6), 547.
[http://dx.doi.org/10.1038/s41419-021-03825-2] [PMID: 34039961]
[76]
Yi, Y.; Wu, M.; Zeng, H.; Hu, W.; Zhao, C.; Xiong, M.; Lv, W.; Deng, P.; Zhang, Q.; Wu, Y. Tumor-derived exosomal non-coding RNAs: The emerging mechanisms and potential clinical applications in breast cancer. Front. Oncol., 2021, 11, 738945.
[http://dx.doi.org/10.3389/fonc.2021.738945] [PMID: 34707990]
[77]
Liu, Z.; Sun, R.; Zhang, X.; Qiu, B.; Chen, T.; Li, Z.; Xu, Y.; Zhang, Z. Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1. EBioMedicine, 2019, 45, 181-191.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.023] [PMID: 31248836]
[78]
Yang, L.W.; Wu, X.J.; Liang, Y.; Ye, G.Q.; Che, Y.; Wu, X.Z.; Zhu, X.J.; Fan, H.L.; Fan, X.P.; Xu, J.F. miR‐155 increases stemness and decitabine resistance in triple‐negative breast cancer cells by inhibiting TSPAN5. Mol. Carcinog., 2020, 59(4), 447-461.
[http://dx.doi.org/10.1002/mc.23167] [PMID: 32096299]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy