Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Opportunities and Regulatory Challenges of Functional Foods and Nutraceuticals During COVID-19 Pandemic

Author(s): Jobin Jose*, Keyidaule Ndang, Madhusoodhana Ballakkuraya Chethana, Chikmagalur Srinath Chinmayi, Khatheeja Afrana, Gopika Gopan, Della Grace Thomas Parambi, Kavita Munjal, Hitesh Chopra, Archana Dhyani and Mohammad Amjad Kamal*

Volume 20, Issue 10, 2024

Published on: 27 February, 2024

Page: [1252 - 1271] Pages: 20

DOI: 10.2174/0115734013276165231129102513

Price: $65

Abstract

The novel Coronavirus has brought global mortality, disruption, and a significant loss of life. A compromised immune system is a known risk factor for all viral influenza infections. Due to the perceived “immune-boosting” properties of nutraceutical products, sales of dietary supplements have grown globally. In recent years, consumers have increasingly demanded nutraceutical products rather than curative synthetic medicines for preventive therapies for the coronavirus disease outbreak of 2019 (COVID-19). Healthy foods and nutraceuticals have become daily diet plans for consumers. Although there has been an increase in demand, there is no such regulation and harmonized process, which stands as a barrier to the approval of these products. Therefore, many misbranded and spurious products are entering the market, which may harm consumers. This article focuses on the role of functional foods and nutraceutical in the management of COVID-19 also focuses on the different nutraceutical regulations in each country and compare the similarities and differences of the following countries: India, the USA (United States of America), the EU (European Union), and China. The comparative study of nutraceutical regulations in India, the USA, Europe, and China shows that there is a difference regarding the nutraceutical regulations; however, despite the differences, it is observed that it has the same underlying objective, i.e., ensuring the safety of the consumers by maintaining the product quality.

Graphical Abstract

[1]
Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int J Antimicrob Agents 2020; 56(2): 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[2]
Qu L, Chen C, Yin T, et al. Ace2 and innate immunity in the regulation of sars-cov-2-induced acute lung injury: A review. Vol. 22. Int J Mol Sci 2021; 22(21): 11483.
[http://dx.doi.org/10.3390/ijms222111483]
[3]
Falahi S, Kenarkoohi A. Transmission routes for SARS-CoV-2 infection: review of evidence. New Microbes New Infect 2020; 38: 100778.
[http://dx.doi.org/10.1016/j.nmni.2020.100778]
[4]
Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. Clin Complement Med Pharmacol 2022; 2(1): 100021.
[5]
Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health 2020; 13(5): 667-73.
[http://dx.doi.org/10.1016/j.jiph.2020.03.019] [PMID: 32340833]
[6]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of Coronavirus Disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[7]
Jain U. Effect of COVID-19 on the organs. Cureus 2020; 12(8): e9540.
[PMID: 32905500]
[8]
Tian D, Liu Y, Liang C, et al. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed Pharmacother 2021; 137: 111313.
[http://dx.doi.org/10.1016/j.biopha.2021.111313]
[9]
COVID-19 Vaccines Advice. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/COVID-19-vaccines/advice (Accessed on: 2023 Sep 30).
[10]
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240: 114576.
[http://dx.doi.org/10.1016/j.ejmech.2022.114576] [PMID: 35816877]
[11]
De S, Kumar Dan A, Sahu R, Das D. Asymmetric synthesis of halocyclized products by using various catalysts: A state-of-the-art review. Eur J Org Chem 2022; 2022(32): e202200817.
[http://dx.doi.org/10.1002/ejoc.202200817]
[12]
Kumar Dan A, Aamna B, De S, et al. Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. J Mol Liq 2022; 368: 120717.
[http://dx.doi.org/10.1016/j.molliq.2022.120717]
[13]
Pawariya V, De S, Dutta J. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications. Carbohydr Polym 2024; 323: 121395.
[http://dx.doi.org/10.1016/j.carbpol.2023.121395]
[14]
WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available from: https://COVID19.who.int/ (Accessed on: 2023 Sep 30).
[15]
Elezkurtaj S, Greuel S, Ihlow J, et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci Rep 2021; 11(1): 4263.
[http://dx.doi.org/10.1038/s41598-021-82862-5] [PMID: 33608563]
[16]
India: COVID-19 cases by age group 2021-Statista 2021. Available from: https://www.statista.com/statistics/1110522/india-number-of-coronavirus-cases-by-age-group/ (Accessed on: 2023 Sep 30).
[17]
Pak A, Adegboye OA, Adekunle AI, et al. Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness. Front Public Health 2020; 8: 241.
[18]
COVID-19 – Impact on the meat sector in Germany | FFTC agricultural policy platform (FFTC-AP). Available from: https://ap.fftc.org.tw/article/2673 (Accessed on: 2023 Sep 30).
[19]
Damián MR, Cortes-Perez NG, Quintana ET, et al. Functional foods, nutraceuticals and probiotics: A focus on human health. Microorganisms 2022; 10(5): 1065.
[20]
Chopra H. Introduction to the role of Fruits in nutraceutical and functional foods. Fruits Their Roles Nutraceuticals Funct Foods 2023; 1-28.
[21]
Chopra H, Sharma S, Yousaf S, Naseer R, Ahmed S, Baig AA. Applications of nanotechnology-based approaches for targeted delivery of nutraceuticals. Handb Nanotechnol Nutraceuticals 2022; (Jan): 329-46.
[http://dx.doi.org/10.1201/9781003244721-12]
[22]
Kour J, Chopra H, Bukhari S, et al. Nutraceutical-a deep and profound concept. Nutraceuticals Heal Care 2022; 1-28.
[http://dx.doi.org/10.1016/B978-0-323-89779-2.00021-1]
[23]
Chopra H, Mishra AK, Baig AA, et al. Narrative Review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product. J Fungi 2021; 79 : 728.
[24]
Islam F, Bepary S, Nafady MH, et al. Polyphenols targeting oxidative stress in spinal cord injury: Current status and future vision. Oxid Med Cell Longev 2022; 2022: 8741787.
[25]
Chopra H, Dey PS, Das D, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021; 26(16): 4998.
[http://dx.doi.org/10.3390/molecules26164998]
[26]
Walia V, Kaushik D, Mittal V, et al. Delineation of neuroprotective effects and possible benefits of antioxidantstherapy for the treatment of Alzheimer’s Diseases by targeting mitochondrial-derived reactive oxygen species: Bench to bedside. Mol Neurobiol 2022; 59(1): 657-80.
[http://dx.doi.org/10.1007/s12035-021-02617-1] [PMID: 34751889]
[27]
Daliri EBM, Lee BH. Current trends and future perspectives on functional foods and nutraceuticals. Beneficial Microorganisms in Food and Nutraceuticals 2015; 221-44.
[http://dx.doi.org/10.1007/978-3-319-23177-8_10]
[28]
Chopra H, Bibi S, Islam F, et al. Emerging trends in the delivery of resveratrol by nanostructures: Applications of nanotechnology in life sciences. J Nanomater 2022; 2022: 3083728.
[29]
Singla RK, He X, Chopra H, et al. Natural products for the prevention and control of the COVID-19 pandemic: Sustainable bioresources. Front Pharmacol 2021; 12: 758159.
[http://dx.doi.org/10.3389/fphar.2021.758159] [PMID: 34925017]
[30]
Chopra H, Bibi S, Goyal R, et al. Chemopreventive potential of dietary nanonutraceuticals for prostate cancer: An extensive review. Front Oncol 2022; 12: 925379.
[http://dx.doi.org/10.3389/fonc.2022.925379] [PMID: 35903701]
[31]
Jose J, Bandiwadekar A, Khot KB, et al. Nanonutraceuticals and their therapeutic applications in colon cancer. Int J Surg 2022; 106: 106901.
[http://dx.doi.org/10.1016/j.ijsu.2022.106901] [PMID: 36103965]
[32]
Chugh RM, Mittal P, Mp N, et al. Fungal Mushrooms: A natural compound with therapeutic applications. Front Pharmacol 2022; 13: 925387.
[http://dx.doi.org/10.3389/fphar.2022.925387] [PMID: 35910346]
[33]
Santini A, Cammarata SM, Capone G, et al. Nutraceuticals: opening the debate for a regulatory framework. Br J Clin Pharmacol 2018; 84(4): 659-72.
[http://dx.doi.org/10.1111/bcp.13496] [PMID: 29433155]
[34]
Tolve R, Cela N, Condelli N, Di Cairano M, Caruso MC, Galgano F. Microencapsulation as a tool for the formulation of functional foods: The phytosterols’ case study. Vol. 9. Foods 2020; 9(4): 470.
[http://dx.doi.org/10.3390/foods9040470]
[35]
Fenech M, El-Sohemy A, Cahill L, et al. Nutrigenetics and nutrigenomics: Viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 2011; 4(2): 69-89.
[PMID: 21625170]
[36]
Eussen SRBM, Verhagen H, Klungel OH, et al. Functional foods and dietary supplements: Products at the interface between pharma and nutrition. Eur J Pharmacol 2011; 668: S2-9.
[37]
Matta Reddy A, Iqbal M, Chopra H, et al. Pivotal role of vitamin D in mitochondrial health, cardiac function, and human reproduction. EXCLI J 2022; 21: 967-90.
[PMID: 36110560]
[38]
Hadizadeh F. Supplementation with vitamin D in the COVID-19 pandemic? Nutr Rev 2021; 79(2): 200-8.
[http://dx.doi.org/10.1093/nutrit/nuaa081] [PMID: 32679589]
[39]
Wong Y, Chan CH, Venkatakrishnan K, et al. Impact of dietary nutrients (functional foods/nutraceuticals) and micronutrients on COVID-19: A review. J Food Bioact 2021; 15: 15.
[http://dx.doi.org/10.31665/JFB.2021.15280]
[40]
Jovic TH, Ali SR, Ibrahim N, et al. Could vitamins help in the fight against COVID-19? Nutrients 2020; 12(9): 2550.
[http://dx.doi.org/10.3390/nu12092550] [PMID: 32842513]
[41]
Hui LL, Nelson EAS, Lin SL, Zhao JV. The role of vitamin C in pneumonia and COVID-19 infection in adults with European ancestry: A Mendelian randomisation study. Eur J Clin Nutr 2022; 76(4): 588-91.
[http://dx.doi.org/10.1038/s41430-021-00993-4] [PMID: 34462559]
[42]
Milani GP, Macchi M, Guz-Mark A. Vitamin C in the treatment of COVID-19. Nutrients 2021; 13(4): 1172.
[http://dx.doi.org/10.3390/nu13041172]
[43]
Baladia E, Beatriz Pizarro A, Ortiz-Muñoz L, Rada G. Vitamin C for COVID-19: A living systematic review. Medwave 2020; 20(6): e7978.
[http://dx.doi.org/10.5867/medwave.2020.06.7978] [PMID: 32759894]
[44]
Hemilä H, de Man AME. Vitamin C and COVID-19. Front Med 2021; 7: 559811.
[45]
Shahbaz U, Fatima N, Basharat S, et al. Role of vitamin C in preventing of COVID-19 infection, progression and severity. AIMS Microbiol 2022; 8(1): 108-24.
[http://dx.doi.org/10.3934/microbiol.2022010] [PMID: 35496992]
[46]
Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep 2020; 72(6): 1517-28.
[http://dx.doi.org/10.1007/s43440-020-00176-1] [PMID: 33113146]
[47]
Hiedra R, Lo KB, Elbashabsheh M, et al. The Use of IV vitamin C for patients with COVID-19: A single center observational study. Expert Rev Anti Infect Ther 2020; 1-3.
[http://dx.doi.org/10.1080/14787210.2020.1794819]
[48]
Beigmohammadi MT, Bitarafan S, Hoseindokht A, Abdollahi A, Amoozadeh L, Soltani D. The effect of supplementation with vitamins A, B, C, D, and E on disease severity and inflammatory responses in patients with COVID-19: A randomized clinical trial. Trials 2021; 22(1): 802.
[http://dx.doi.org/10.1186/s13063-021-05795-4] [PMID: 34776002]
[49]
Bondarev R, Blindaruk S, Navolokin I, et al. Vitamin E supplementation’s role in COVID-19. Disaster and Emergency Medicine Journal 2023; 8.
[50]
Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021; 143: 1-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.003]
[51]
Hakamifard A, Soltani R, Maghsoudi A, et al. The effect of vitamin E and vitamin C in patients with COVID-19 pneumonia; a randomized controlled clinical trial. Immunopathol Persa 2022; 8(1)
[52]
Erol SA, Tanacan A, Anuk AT, et al. Evaluation of maternal serum afamin and vitamin E levels in pregnant women with COVID-19 and its association with composite adverse perinatal outcomes. J Med Virol 2021; 93(4): 2350-8.
[http://dx.doi.org/10.1002/jmv.26725] [PMID: 33314206]
[53]
Hasman A, Imohe A, Krasevec J, Moloney G, Aguayo VM. COVID-19 caused significant declines in regular vitamin A supplementation for young children in 2020: what is next? BMJ Glob Health 2021; 6(11): e007507.
[http://dx.doi.org/10.1136/bmjgh-2021-007507] [PMID: 34785507]
[54]
Somi MH, Faghih Dinevari M, Taghizadieh A, et al. Effect of vitamin A supplementation on the outcome severity of COVID-19 in hospitalized patients: A pilot randomized clinical trial. Nutr Health 2022.
[http://dx.doi.org/10.1177/02601060221129144] [PMID: 36205099]
[55]
Rohani M, Mozaffar H, Mesri M, et al. Evaluation and comparison of vitamin A supplementation with standard therapies in the treatment of patients with COVID-19. East Mediterr Heal J 2022; 28(9)
[56]
Soledad H, de la . Vitamin D, omega-3, and combination vitamins B, C and zinc supplementation for the treatment and prevention of COVID-19. 2021.
[57]
Babar Q, Ali A, Saeed A, et al. Novel Treatment Strategy against COVID-19 through Anti-Inflammatory, Antioxidant and Immunostimulatory Properties of the B Vitamin Complex.B-Complex Vitamins - Sources. Intakes and Novel Applications 2022.
[http://dx.doi.org/10.5772/intechopen.100251]
[58]
Majidi N, Bahadori E, Shekari S, et al. Effects of supplementation with low-dose group B vitamins on clinical and biochemical parameters in critically ill patients with COVID-19: a randomized clinical trial. Expert Rev Anti Infect Ther 2022; 1-7.
[http://dx.doi.org/10.1080/14787210.2022.2125867] [PMID: 36108676]
[59]
Gromova OA, Torshin IY, Chuchalin AG. On the prospects for the use of thiamine, pyridoxine, and cyanocobalamin in the complex therapy and rehabilitation of patients with COVID-19. Pulmonologiya 2021; 31(3): 355-63.
[60]
Darand M, Hassanizadeh S, Martami F, Shams S, Mirzaei M, Hosseinzadeh M. The association between B vitamins and the risk of COVID-19. Br J Nutr 2023; 130(1): 155-63.
[http://dx.doi.org/10.1017/S0007114522003075] [PMID: 36348570]
[61]
Vityala Y, Kadyrova A, Zhumabaeva S, Bazarbaeva A, Mamatov S. Use of B-complex vitamins and olfactory training for treating COVID-19–related anosmia. Clin Case Rep 2021; 9(11): e05069.
[http://dx.doi.org/10.1002/ccr3.5069] [PMID: 34804531]
[62]
Alexander J, Tinkov A. Early nutritional interventions with zinc, selenium against progressive COVID-19. Nutrients 2020; 12(8): 2358.
[http://dx.doi.org/10.3390/nu12082358] [PMID: 32784601]
[63]
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75: 127099.
[http://dx.doi.org/10.1016/j.jtemb.2022.127099] [PMID: 36372013]
[64]
Henderson GD. Selenium supplementation may improve COVID-19 survival in sickle cell disease. Br J Nutr 2022; 128(4): 778-9.
[http://dx.doi.org/10.1017/S0007114521003718] [PMID: 34530940]
[65]
Balboni E, Zagnoli F, Filippini T, Fairweather-Tait SJ, Vinceti M. Zinc and selenium supplementation in COVID-19 prevention and treatment: A systematic review of the experimental studies. J Trace Elem Med Biol 2022; 71: 126956.
[http://dx.doi.org/10.1016/j.jtemb.2022.126956] [PMID: 35217499]
[66]
Pedrosa LFC, Barros ANAB, Leite-Lais L. Nutritional risk of vitamin D, vitamin C, zinc, and selenium deficiency on risk and clinical outcomes of COVID-19: A narrative review. Clin Nutr ESPEN 2022; 47: 9-27.
[http://dx.doi.org/10.1016/j.clnesp.2021.11.003] [PMID: 35063248]
[67]
Ambra R, Melloni S, Venneria E. Could Selenium Supplementation prevent COVID-19? A comprehensive review of available studies. Molecules 2023; 28(10): 4130.
[http://dx.doi.org/10.3390/molecules28104130]
[68]
Fakhrolmobasheri M, Mazaheri-Tehrani S, Kieliszek M, et al. COVID-19 and selenium deficiency: A systematic review. Biol Trace Elem Res 2022; 200(9): 3945-56.
[http://dx.doi.org/10.1007/s12011-021-02997-4] [PMID: 34739678]
[69]
Khatiwada S, Subedi A. A mechanistic link between selenium and Coronavirus Disease 2019 (COVID-19). Curr Nutr Rep 2021; 10(2): 125-36.
[http://dx.doi.org/10.1007/s13668-021-00354-4] [PMID: 33835432]
[70]
Younesian O, Khodabakhshi B, Abdolahi N, et al. Decreased serum selenium levels of COVID-19 patients in comparison with healthy individuals. Biol Trace Elem Res 2022; 200(4): 1562-7.
[http://dx.doi.org/10.1007/s12011-021-02797-w] [PMID: 34195940]
[71]
Alshammari MK, Fatima W, Alraya RA, et al. Selenium and COVID-19: A spotlight on the clinical trials, inventive compositions, and patent literature. J Infect Public Health 2022; 15(11): 1225-33.
[http://dx.doi.org/10.1016/j.jiph.2022.09.011] [PMID: 36265330]
[72]
Askari G, Sahebkar A, Soleimani D, et al. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: A randomized double-blind, placebo-controlled trial. Trials 2022; 23(1): 472.
[http://dx.doi.org/10.1186/s13063-022-06375-w] [PMID: 35668500]
[73]
Chandrasekaran PR, Madanagopalan VG. Role of curcumin in retinal diseases—a review. Graefes Arch Clin Exp Ophthalmol 2022; 260(5): 1457-73.
[http://dx.doi.org/10.1007/s00417-021-05542-0]
[74]
Abdelazeem B, Awad AK, Elbadawy MA, et al. The effects of curcumin as dietary supplement for patients with COVID-19: A systematic review of randomized clinical trials. Drug Discov Ther 2022; 16(1): 14-22.
[http://dx.doi.org/10.5582/ddt.2022.01017] [PMID: 35264470]
[75]
Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: A systematic review of clinical trials. Nutrients 2022; 14(2): 256.
[http://dx.doi.org/10.3390/nu14020256] [PMID: 35057437]
[76]
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12: 675287.
[http://dx.doi.org/10.3389/fphar.2021.675287]
[77]
Soni VK, Mehta A, Ratre YK, et al. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol 2020; 886: 173551.
[http://dx.doi.org/10.1016/j.ejphar.2020.173551] [PMID: 32931783]
[78]
Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, et al. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021; 7(2): e06350.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06350] [PMID: 33655086]
[79]
Suravajhala R, Parashar A, Choudhir G, et al. Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Netw Model Anal Heal Informatics Bioinforma 2021; 10(1): 44.
[80]
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82: 104503.
[http://dx.doi.org/10.1016/j.jff.2021.104503] [PMID: 33897833]
[81]
Pawitan JA. Curcumin as adjuvant therapy in COVID-19: Friend or foe? J Int Dent Med Res 2020; 13(2): 824-29.
[82]
Prayoga Firmansyah Adhitama, Ismanda Khrisna Adhityapurwita, Muafa Ahda Basma, et al. Curcumin as anti-inflammatory therapy in COVID-19 cases: A literature review. World J Adv Res Rev 2022; 15(1): 561-67.
[83]
Dourado D, Freire DT, Pereira DT, et al. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed Pharmacother 2021; 139: 111578.
[http://dx.doi.org/10.1016/j.biopha.2021.111578]
[84]
Roberts N, Brown R, Buja L, Weerasinghe P. Molecular mechanisms of curcumin in COVID-19 treatment and prevention: A global health perspective. Med Res Arch 2020; 8(10)
[http://dx.doi.org/10.18103/mra.v8i10.2248]
[85]
Pawar KS, Mastud RN, Pawar SK, et al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front Pharmacol 2021; 12: 669362.
[http://dx.doi.org/10.3389/fphar.2021.669362] [PMID: 34122090]
[86]
Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19 – a computational modeling. J Biomol Struct Dyn 2022; 40(13): 5769-84.
[http://dx.doi.org/10.1080/07391102.2021.1873190] [PMID: 33491580]
[87]
Shafiee A, Athar MMT, Shahid A, et al. Curcumin for the treatment of COVID -19 patients: A meta-analysis of randomized controlled trials. Phytother Res 2023; 37(3): 1167-75.
[http://dx.doi.org/10.1002/ptr.7724] [PMID: 36640146]
[88]
Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID -19 infection. Phytother Res 2020; 34(11): 2911-20.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[89]
Goyal R, Mittal G, Khurana S, et al. Insights on quercetin therapeutic potential for neurodegenerative diseases and its nano-technological perspectives. Curr Pharm Biotechnol 2023; 25.
[http://dx.doi.org/10.2174/1389201025666230830125410] [PMID: 37649295]
[90]
Manjunath SH, Thimmulappa RK. Antiviral, immunomodulatory, and anticoagulant effects of quercetin and its derivatives: Potential role in prevention and management of COVID-19. J Pharm Anal 2022; 12(1): 29-34.
[http://dx.doi.org/10.1016/j.jpha.2021.09.009] [PMID: 34567823]
[91]
Imran M, Thabet HK, Alaqel SI, et al. The therapeutic and prophylactic potential of quercetin against COVID-19: An outlook on the clinical studies, inventive compositions, and patent literature. Antioxidants 2022; 11(5): 876.
[http://dx.doi.org/10.3390/antiox11050876] [PMID: 35624740]
[92]
Boretti A. Quercetin Supplementation and COVID-19. Nat Prod Commun 2021; 16(9): 1934578X2110427.
[http://dx.doi.org/10.1177/1934578X211042763]
[93]
Khazdair M, Anaeigoudari A, Agbor G. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pac J Trop Biomed 2021; 11(8): 327.
[http://dx.doi.org/10.4103/2221-1691.319567]
[94]
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res 2021; 35(3): 1230-6.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[95]
Gu YY, Zhang M, Cen H, et al. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS One 2021; 16: e0245209.
[96]
Shohan M, Nashibi R, Mahmoudian-Sani MR, et al. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur J Pharmacol 2022; 914: 174615.
[http://dx.doi.org/10.1016/j.ejphar.2021.174615] [PMID: 34863994]
[97]
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID -19 and associated comorbid conditions. Phytother Res 2022; 36(6): 2394-415.
[http://dx.doi.org/10.1002/ptr.7461] [PMID: 35393674]
[98]
Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of quercetin in COVID-19 treatment. J Inflamm 2021; 18(1): 3.
[http://dx.doi.org/10.1186/s12950-021-00268-6] [PMID: 33509217]
[99]
Zheng W, Wu H, Wang T, Zhan S, Liu X. Quercetin for COVID-19 and DENGUE co-infection: A potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Brief Bioinform 2021; 22(6): bbab199.
[http://dx.doi.org/10.1093/bib/bbab199] [PMID: 34058750]
[100]
Kicker E, Tittel G, Schaller T, Pferschy-Wenzig EM, Zatloukal K, Bauer R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine 2022; 98: 153970.
[http://dx.doi.org/10.1016/j.phymed.2022.153970] [PMID: 35144138]
[101]
Wang B, Ding Y, Zhao P, et al. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143: 105241.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105241] [PMID: 35114443]
[102]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn 2021; 39(12): 4362-74.
[http://dx.doi.org/10.1080/07391102.2020.1779818] [PMID: 32568613]
[103]
Henss L, Auste A, Schürmann C, et al. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J Gen Virol 2021; 102(4): 001574.
[http://dx.doi.org/10.1099/jgv.0.001574] [PMID: 33830908]
[104]
Kanbarkar N, Mishra S. Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: An in silico approach. Adv Tradit Med 2021; 21(1): 173-88.
[105]
Wang L, Tao Q, Wang Z, et al. Tea ingredients have anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on LPS-Stimulated macrophages. Front Nutr 2022; 9: 875765.
[http://dx.doi.org/10.3389/fnut.2022.875765] [PMID: 35669076]
[106]
Xiang Q, Cheng L, Zhang R, Liu Y, Wu Z, Zhang X. Tea polyphenols prevent and intervene in COVID-19 through intestinal microbiota. Foods 2022; 11(4): 506.
[http://dx.doi.org/10.3390/foods11040506]
[107]
Bimonte S, Forte CA, Cuomo M, Esposito G, Cascella M, Cuomo A. An overview on the potential roles of egcg in the treatment of COVID-19 infection. Drug Des Devel Ther 2021; 15: 4447-54.
[http://dx.doi.org/10.2147/DDDT.S314666] [PMID: 34737551]
[108]
Storozhuk M, Lee S, Lee JI, Park J. Green tea consumption and the COVID-19 omicron pandemic era: Pharmacology and epidemiology. Life 2023; 13(3): 852.
[http://dx.doi.org/10.3390/life13030852] [PMID: 36984007]
[109]
Du A, Zheng R, Disoma C, et al. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 2021; 176: 1-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.012] [PMID: 33548314]
[110]
Shaik FB, Swarnalatha K, Mohan MC, et al. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science 2022; 42.
[111]
Mokra D, Adamcakova J, Mokry J. Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a new player in the treatment of respiratory diseases? Antioxidants 2022; 11(8): 1566.
[http://dx.doi.org/10.3390/antiox11081566] [PMID: 36009285]
[112]
Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021; 85: 153286.
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[113]
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. Phytomedicine Plus 2023; 3: p. (1)100402.
[114]
Jeon HY, Kim KS, Kim S. Effects of yogurt containing probiotics on respiratory virus infections: Influenza H1N1 and SARS-CoV-2. J Dairy Sci 2023; 106(3): 1549-61.
[http://dx.doi.org/10.3168/jds.2022-22198] [PMID: 36631322]
[115]
Gouda AS, Adbelruhman FG, Sabbah Alenezi H, Mégarbane B. Theoretical benefits of yogurt-derived bioactive peptides and probiotics in COVID-19 patients – A narrative review and hypotheses. Saudi J Biol Sci 2021; 28(10): 5897-905.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.046]
[116]
Lerner D, Garvey K, Arrighi-Allisan A, et al. Study summary - randomized control trial of omega-3 fatty acid supplementation for the treatment of COVID-19 related olfactory dysfunction. Vol. 21. Trials 2020.
[http://dx.doi.org/10.1186/s13063-020-04905-y]
[117]
Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Vol. 13. Nutrients 2021; 13(7): 2421.
[http://dx.doi.org/10.3390/nu13072421] [PMID: 34371930]
[118]
Chang JPC, Pariante CM, Su KP. Omega-3 fatty acids in the psychological and physiological resilience against COVID-19. Prostaglandins Leukot Essent Fat Acids 2020; 161: 102177.
[119]
Zapata B R, Müller JM, Vásquez JE, et al. Omega-3 index and clinical outcomes of severe COVID-19: Preliminary results of a cross-sectional study. Int J Environ Res Public Health 2021; 18(15): 7722.
[http://dx.doi.org/10.3390/ijerph18157722] [PMID: 34360016]
[120]
Asher A, Tintle NL, Myers M, et al. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot Essent Fat Acids 2021; p. 166.
[121]
Arnardottir H, Pawelzik SC, Öhlund Wistbacka U, et al. Stimulating the resolution of inflammation through Omega-3 polyunsaturated fatty acids in COVID-19: Rationale for the COVID-Omega-F trial. Front Physiol 2021; 11: 624657.
[http://dx.doi.org/10.3389/fphys.2020.624657] [PMID: 33505321]
[122]
Fadiyah NN, Megawati G, Luftimas DE. Potential of omega 3 supplementation for coronavirus disease 2019 (COVID-19): A scoping review. Int J Gen Med 2022; 15.
[123]
Munjal K, Sharma S, Sharma S, et al. Comparison of serum 25-hydroxyvitamin D levels after a single oral dose of vitamin D3 formulations in mild vitamin D3 deficiency. Vol. 12. J Pharmacol Pharmacother 2021.
[124]
Holick MF, Chen TC. Vitamin D deficiency: A worldwide problem with health consequences. Am J Clin Nutr 2008; 87(4): 1080S-6S.
[http://dx.doi.org/10.1093/ajcn/87.4.1080S] [PMID: 18400738]
[125]
Nair R, Maseeh A, Vitamin D. The sunshine vitamin. J Pharmacol Pharmacother 2012; 3.
[126]
Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40(5): 905-19.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[127]
Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2003; 2(1): 7.
[http://dx.doi.org/10.1186/1475-2891-2-7] [PMID: 14498993]
[128]
Chernyak BV, Popova EN, Prikhodko AS, et al. COVID-19 and Oxidative Stress. Moscow: Biochemistry 2020; 85.
[129]
Savant S, Srinivasan S, Kruthiventi AK. Potential nutraceuticals for COVID-19. Nutr Diet Suppl 2021; 13: 25-51.
[http://dx.doi.org/10.2147/NDS.S294231]
[130]
Zinder R, Cooley R, Vlad LG, Molnar JA. Vitamin A and wound healing. Nutr Clin Pract 2019; 34(6): 839-49.
[http://dx.doi.org/10.1002/ncp.10420]
[131]
Polcz ME, Barbul A. The role of vitamin A in wound healing. Nutr Clin Pract 2019; 34(5): 695-700.
[http://dx.doi.org/10.1002/ncp.10376]
[132]
Costagliola G, Nuzzi G, Spada E, Comberiati P, Verduci E, Peroni DG. Nutraceuticals in viral infections: An overview of the immunomodulating properties. Nutrients 2021; 13(7): 2410.
[http://dx.doi.org/10.3390/nu13072410] [PMID: 34371920]
[133]
Li R, Wu K, Li Y, et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging 2020; 12(15): 15784-96.
[http://dx.doi.org/10.18632/aging.103888] [PMID: 32805728]
[134]
Abraham A, Kattoor AJ, Saldeen T, Mehta JL. Vitamin E and its anticancer effects. Crit Rev Food Sci Nutr 2019; 59(17): 2831-8.
[http://dx.doi.org/10.1080/10408398.2018.1474169]
[135]
Lee G, Han S. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614]
[136]
Kennedy D. B vitamins and the brain: Mechanisms, dose and efficacy-a review. Nutrients 2016; 8(2): 68.
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[137]
Shakoor H, Feehan J, Mikkelsen K, et al. Be well: A potential role for vitamin B in COVID-19. Maturitas 2021; 144: 108-11.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007]
[138]
Ahvanooei MRR, Norouzian MA, Vahmani P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol Trace Elem Res 2022; 200(11): 4664-77.
[http://dx.doi.org/10.1007/s12011-021-03045-x] [PMID: 34837602]
[139]
Skalny A, Rink L, Ajsuvakova O, et al. Zinc and respiratory tract infections: Perspectives for COVID-19 (Review). Int J Mol Med 2020; 46(1): 17-26.
[http://dx.doi.org/10.3892/ijmm.2020.4575] [PMID: 32319538]
[140]
Singh S, Kola P, Kaur D, et al. Therapeutic potential of nutraceuticals and dietary supplements in the prevention of viral diseases: A Review. Front Nutr 2021; 8: 679312.
[http://dx.doi.org/10.3389/fnut.2021.679312]
[141]
Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis 2021; 15(1): e0008895.
[http://dx.doi.org/10.1371/journal.pntd.0008895] [PMID: 33395417]
[142]
Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis 2020; 100: 343-9.
[http://dx.doi.org/10.1016/j.ijid.2020.09.014] [PMID: 32920234]
[143]
Rani I, Goyal A, Bhatnagar M, et al. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021; 92: 109-28.
[http://dx.doi.org/10.1016/j.nutres.2021.05.008] [PMID: 34284268]
[144]
Gouda AS, Adbelruhman FG, Elbendary RN, Alharbi FA, Alhamrani SQ, Mégarbane B. A comprehensive insight into the role of zinc deficiency in the renin-angiotensin and kinin-kallikrein system dysfunctions in COVID-19 patients. Saudi J Biol Sci 2021; 28(6): 3540-7.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.027]
[145]
Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019; 24(7): 1298.
[http://dx.doi.org/10.3390/molecules24071298] [PMID: 30987088]
[146]
Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 2020; 11: 570122.
[http://dx.doi.org/10.3389/fimmu.2020.570122] [PMID: 33117359]
[147]
Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr 2021; 125(6): 618-27.
[http://dx.doi.org/10.1017/S0007114520003128] [PMID: 32758306]
[148]
Singla RK, Sai CS, Chopra H, et al. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front Cell Dev Biol 2021; 9: 745177.
[http://dx.doi.org/10.3389/fcell.2021.745177] [PMID: 34805155]
[149]
Kour J, Chopra H, Bukhari S, et al. Nutraceutical-A deep and profound concept.Nutraceuticals and Health Care. 2022; pp. 1-28.
[http://dx.doi.org/10.1016/B978-0-323-89779-2.00021-1]
[150]
Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa MC. Curcumin and health. Molecules 2016; 21(3): 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[151]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021]
[152]
Suresh MV, Francis S, Aktay S, Kralovich G, Raghavendran K. Therapeutic potential of curcumin in ARDS and COVID -19. Clin Exp Pharmacol Physiol 2023; 50(4): 267-76.
[http://dx.doi.org/10.1111/1440-1681.13744] [PMID: 36480131]
[153]
Hempel T, Raich L, Olsson S, et al. Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chem Sci 2021; 12(3): 983-92.
[http://dx.doi.org/10.1039/D0SC05064D] [PMID: 35382133]
[154]
Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(21): 11727-34.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[155]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x]
[156]
Banerjee S, Wang X, Du S, et al. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. J Med Virol 2022; 94(9): 4071-87.
[http://dx.doi.org/10.1002/jmv.27820] [PMID: 35488404]
[157]
Gasmi A, Mujawdiya PK, Lysiuk R, et al. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2. Pharmaceuticals 2022; 15(9): 1049.
[http://dx.doi.org/10.3390/ph15091049] [PMID: 36145270]
[158]
Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J Agric Food Chem 2020; 68(47): 13982-9.
[http://dx.doi.org/10.1021/acs.jafc.0c05064] [PMID: 33179911]
[159]
Nair MP, Mahajan S, Reynolds JL, et al. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κ β system. Clin Vaccine Immunol 2006; 13(3): 319-28.
[http://dx.doi.org/10.1128/CVI.13.3.319-328.2006] [PMID: 16522772]
[160]
Chu C, Deng J, Man Y, Qu Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res Int 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/5615647]
[161]
Yates AA, Erdman JW Jr, Shao A, Dolan LC, Griffiths JC. Bioactive nutrients-time for tolerable upper intake levels to address safety. Regul Toxicol Pharmacol 2017; 84: 94-101.
[http://dx.doi.org/10.1016/j.yrtph.2017.01.002] [PMID: 28110066]
[162]
Ouyang J, Zhu K, Liu Z, Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid Med Cell Longev 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/9723686] [PMID: 32850004]
[163]
Zhang Z, Zhang X, Bi K, et al. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114: 11-24.
[http://dx.doi.org/10.1016/j.tifs.2021.05.023] [PMID: 34054222]
[164]
Chopra H, Goyal R, Baig AA, et al. Synbiotics in colon cancer. Synbiotics for the Management of Cancer. 2023; pp. 115-33.
[http://dx.doi.org/10.1007/978-981-19-7550-9_5]
[165]
Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 2015; 52(12): 7577-87.
[http://dx.doi.org/10.1007/s13197-015-1921-1]
[166]
Iannitti T, Palmieri B. Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 2010; 29(6): 701-25.
[http://dx.doi.org/10.1016/j.clnu.2010.05.004] [PMID: 20576332]
[167]
Voidarou C, Antoniadou M, Rozos G, et al. Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods 2021; 10.
[168]
Javanmard A, Ashtari S, Sabet B, et al. Probiotics and their role in gastrointestinal cancers prevention and treatment; An overview. Gastroenterol Hepatol Bed Bench 2018; 11.
[169]
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Mechanisms of action of probiotics. Adv Nutr. 2019; 10: pp. (1)S49-66.
[http://dx.doi.org/10.1093/advances/nmy063]
[170]
Sherratt SCR, Libby P, Budoff MJ, Bhatt DL, Mason RP. Role of Omega-3 fatty acids in cardiovascular disease: The debate continues. Curr Atheroscler Rep 2023; 25(1): 1-17.
[http://dx.doi.org/10.1007/s11883-022-01075-x] [PMID: 36580204]
[171]
Rundblad A, Sandoval V, Holven KB, Ordovás JM, Ulven SM. Omega-3 fatty acids and individual variability in plasma triglyceride response: A mini-review. Redox Biol 2023; 63: 102730.
[http://dx.doi.org/10.1016/j.redox.2023.102730] [PMID: 37150150]
[172]
Mason RP, Sherratt SCR, Eckel RH. Omega-3-fatty acids: Do they prevent cardiovascular disease? Best Pract Res Clin Endocrinol Metab 2023; 37(3): 101681.
[http://dx.doi.org/10.1016/j.beem.2022.101681] [PMID: 35739003]
[173]
Huh JH, Jo SH. Omega-3 fatty acids and atrial fibrillation. Korean J Intern Med 2023; 38(3): 282-9.
[http://dx.doi.org/10.3904/kjim.2022.266] [PMID: 36514212]
[174]
Bork CS, Myhre PL, Schmidt EB. Do omega-3 fatty acids increase risk of atrial fibrillation? Curr Opin Clin Nutr Metab Care 2023; 26(2): 78-82.
[http://dx.doi.org/10.1097/MCO.0000000000000907]
[175]
Mehdi S, Manohar K, Shariff A, et al. Omega-3 fatty acids supplementation in the treatment of depression: An observational study. J Pers Med 2023; 13(2): 224.
[http://dx.doi.org/10.3390/jpm13020224] [PMID: 36836458]
[176]
Yang CP, Chang CM, Yang CC, Pariante CM, Su KP. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun 2022; 103: 19-27.
[http://dx.doi.org/10.1016/j.bbi.2022.04.001] [PMID: 35390469]
[177]
Erdem D, Segmen F, Uysal E, Kilicarslan G. Effect of omega-3 fatty acid use on sepsis and mortality in patients with Covıd-19. Niger J Clin Pract 2023; 26(1): 102-8.
[http://dx.doi.org/10.4103/njcp.njcp_415_22] [PMID: 36751831]
[178]
Karantonis HC, Nasopoulou C, Skalkos D. Functional bakery snacks for the post-COVID-19 market, fortified with omega-3 fatty acids. Sustain 2022; 14(8): 4816.
[179]
Rogero MM, Leão MC, Santana TM, et al. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med 2020; 156: 190-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.005] [PMID: 32653511]
[180]
Weill P, Plissonneau C, Legrand P, Rioux V, Thibault R. May omega-3 fatty acid dietary supplementation help reduce severe complications in COVID-19 patients? Biochimie 2020; 179: 275-80.
[http://dx.doi.org/10.1016/j.biochi.2020.09.003] [PMID: 32920170]
[181]
Mazidimoradi A, Alemzadeh E, Alemzadeh E, Salehiniya H. The effect of polyunsaturated fatty acids on the severity and mortality of COVID patients: A systematic review. Life Sci 2022; 299: 120489.
[http://dx.doi.org/10.1016/j.lfs.2022.120489] [PMID: 35358595]
[182]
Sviridov D, Miller YI, Ballout RA, Remaley AT, Bukrinsky M. Targeting lipid rafts—a potential therapy for COVID-19. Front Immunol 2020; 11: 574508.
[http://dx.doi.org/10.3389/fimmu.2020.574508] [PMID: 33133090]
[183]
Food safety and standards (health supplements, nutraceuticals, food for special dietary use, food for special medical purpose, functional food and novel food) regulations 2016.
[184]
Food Safety Compliance System. Available from: https://foscos.fssai.gov.in (Accessed on: 2023 Oct 4). Available from: https://fssai.gov.in/cms/inspection-matrices.php
[185]
Guidance document on Common Submission Format for Import and Registration of bulk drugs and finished formulations in India 1994.
[186]
Dietary Supplement Health and Education Act of 1994 1994. Available from: https://ods.od.nih.gov/About/DSHEA_Wording.aspx (Accessed on: 2023 Oct 4).
[187]
Gad SC. Dietary supplements 2023. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012824315200628X (Accessed on: 2023 Oct 4).
[188]
New Dietary Ingredients in Dietary Supplements - Background for Industry-FDA. Available from: https://www.fda.gov/food/new-dietary-ingredient-ndi-notification-process/new-dietary-ingredients-dietary-supplements-background-industry (Accessed on: 2023 Oct 4).
[189]
Food supplements-EFSA Available from: https://www.efsa.europa.eu/en/topics/topic/food-supplements (Accessed on: 2023 Oct 4).
[190]
How Dietary Supplements are Regulated in Europe – Sovereign Silver. Available from: https://sovereignsilver.com/pages/how-dietary-supplements-are-regulated-in-europe (Accessed on: 2023 Oct 4).
[191]
Coppens P, da Silva MF, Pettman S. European regulations on nutraceuticals, dietary supplements and functional foods: A framework based on safety. Toxicology 2006; 221(1): 59-74.
[http://dx.doi.org/10.1016/j.tox.2005.12.022] [PMID: 16469424]
[192]
McCartney E. Nutrition and health claims. Food Sci Technol 2015; 29(1): 29-31.
[193]
Giunta R, Basile G, Tibuzzi A. Legislation on nutraceuticals and food supplements: A comparison between regulations in U.S.A. and E.U. Adv Exp Med Biol 2010; 698: 322-8.
[http://dx.doi.org/10.1007/978-1-4419-7347-4_24] [PMID: 21520722]
[194]
Chen T, Ding K, Yu Z, Li G, Dong Y. Smart supervision for food safety in food service establishments in China: Challenges and solutions. J Food Prot 2021; 84(6): 938-45.
[http://dx.doi.org/10.4315/JFP-20-370] [PMID: 33270869]
[195]
The registration rules of pharmaceutical, herbal and health product manufacturers and their products guideline 2022.
[196]
Patel D, Dufour Y, Domigan N. Functional food and nutraceutical registration processes in Japan and China: A diffusion of innovation perspective. J Pharm Pharm Sci 2008; 11(4): 1-11.
[http://dx.doi.org/10.18433/J32S3N] [PMID: 19183509]
[197]
Jones PJH, Asp NG, Silva P. Evidence for health claims on foods: How much is enough? Introduction and general remarks. J Nutr 2008; 138(6): 11895-915.
[198]
Bairati I, Meyer F, Jobin E, et al. Antioxidant vitamins supplementation and mortality: A randomized trial in head and neck cancer patients. Int J Cancer 2006; 119(9): 2221-4.
[http://dx.doi.org/10.1002/ijc.22042] [PMID: 16841333]
[199]
Barton JC, Lee PL, West C, Bottomley SS. Iron overload and prolonged ingestion of iron supplements: Clinical features and mutation analysis of hemochromatosis-associated genes in four cases. Am J Hematol 2006; 81(10): 760-7.
[http://dx.doi.org/10.1002/ajh.20714] [PMID: 16838333]
[200]
Swanson CA. Iron intake and regulation: Implications for iron deficiency and iron overload. Alcohol 2003; 30: pp. (2)99-102.
[201]
Gross BW, Gillio M, Rinehart CD, Lynch CA, Rogers FB. Omega-3 fatty acid supplementation and warfarin: A lethal combination in traumatic brain injury. J Trauma Nurs 2017; 24(1): 15-8.
[http://dx.doi.org/10.1097/JTN.0000000000000256] [PMID: 28033135]
[202]
Buckley MS, Goff AD, Knapp WE. Fish oil interaction with warfarin. Ann Pharmacother 2004; 38(1): 50-3.
[http://dx.doi.org/10.1345/aph.1D007] [PMID: 14742793]
[203]
Mahady GB, Parrot J, Lee C, Yun GS, Dan A. Botanical dietary supplement use in peri- and postmenopausal women. Menopause 2003; 10(1): 65-72.
[PMID: 12544679]
[204]
Enbom ET, Le MD, Oesterich L, Rutgers J, French SW. Mechanism of hepatotoxicity due to black cohosh (Cimicifuga racemosa): Histological, immunohistochemical and electron microscopy analysis of two liver biopsies with clinical correlation. Exp Mol Pathol 2014; 96(3): 279-83.
[http://dx.doi.org/10.1016/j.yexmp.2014.03.003] [PMID: 24657312]
[205]
Panos G, Mulita F, Akinosoglou K, et al. Risk of surgical site infections after colorectal surgery and the most frequent pathogens isolated: a prospective single-centre observational study. Med Glas 2021; 18(2): 438-43.
[PMID: 34080408]
[206]
Mulita F, Liolis E, Akinosoglou K, et al. Postoperative sepsis after colorectal surgery: a prospective single-center observational study and review of the literature. Prz Gastroenterol 2022; 17(1): 47-51.
[http://dx.doi.org/10.5114/pg.2021.106083]
[207]
Mulita F, Liolis E, Tchabashvili L, et al. The impact of the COVID-19 outbreak on surgical site infections in elective colorectal cancer surgery: One potential benefit of the pandemic? Ann Oncol 1630; 2021: 32. P
[208]
Chopra H, Islam MA, Sharun K, Emran TB, Al-Tawfiq JA, Dhama K. Recent advances in the treatment of biofilms induced surgical site infections. Int J Surg 2023; 109(1): 65-7.
[http://dx.doi.org/10.1097/JS9.0000000000000036] [PMID: 36799798]
[209]
Goel A, Garima , Aggarwal N, et al. Skin and soft tissue infections: Current advancement in epidemiology, pathogenesis and management. J Pure Appl Microbiol 2023; 17(1): 89-111.
[http://dx.doi.org/10.22207/JPAM.17.1.50]
[210]
El Sohaimy S. Functional foods and nutraceuticals-modern approach to food science. World Appl Sci J 2012; 20(5): 691-708.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy