Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Unveiling of Therapeutic Targets for Alzheimer’s Disease: An Integrative Review

Author(s): Pratiksha Madar*, Pooja Nagalapur, Somdatta Chaudhari, Devesh Sharma, Akshada Koparde, Rahul Buchade, Sandip Kshirsagar, Pravin Uttekar, Shailaja Jadhav and Praveen Chaudhari

Volume 24, Issue 10, 2024

Published on: 28 February, 2024

Page: [850 - 868] Pages: 19

DOI: 10.2174/0115680266282492240220101049

Price: $65

Abstract

Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.

Graphical Abstract

[1]
Zhagn, L.; Li, Z. [Alzheimer and the discovery of Alzheimer’s disease]. Zhonghua Yi Shi Za Zhi, 2014, 44(5), 288-290.
[PMID: 25579215]
[2]
Ayuso Peralta, L.; Ballesteros Barranco, A.; Rojo Sebastián, A. Demencias. Medicine Accredited Continuing Medical Training Program, 2019, 12(74), 4329-4337.
[http://dx.doi.org/10.1016/j.med.2019.03.011]
[3]
Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev., 2001, 122(16), 1961-1969.
[http://dx.doi.org/10.1016/S0047-6374(01)00309-8] [PMID: 11589914]
[4]
Hardy, JA; Higgins, GA Alzheimer’s disease: The amyloid Alzheimer’s disease. Science, 1992, 256(5054), 184-185.
[5]
Chu, D.; Liu, F. Pathological changes of tau related to alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 931-944.
[http://dx.doi.org/10.1021/acschemneuro.8b00457] [PMID: 30346708]
[6]
Rasmussen, J.; Langerman, H. Alzheimer’s disease: Why we need early diagnosis. Degener. Neurol. Neuromuscul. Dis., 2019, 9, 123-130.
[http://dx.doi.org/10.2147/DNND.S228939] [PMID: 31920420]
[7]
Gong, C.X.; Liu, F.; Iqbal, K. Multifactorial hypothesis and multi-targets for alzheimer’s disease. J. Alzheimers Dis., 2018, 64(s1), S107-S117.
[http://dx.doi.org/10.3233/JAD-179921] [PMID: 29562523]
[8]
Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr., 2002, 14, 77-91.
[http://dx.doi.org/10.1017/S1041610203008676] [PMID: 12636181]
[9]
Jing, L.; Wu, G.; Kang, D.; Zhou, Z.; Song, Y.; Liu, X.; Zhan, P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discov. Today, 2019, 24(2), 629-635.
[http://dx.doi.org/10.1016/j.drudis.2018.11.012] [PMID: 30503804]
[10]
Joel, L.S; Michal, H.; Felix, F. Atomic structure of acetyi cholinesterase from torpedocal fornica: A prototypic acetyicholine-binding protein. Science, 1991, 253, 872-879.
[11]
De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry, 2001, 40(35), 10447-10457.
[http://dx.doi.org/10.1021/bi0101392] [PMID: 11523986]
[12]
Wang, Y.; Wang, H.; Chen, H. AChE inhibition-based multi-target-directed ligands, a novel pharmacological approach for the symptomatic and disease-modifying therapy of alzheimer’s disease. Curr. Neuropharmacol., 2016, 14(4), 364-375.
[http://dx.doi.org/10.2174/1570159X14666160119094820] [PMID: 26786145]
[13]
Garza-Lombó, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, M.E.; Franco, R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress. Antioxid. Redox Signal., 2018, 28(18), 1669-1703.
[http://dx.doi.org/10.1089/ars.2017.7272] [PMID: 29402131]
[14]
Kim, A.; Lim, S.; Kim, Y. Metal ion effects on Aβ and tau aggregation. Int. J. Mol. Sci., 2018, 19(1), 128.
[http://dx.doi.org/10.3390/ijms19010128] [PMID: 29301328]
[15]
Iqbal, K.; Liu, F.; Gong, C.X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[16]
Iova, A.; Micle, O.; Vicaş, L. Oxidative stress in Alzheimer’s dementia. Farmacia, 2014, 62(3), 538-546.
[17]
Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(10), 2407.
[http://dx.doi.org/10.3390/ijms20102407] [PMID: 31096608]
[18]
Duce, JA; Bush, AI; Adlard, PA interactions in Alzheimer’s disease. Analysis, 2011, 641-660.
[19]
Drew, S.C.; Barnham, K.J. The heterogeneous nature of Cu2+ interactions with Alzheimer’s amyloid-β peptide. Acc. Chem. Res., 2011, 44(11), 1146-1155.
[http://dx.doi.org/10.1021/ar200014u] [PMID: 21714485]
[20]
Ambure, P.; Bhat, J.; Puzyn, T.; Roy, K. Identifying natural compounds as multi-target-directed ligands against alzheimer’s disease: An in silico approach; Taylor & Francis, 2019, 37, .
[http://dx.doi.org/10.1080/07391102.2018.1456975]
[21]
Chioua, M.; Buzzi, E.; Moraleda, I.; Iriepa, I.; Maj, M.; Wnorowski, A.; Giovannini, C.; Tramarin, A.; Portali, F.; Ismaili, L.; López-Alvarado, P.; Bolognesi, M.L.; Jóźwiak, K.; Menéndez, J.C.; Marco-Contelles, J.; Bartolini, M. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 155, 839-846.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.044] [PMID: 29958119]
[22]
Rogers, SL; Farlow, MR; Doody, RS; Mohs, R; Friedhoff, LT A 24-week, double-blind, placebo-controlled trial of donepezil in patients with alzheimer's disease. donepezil study group. Neurology, 1998, 50(1), 136-145.
[23]
da Rosa, M.M.; de Amorim, L.C.; Alves, J.V.O.; Aguiar, I.F.S.; Oliveira, F.G.S.; da Silva, M.V.; dos Santos, M.T.C. The promising role of natural products in Alzheimer’s disease. Brain Disorders, 2022, 7, 100049.
[http://dx.doi.org/10.1016/j.dscb.2022.100049]
[24]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[25]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[26]
Gold, P. Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem., 2003, 80(3), 194-210.
[http://dx.doi.org/10.1016/j.nlm.2003.07.003] [PMID: 14521863]
[27]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[28]
Coyle, JT; Price, DL; DeLong, MR Alzheimer's disease: A disorder of cortical cholinergic innervation. Science, 1983, 219(4589), 1184-1190.
[29]
Habtemariam, S. Natural products in Alzheimer’s disease therapy: Would old therapeutic approaches fix the broken promise of modern medicines? Molecules, 2019, 24(8), 1519.
[http://dx.doi.org/10.3390/molecules24081519] [PMID: 30999702]
[30]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[31]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The β-Secretase BACE1 in Alzheimer’s Disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[32]
Di Fede, G.; Catania, M.; Morbin, M. NIH Public Access., 2010, 323(5920), 1473-1477.
[http://dx.doi.org/10.1126/science.1168979.A]
[33]
Jonsson, T.; Atwal, J.K.; Steinberg, S.; Snaedal, J.; Jonsson, P.V.; Bjornsson, S.; Stefansson, H.; Sulem, P.; Gudbjartsson, D.; Maloney, J.; Hoyte, K.; Gustafson, A.; Liu, Y.; Lu, Y.; Bhangale, T.; Graham, R.R.; Huttenlocher, J.; Bjornsdottir, G.; Andreassen, O.A.; Jönsson, E.G. ; Palotie, A.; Behrens, T.W.; Magnusson, O.T.; Kong, A.; Thorsteinsdottir, U.; Watts, R.J.; Stefansson, K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 2012, 488(7409), 96-99.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[34]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[35]
Lee, M.; Kwon, Y.T.; Li, M.; Peng, J.; Friedlander, R.M.; Tsai, L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 2000, 405(6784), 360-364.
[http://dx.doi.org/10.1038/35012636] [PMID: 10830966]
[36]
Cruz, J.C.; Tsai, L.H. Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol. Med., 2004, 10(9), 452-458.
[http://dx.doi.org/10.1016/j.molmed.2004.07.001] [PMID: 15350898]
[37]
Chang, H.W.; Kwon, S.; Kim, H.; Lee, K.; Kim, M.; Moon, T.; Baek, S. Platelet-activating factor acetylhydrolase activity in cerebrospinal fluid of children with acute systemic or neurological illness. Ann. Neurol., 2002, 51(6), 760-763.
[http://dx.doi.org/10.1002/ana.10168] [PMID: 12112082]
[38]
Shukla, V.; Skuntz, S.; Pant, H.C. Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch. Med. Res., 2012, 43(8), 655-662.
[http://dx.doi.org/10.1016/j.arcmed.2012.10.015] [PMID: 23142263]
[39]
Youdim, M.B.H.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
[http://dx.doi.org/10.1038/nrn1883] [PMID: 16552415]
[40]
Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; Schneider, L.S.; Thal, L.J. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med., 1997, 336(17), 1216-1222.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[41]
Gal, S.; Abassi, Z.A.; Youdim, M.B.H. limited potentiation of blood pressure in response to oral tyramine by the anti-Parkinson brain selective multifunctional monoamine oxidase-AB inhibitor, M30. Neurotox. Res., 2010, 18(2), 143-150.
[http://dx.doi.org/10.1007/s12640-009-9128-8] [PMID: 19894083]
[42]
Weinreb, O.; Amit, T.; Bar-Am, O.; Youdim, M.B. Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets, 2012, 13(4), 483-494.
[http://dx.doi.org/10.2174/138945012799499794] [PMID: 22280345]
[43]
Bar-Am, O.; Amit, T.; Weinreb, O.; Youdim, M.B.H.; Mandel, S. Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation. J. Alzheimers Dis., 2010, 21(2), 361-371.
[http://dx.doi.org/10.3233/JAD-2010-100150] [PMID: 20555137]
[44]
Birks, J; Flicker, L. Selegiline for Alzheimer ’ s disease. Cochrane Database Syst Rev, 2010, (1)
[45]
Moi, P.; Chan, K.; Asunis, I.; Cao, A.; Kan, Y.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc. Natl. Acad. Sci., 1994, 91(21), 9926-9930.
[http://dx.doi.org/10.1073/pnas.91.21.9926] [PMID: 7937919]
[46]
Sivandzade, F.; Bhalerao, A.; Cucullo, L. Cerebrovascular and neurological disorders: Protective role of NRF2. Int. J. Mol. Sci., 2019, 20(14), 3433.
[http://dx.doi.org/10.3390/ijms20143433] [PMID: 31336872]
[47]
Jones, D.P.; Mody, V.C., Jr; Carlson, J.L.; Lynn, M.J.; Sternberg, P., Jr Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic. Biol. Med., 2002, 33(9), 1290-1300.
[http://dx.doi.org/10.1016/S0891-5849(02)01040-7] [PMID: 12398937]
[48]
Wang, C.Y.; Xu, Y.; Wang, X.; Guo, C.; Wang, T.; Wang, Z.Y. Dl-3-n-Butylphthalide Inhibits NLRP3 inflammasome and mitigates alzheimer’s-like pathology via Nrf2-TXNIP-TrX Axis. Antioxid. Redox Signal., 2019, 30(11), 1411-1431.
[http://dx.doi.org/10.1089/ars.2017.7440] [PMID: 29634349]
[49]
Hollmann, M.; Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci., 1994, 17(1), 31-108.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.000335] [PMID: 8210177]
[50]
Whitehead, G.; Regan, P.; Whitcomb, D.J.; Cho, K. Ca2+-permeable AMPA receptor: A new perspective on amyloid-beta mediated pathophysiology of Alzheimer’s disease. Neuropharmacology, 2017, 112(Pt A), 221-227.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.022] [PMID: 27561971]
[51]
Moss, S.J.; Harkness, P.C.; Mason, I.J.; Barnard, E.A.; Mudge, A.W. Evidence that CGRP and cAMP increase transcription of AChR α-subunit gene, but not of other subunit genes. J. Mol. Neurosci., 1991, 3(2), 101-108.
[http://dx.doi.org/10.1007/BF02885531] [PMID: 1687655]
[52]
Koth, C.M.; Abdul-Manan, N.; Lepre, C.A.; Connolly, P.J.; Yoo, S.; Mohanty, A.K.; Lippke, J.A.; Zwahlen, J.; Coll, J.T.; Doran, J.D.; Garcia-Guzman, M.; Moore, J.M. Refolding and characterization of a soluble ectodomain complex of the calcitonin gene-related peptide receptor. Biochemistry, 2010, 49(9), 1862-1872.
[http://dx.doi.org/10.1021/bi901848m] [PMID: 20099900]
[53]
Chai, S.Y.; Bastias, M.A.; Clune, E.F.; Matsacos, D.J.; Mustafa, T.; Lee, J.H.; McDowall, S.G.; Mendelsohn, F.A.O.; Albiston, A.L.; Paxinos, G. Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography. J. Chem. Neuroanat., 2000, 20(3-4), 339-348.
[http://dx.doi.org/10.1016/S0891-0618(00)00112-5] [PMID: 11207430]
[54]
Wright, J.; Harding, J.W. Important roles for angiotensin III and IV in the brain renin-angiotensin system. Brain Res. Brain Res. Rev., 1997, 25(1), 96-124.
[http://dx.doi.org/10.1016/S0165-0173(97)00019-2] [PMID: 9370053]
[55]
Grill, J.D.; Cummings, J.L. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2010, 10(5), 711-728.
[http://dx.doi.org/10.1586/ern.10.29] [PMID: 20420492]
[56]
Rissman, R.A.; De Blas, A.L.; Armstrong, D.M. GABA A receptors in aging and Alzheimer’s disease. J. Neurochem., 2007, 103(4), 1285-1292.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04832.x] [PMID: 17714455]
[57]
Rossor, M.N.; Garrett, N.J.; Johnson, A.L.; Mountjoy, C.Q.; Roth, M.; Iversen, L.L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 1982, 105(2), 313-330.
[http://dx.doi.org/10.1093/brain/105.2.313] [PMID: 7082992]
[58]
Mountjoy, C.Q.; Rossor, M.N.; Iversen, L.L.; Roth, M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain, 1984, 107(2), 507-518.
[http://dx.doi.org/10.1093/brain/107.2.507] [PMID: 6722514]
[59]
Froestl, W.; Gallagher, M.; Jenkins, H.; Madrid, A.; Melcher, T.; Teichman, S.; Mondadori, C.G.; Pearlman, R. SGS742: The first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol., 2004, 68(8), 1479-1487.
[http://dx.doi.org/10.1016/j.bcp.2004.07.030] [PMID: 15451390]
[60]
Sternfeld, F.; Carling, R.W.; Jelley, R.A.; Ladduwahetty, T.; Merchant, K.J.; Moore, K.W.; Reeve, A.J.; Street, L.J.; O’Connor, D.; Sohal, B.; Atack, J.R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F.D.; Collinson, N.; Dawson, G.R.; Castro, J.L.; MacLeod, A.M. Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem., 2004, 47(9), 2176-2179.
[http://dx.doi.org/10.1021/jm031076j] [PMID: 15084116]
[61]
Aisen, P.S.; Saumier, D.; Briand, R.; Laurin, J.; Gervais, F.; Tremblay, P.; Garceau, D. A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease. Neurology, 2006, 67(10), 1757-1763.
[http://dx.doi.org/10.1212/01.wnl.0000244346.08950.64] [PMID: 17082468]
[62]
Kissinger, C.R.; Rejto, P.A.; Pelletier, L.A.; Thomson, J.A.; Showalter, R.E.; Abreo, M.A.; Agree, C.S.; Margosiak, S.; Meng, J.J.; Aust, R.M.; Vanderpool, D.; Li, B.; Tempczyk-Russell, A.; Villafranca, J.E. Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer’s disease therapeutics. J. Mol. Biol., 2004, 342(3), 943-952.
[http://dx.doi.org/10.1016/j.jmb.2004.07.071] [PMID: 15342248]
[63]
Du Yan, S.; Fu, J.; Soto, C.; Chen, X.; Zhu, H.; Al-Mohanna, F.; Collison, K.; Zhu, A.; Stern, E.; Saido, T.; Tohyama, M.; Ogawa, S.; Roher, A.; Stern, D. An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature, 1997, 389(6652), 689-695.
[http://dx.doi.org/10.1038/39522] [PMID: 9338779]
[64]
Lauretti, E.; Li, J-G.; Di Meco, A.; Praticò, D. Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model. Transl. Psychiatry, 2017, 7(1), e1020.
[http://dx.doi.org/10.1038/tp.2016.296] [PMID: 28140402]
[65]
Walsh, D.M.; Minogue, A.M.; Sala Frigerio, C.; Fadeeva, J.V.; Wasco, W.; Selkoe, D.J. The APP family of proteins: Similarities and differences. Biochem. Soc. Trans., 2007, 35(2), 416-420.
[http://dx.doi.org/10.1042/BST0350416] [PMID: 17371289]
[66]
Barnham, K.J.; McKinstry, W.J.; Multhaup, G.; Galatis, D.; Morton, C.J.; Curtain, C.C.; Williamson, N.A.; White, A.R.; Hinds, M.G.; Norton, R.S.; Beyreuther, K.; Masters, C.L.; Parker, M.W.; Cappai, R. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem., 2003, 278(19), 17401-17407.
[http://dx.doi.org/10.1074/jbc.M300629200] [PMID: 12611883]
[67]
Bellingham, S.A.; Lahiri, D.K.; Maloney, B.; La Fontaine, S.; Multhaup, G.; Camakaris, J. Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-β precursor protein gene. J. Biol. Chem., 2004, 279(19), 20378-20386.
[http://dx.doi.org/10.1074/jbc.M400805200] [PMID: 14985339]
[68]
Venti, A.; Giordano, T.; Eder, P.; Bush, A.; Lahiri, D.K.; Greig, N.H.; Rogers, J.T. The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5′-untranslated region. Ann. N. Y. Acad. Sci., 2004, 1035(1), 34-48.
[http://dx.doi.org/10.1196/annals.1332.003] [PMID: 15681799]
[69]
Alsaad, K.O.; Serra, S.; Perren, A.; Hsieh, E.; Chetty, R. CK19 and CD99 immunoexpression profile in goblet cell (mucin-producing neuroendocrine tumors) and classical carcinoids of the vermiform appendix. Int. J. Surg. Pathol., 2007, 15(3), 252-257.
[http://dx.doi.org/10.1177/1066896907302118] [PMID: 17652531]
[70]
Minicozzi, V.; Stellato, F.; Comai, M.; Serra, M.D.; Potrich, C.; Meyer-Klaucke, W.; Morante, S. Identifying the minimal copper- and zinc-binding site sequence in amyloid-β peptides. J. Biol. Chem., 2008, 283(16), 10784-10792.
[http://dx.doi.org/10.1074/jbc.M707109200] [PMID: 18234670]
[71]
Bush, A.I. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol. Aging, 2002, 23(6), 1031-1038.
[http://dx.doi.org/10.1016/S0197-4580(02)00120-3] [PMID: 12470799]
[72]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[73]
Parsons, C.G.; Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer ’ s disease : preclinical e. Int. J. Geriatr. Psychiatry, 2003, 2017(18), S23-S32.
[74]
Fox, C.; Crugel, M.; Maidment, I.; Auestad, B.H.; Coulton, S.; Treloar, A.; Ballard, C.; Boustani, M.; Katona, C.; Livingston, G. Efficacy of memantine for agitation in Alzheimer’s dementia: A randomised double-blind placebo controlled trial. PLoS One, 2012, 7(5), e35185.
[http://dx.doi.org/10.1371/journal.pone.0035185] [PMID: 22567095]
[75]
Acosta, C.; Anderson, H.D.; Anderson, C.M. Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res., 2017, 95(12), 2430-2447.
[http://dx.doi.org/10.1002/jnr.24075] [PMID: 28467650]
[76]
Cohen-Gadol, A.A.; Pan, J.W.; Kim, J.H.; Spencer, D.D.; Hetherington, H.H. Mesial temporal lobe epilepsy: A proton magnetic resonance spectroscopy study and a histopathological analysis. J. Neurosurg., 2004, 101(4), 613-620.
[http://dx.doi.org/10.3171/jns.2004.101.4.0613] [PMID: 15481715]
[77]
Block, M.L. NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci., 2008, 9(S2), S8.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S8] [PMID: 19090996]
[78]
Block, M.L.; Hong, J.S. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem. Soc. Trans., 2007, 35(5), 1127-1132.
[http://dx.doi.org/10.1042/BST0351127] [PMID: 17956294]
[79]
Zhang, Y.; Dong, Z.; Song, W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct. Target. Ther., 2020, 5(1), 37.
[http://dx.doi.org/10.1038/s41392-020-0145-7] [PMID: 32296063]
[80]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[81]
Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron, 2009, 63(3), 287-303.
[http://dx.doi.org/10.1016/j.neuron.2009.06.026] [PMID: 19679070]
[82]
Wang, Y.; Cella, M.; Mallinson, K.; Ulrich, J.D.; Young, K.L.; Robinette, M.L.; Gilfillan, S.; Krishnan, G.M.; Sudhakar, S.; Zinselmeyer, B.H.; Holtzman, D.M.; Cirrito, J.R.; Colonna, M. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell, 2015, 160(6), 1061-1071.
[http://dx.doi.org/10.1016/j.cell.2015.01.049] [PMID: 25728668]
[83]
Tai, L.M.; Bilousova, T.; Jungbauer, L.; Roeske, S.K.; Youmans, K.L.; Yu, C.; Poon, W.W.; Cornwell, L.B.; Miller, C.A.; Vinters, H.V.; Van Eldik, L.J.; Fardo, D.W.; Estus, S.; Bu, G.; Gylys, K.H.; LaDu, M.J. Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J. Biol. Chem., 2013, 288(8), 5914-5926.
[http://dx.doi.org/10.1074/jbc.M112.442103] [PMID: 23293020]
[84]
Saadipour, K. TREM1: A potential therapeutic target for alzheimer’s disease. Neurotox. Res., 2017, 32(1), 14-16.
[http://dx.doi.org/10.1007/s12640-017-9716-y] [PMID: 28285344]
[85]
Carmona, S.; Zahs, K.; Wu, E.; Dakin, K.; Bras, J.; Guerreiro, R. The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. Lancet Neurol., 2018, 17(8), 721-730.
[http://dx.doi.org/10.1016/S1474-4422(18)30232-1] [PMID: 30033062]
[86]
Rashighi, M.; Harris, J.E. Is RAGE still a therapeutic target for Alzheimers disease? HHS Public Access. Physiol. Behav., 2017, 176(3), 139-148.
[http://dx.doi.org/10.4155/fmc.12.51.Is]
[87]
Arancio, O.; Zhang, H.P.; Chen, X.; Lin, C.; Trinchese, F.; Puzzo, D.; Liu, S.; Hegde, A.; Yan, S.F.; Stern, A.; Luddy, J.S.; Lue, L.F.; Walker, D.G.; Roher, A.; Buttini, M.; Mucke, L.; Li, W.; Schmidt, A.M.; Kindy, M.; Hyslop, P.A.; Stern, D.M.; Du Yan, S.S. RAGE potentiates Aβ-induced perturbation of neuronal function in transgenic mice. EMBO J., 2004, 23(20), 4096-4105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[88]
Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep., 2012, 2(5), 1329-1339.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[89]
Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in alzheimer’s disease: Opportunities and challenges. J. Med. Chem., 2020, 63(19), 10705-10725.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00352] [PMID: 32459966]
[90]
Dawkins, E.; Small, D.H. Insights into the physiological function of the β-amyloid precursor protein: Beyond Alzheimer’s disease. J. Neurochem., 2014, 129(5), 756-769.
[http://dx.doi.org/10.1111/jnc.12675] [PMID: 24517464]
[91]
Ciro, A.; Park, J.; Burkhard, G.; Yan, N.; Geula, C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr. Alzheimer Res., 2012, 9(1), 138-143.
[http://dx.doi.org/10.2174/156720512799015127] [PMID: 21244353]
[92]
González, CC Neuroinflammation in alzheimer ’ s disease and down syndrome. Published online, 2015, 243-256.
[93]
Arnaud, L.; Robakis, N.K.; Figueiredo-Pereira, M.E. It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener. Dis., 2006, 3(6), 313-319.
[http://dx.doi.org/10.1159/000095638] [PMID: 16954650]
[94]
Victor, N.A.; Wanderi, E.W.; Gamboa, J.; Zhao, X.; Aronowski, J.; Deininger, K.; Lust, W.D.; Landreth, G.E.; Sundararajan, S. Altered PPARγ expression and activation after transient focal ischemia in rats. Eur. J. Neurosci., 2006, 24(6), 1653-1663.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05037.x] [PMID: 17004929]
[95]
Jiang, Q.; Heneka, M.; Landreth, G.E. The role of peroxisome proliferator-activated receptor-γ (PPARgamma) in Alzheimer’s disease: Therapeutic implications. CNS Drugs, 2008, 22(1), 1-14.
[http://dx.doi.org/10.2165/00023210-200822010-00001] [PMID: 18072811]
[96]
Kandel, E.R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain, 2012, 5(1), 14.
[http://dx.doi.org/10.1186/1756-6606-5-14] [PMID: 22583753]
[97]
Silva, A.J.; Kogan, J.H.; Frankland, P.W.; Kida, S. CREB and memory. Annu. Rev. Neurosci., 1998, 21(1), 127-148.
[http://dx.doi.org/10.1146/annurev.neuro.21.1.127] [PMID: 9530494]
[98]
Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem., 2004, 279(39), 40545-40559.
[http://dx.doi.org/10.1074/jbc.M402229200] [PMID: 15273246]
[99]
Benito, E.; Barco, A. CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci., 2010, 33(5), 230-240.
[http://dx.doi.org/10.1016/j.tins.2010.02.001] [PMID: 20223527]
[100]
Peixoto, L.; Abel, T. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology, 2013, 38(1), 62-76.
[http://dx.doi.org/10.1038/npp.2012.86] [PMID: 22669172]
[101]
Korzus, E.; Rosenfeld, M.G.; Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 2004, 42(6), 961-972.
[http://dx.doi.org/10.1016/j.neuron.2004.06.002] [PMID: 15207240]
[102]
Peleg, S; Sananbenesi, F; Zovoilis, A Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 2010, 328(5979), 753-756.
[http://dx.doi.org/10.1126/science.1186088]
[103]
Eric, R. The molecular biology of memory storage: A dialogue between genes and synapses. Science, 2015, 294, 1030-1039.
[104]
Milazzo, G.; Mercatelli, D.; Di Muzio, G.; Triboli, L.; De Rosa, P.; Perini, G.; Giorgi, F.M. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes (Basel), 2020, 11(5), 556.
[http://dx.doi.org/10.3390/genes11050556] [PMID: 32429325]
[105]
Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J., 1990, 9(8), 2431-2438.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07419.x] [PMID: 2164470]
[106]
Lee, S.J.; Chung, Y.H.; Joo, K.M.; Lim, H.C.; Jeon, G.S.; Kim, D.; Lee, W.B.; Kim, Y.S.; Cha, C.I. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the central nervous system of rats. Neurosci. Lett., 2006, 409(2), 134-139.
[http://dx.doi.org/10.1016/j.neulet.2006.09.026] [PMID: 17046157]
[107]
Iqbal, K.; Alonso, A.C.; Chen, S.; Chohan, M.O.; El-Akkad, E.; Gong, C.X.; Khatoon, S.; Li, B.; Liu, F.; Rahman, A.; Tanimukai, H.; Grundke-Iqbal, I. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta, 2005, 1739(2-3), 198-210.
[http://dx.doi.org/10.1016/j.bbadis.2004.09.008] [PMID: 15615638]
[108]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol., 2016, 6(JAN), 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[109]
Nilaweera, D.; Freak-Poli, R.; Ryan, J. The impact of psychological stress and trauma on later-life cognitive function and dementia. J Gerontol Geriatr, 2019, 2019(2), 114-122.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy