Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

TBOPP, a DOCK1 Inhibitor, Potentiates Cisplatin Efficacy in Breast Cancer by Regulating Twist-mediated EMT

In Press, (this is not the final "Version of Record"). Available online 26 February, 2024
Author(s): Xin Chen, Zhenbang Zhou, Pengting Tang, Feiya Du, Shuqian Wang, Jia Yao, Shufen Zhang, Jiajing Huang, Xuemei Lu, Wei Chen, Xiaofang Yu*, Yu Liu* and Hao Liu*
Published on: 26 February, 2024

DOI: 10.2174/0115680096281231240202073558

Abstract

Background: DOCK1 has been reported to be involved in tumor progression and resistance. 1-(2-(30-(trifluoromethyl)-[1,10-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl2(1H)- pyridone (TBOPP) is a selective DOCK1 inhibitor; however, the role and molecular mechanisms of DOCK1 and its inhibition in breast cancer (BC) resistance remain poorly understood.

Objective: This study aims toinvestigate the underlying mechanisms of DOCK1 in BC resistance.

Methods: DOCK1 or Twist siRNA and Twist plasmid were used to explore the function of DOCK1 in vitro experiments. A mouse xenograft model was used for in vivo experiments.

Results: In the present study, we demonstrated that DOCK1 siRNA promoted cisplatin sensitivity in BC cells. Moreover, TBOPP also enhances the therapeutic effect of cisplatin both in vitro and in vivo. Mechanistically, DOCK1 siRNA inhibited EMT. Twist 1 is one of the EMT-inducing transcription factors and is known to induce EMT. To further reveal the effect of DOCK in BC cells, we co-transfected with DOCK1 and Twist1 siRNA to BC cells and found that co-transfection with DOCK1 and Twist siRNA could not further enhance the cisplatin sensitivity of BC cells. Moreover, DOCK1 siRNA failed to reverse the effect of Twist 1 up-regulation.

Conclusion: Taken together, these results demonstrate that DOCK1 may function as a potential therapeutic target in BC and that combining cisplatin with TBOPP may provide a promising therapeutic strategy for cisplatin-resistant BC patients.

[1]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[2]
Ozols, R.F.; O’Dwyer, P.J.; Hamilton, T.C. Clinical reversal of drug resistance in ovarian cancer. Gynecol. Oncol., 1993, 51(1), 90-96.
[http://dx.doi.org/10.1006/gyno.1993.1252] [PMID: 8244181]
[3]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[4]
Garcia-Martinez, L.; Zhang, Y.; Nakata, Y.; Chan, H.L.; Morey, L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun., 2021, 12(1), 1786.
[http://dx.doi.org/10.1038/s41467-021-22024-3] [PMID: 33741974]
[5]
Rodler, E.; Sharma, P.; Barlow, W.E.; Gralow, J.R.; Puhalla, S.L.; Anders, C.K.; Goldstein, L.; Tripathy, D.; Brown-Glaberman, U.A.; Huynh, T.T.; Szyarto, C.S.; Godwin, A.K.; Pathak, H.B.; Swisher, E.M.; Radke, M.R.; Timms, K.M.; Lew, D.L.; Miao, J.; Pusztai, L.; Hayes, D.F.; Hortobagyi, G.N. Cisplatin with veliparib or placebo in metastatic triple-negative breast cancer and BRCA mutation-associated breast cancer (S1416): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol., 2023, 24(2), 162-174.
[http://dx.doi.org/10.1016/S1470-2045(22)00739-2] [PMID: 36623515]
[6]
Côté, J.F.; Vuori, K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol., 2007, 17(8), 383-393.
[http://dx.doi.org/10.1016/j.tcb.2007.05.001] [PMID: 17765544]
[7]
Gadea, G.; Blangy, A. Dock-family exchange factors in cell migration and disease. Eur. J. Cell Biol., 2014, 93(10-12), 466-477.
[http://dx.doi.org/10.1016/j.ejcb.2014.06.003] [PMID: 25022758]
[8]
Lee, S.H.; Chiu, Y.C.; Li, Y.H.; Lin, C.C.; Hou, H.A.; Chou, W.C.; Tien, H.F. High expression of dedicator of cytokinesis 1 (DOCK1) confers poor prognosis in acute myeloid leukemia. Oncotarget, 2017, 8(42), 72250-72259.
[http://dx.doi.org/10.18632/oncotarget.19706] [PMID: 29069784]
[9]
Tomino, T.; Tajiri, H.; Tatsuguchi, T.; Shirai, T.; Oisaki, K.; Matsunaga, S.; Sanematsu, F.; Sakata, D.; Yoshizumi, T.; Maehara, Y.; Kanai, M.; Cote, J.F.; Fukui, Y.; Uruno, T. DOCK1 inhibition suppresses cancer cell invasion and macropinocytosis induced by self-activating Rac1P29S mutation. Biochem. Biophys. Res. Commun., 2018, 497(1), 298-304.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.073] [PMID: 29432733]
[10]
Liang, Y.; Wang, S.; Zhang, Y. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple negative breast cancer epithelial cells through the RhoA/Rac1 pathway. Oncol. Lett., 2018, 16(3), 3481-3488.
[http://dx.doi.org/10.3892/ol.2018.9077] [PMID: 30127952]
[11]
Greenburg, G.; Hay, E.D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol., 1982, 95(1), 333-339.
[http://dx.doi.org/10.1083/jcb.95.1.333] [PMID: 7142291]
[12]
Goossens, S.; Vandamme, N.; Van Vlierberghe, P.; Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 584-591.
[http://dx.doi.org/10.1016/j.bbcan.2017.06.006] [PMID: 28669750]
[13]
Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374.
[http://dx.doi.org/10.1016/j.devcel.2019.04.010] [PMID: 31063755]
[14]
Sun, N.Y.; Yang, M.H. Metabolic reprogramming and epithelial-mesenchymal plasticity: Opportunities and challenges for cancer therapy. Front. Oncol., 2020, 10, 792.
[http://dx.doi.org/10.3389/fonc.2020.00792] [PMID: 32509584]
[15]
Chen, J.; Chen, D.; Chen, W.; Jiang, H.; Yang, H.; Wang, Y. Downregulation of DOCK1 sensitizes bladder cancer cells to cisplatin through preventing epithelial-mesenchymal transition. Drug Des. Devel. Ther., 2016, 10, 2845-2853.
[http://dx.doi.org/10.2147/DDDT.S101998] [PMID: 27660415]
[16]
Zhu, Q.Q.; Ma, C.; Wang, Q.; Song, Y.; Lv, T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol., 2016, 37(1), 185-197.
[http://dx.doi.org/10.1007/s13277-015-4450-7] [PMID: 26602382]
[17]
Zheng, X.; Carstens, J.L.; Kim, J.; Scheible, M.; Kaye, J.; Sugimoto, H.; Wu, C.C.; LeBleu, V.S.; Kalluri, R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 2015, 527(7579), 525-530.
[http://dx.doi.org/10.1038/nature16064] [PMID: 26560028]
[18]
Sun, J.; Xu, Z.; Lv, H.; Wang, Y.; Wang, L.; Ni, Y.; Wang, X.; Hu, C.; Chen, S.; Teng, F.; Chen, W.; Cheng, X. eIF5A2 regulates the resistance of gastric cancer cells to cisplatin via induction of EMT. Am. J. Transl. Res., 2018, 10(12), 4269-4279.
[PMID: 30662669]
[19]
Yochum, Z.A.; Cades, J.; Wang, H.; Chatterjee, S.; Simons, B.W.; O’Brien, J.P.; Khetarpal, S.K.; Lemtiri-Chlieh, G.; Myers, K.V.; Huang, E.H.B.; Rudin, C.M.; Tran, P.T.; Burns, T.F. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene, 2019, 38(5), 656-670.
[http://dx.doi.org/10.1038/s41388-018-0482-y] [PMID: 30171258]
[20]
Li, Q.Q.; Xu, J.D.; Wang, W.J.; Cao, X.X.; Chen, Q.; Tang, F.; Chen, Z.Q.; Liu, X.P.; Xu, Z.D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin. Cancer Res., 2009, 15(8), 2657-2665.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2372] [PMID: 19336515]
[21]
Chen, K.; Xu, J.; Tong, Y.; Yan, J.F.; Pan, Y.; Wang, W.; Zheng, L.; Zheng, X.; Hu, C.; Hu, X.; Shen, X.; Chen, W. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis., 2023, 14(2), 115.
[http://dx.doi.org/10.1038/s41419-023-05596-4] [PMID: 36781842]
[22]
Tajiri, H.; Uruno, T.; Shirai, T.; Takaya, D.; Matsunaga, S.; Setoyama, D.; Watanabe, M.; Kukimoto-Niino, M.; Oisaki, K.; Ushijima, M.; Sanematsu, F.; Honma, T.; Terada, T.; Oki, E.; Shirasawa, S.; Maehara, Y.; Kang, D.; Côté, J.F.; Yokoyama, S.; Kanai, M.; Fukui, Y. Targeting ras-driven cancer cell survival and invasion through selective inhibition of DOCK1. Cell Rep., 2017, 19(5), 969-980.
[http://dx.doi.org/10.1016/j.celrep.2017.04.016] [PMID: 28467910]
[23]
Li, R.; Wu, C.; Liang, H.; Zhao, Y.; Lin, C.; Zhang, X.; Ye, C. Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT. Int. J. Oncol., 2018, 53(4), 1763-1773.
[http://dx.doi.org/10.3892/ijo.2018.4495] [PMID: 30066890]
[24]
Feng, J.; Lu, H.; Ma, W.; Tian, W.; Lu, Z.; Yang, H.; Cai, Y.; Cai, P.; Sun, Y.; Zhou, Z.; Feng, J.; Deng, J.; Shu, Y.; Qu, K.; Jia, W.; Gao, P.; Zhang, H. Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer. Protein Cell, 2022, 13(11), 825-841.
[http://dx.doi.org/10.1007/s13238-022-00906-6] [PMID: 35217990]
[25]
He, L.; Luo, L.; Zhu, H.; Yang, H.; Zhang, Y.; Wu, H.; Sun, H.; Jiang, F.; Kathera, C.S.; Liu, L.; Zhuang, Z.; Chen, H.; Pan, F.; Hu, Z.; Zhang, J.; Guo, Z. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol. Oncol., 2017, 11(6), 640-654.
[http://dx.doi.org/10.1002/1878-0261.12058] [PMID: 28371273]
[26]
Xu, Z.; Yao, T.; Liu, W. miR-378a-3p sensitizes ovarian cancer cells to cisplatin through targeting MAPK1/GRB2. Biomed. Pharmacother., 2018, 107, 1410-1417.
[http://dx.doi.org/10.1016/j.biopha.2018.08.132] [PMID: 30257357]
[27]
Liu, G.; Yu, M.; Wu, B.; Guo, S.; Huang, X.; Zhou, F.; Claret, F.X.; Pan, Y. Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cell. Signal., 2019, 53, 39-48.
[http://dx.doi.org/10.1016/j.cellsig.2018.09.010] [PMID: 30244171]
[28]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins, 2010, 2(11), 2490-2518.
[http://dx.doi.org/10.3390/toxins2112490] [PMID: 22069563]
[29]
Zhu, D.; Zhang, X.; Lin, Y.; Liang, S.; Song, Z.; Dong, C. MT1JP inhibits tumorigenesis and enhances cisplatin sensitivity of breast cancer cells through competitively binding to miR-24-3p. Am. J. Transl. Res., 2019, 11(1), 245-256.
[PMID: 30787983]
[30]
Jiang, Y.; Ji, F.; Liu, Y.; He, M.; Zhang, Z.; Yang, J.; Wang, N.; Zhong, C.; Jin, Q.; Ye, X.; Chen, T. Cisplatin-induced autophagy protects breast cancer cells from apoptosis by regulating yes-associated protein. Oncol. Rep., 2017, 38(6), 3668-3676.
[http://dx.doi.org/10.3892/or.2017.6035] [PMID: 29039616]
[31]
Dunne, M.; Dou, Y.N.; Drake, D.M.; Spence, T.; Gontijo, S.M.L.; Wells, P.G.; Allen, C. Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. J. Control. Release, 2018, 282, 35-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.029] [PMID: 29673642]
[32]
Soleymani Abyaneh, H.; Gupta, N.; Radziwon-Balicka, A.; Jurasz, P.; Seubert, J.; Lai, R.; Lavasanifar, A. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers, 2017, 9(12), 137.
[http://dx.doi.org/10.3390/cancers9100137] [PMID: 29036915]
[33]
Hasegawa, H.; Kiyokawa, E.; Tanaka, S.; Nagashima, K.; Gotoh, N.; Shibuya, M.; Kurata, T.; Matsuda, M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol., 1996, 16(4), 1770-1776.
[http://dx.doi.org/10.1128/MCB.16.4.1770] [PMID: 8657152]
[34]
Kiyokawa, E.; Hashimoto, Y.; Kobayashi, S.; Sugimura, H.; Kurata, T.; Matsuda, M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev., 1998, 12(21), 3331-3336.
[http://dx.doi.org/10.1101/gad.12.21.3331] [PMID: 9808620]
[35]
Jarzynka, M.J.; Hu, B.; Hui, K.M.; Bar-Joseph, I.; Gu, W.; Hirose, T.; Haney, L.B.; Ravichandran, K.S.; Nishikawa, R.; Cheng, S.Y. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res., 2007, 67(15), 7203-7211.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0473] [PMID: 17671188]
[36]
Li, H.; Yang, L.; Fu, H.; Yan, J.; Wang, Y.; Guo, H.; Hao, X.; Xu, X.; Jin, T.; Zhang, N. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nat. Commun., 2013, 4(1), 1706.
[http://dx.doi.org/10.1038/ncomms2680] [PMID: 23591873]
[37]
Pan, Y.; Li, X.; Duan, J.; Yuan, L.; Fan, S.; Fan, J.; Xiaokaiti, Y.; Yang, H.; Wang, Y.; Li, X. Enoxaparin sensitizes human non-small-cell lung carcinomas to gefitinib by inhibiting DOCK1 expression, vimentin phosphorylation, and Akt activation. Mol. Pharmacol., 2015, 87(3), 378-390.
[http://dx.doi.org/10.1124/mol.114.094425] [PMID: 25488183]
[38]
Katoh, H.; Hiramoto, K.; Negishi, M. Activation of Rac1 by RhoG regulates cell migration. J. Cell Sci., 2006, 119(1), 56-65.
[http://dx.doi.org/10.1242/jcs.02720] [PMID: 16339170]
[39]
Laurin, M.; Huber, J.; Pelletier, A.; Houalla, T.; Park, M.; Fukui, Y.; Haibe-Kains, B.; Muller, W.J.; Côté, J.F. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis. Proc. Natl. Acad. Sci., 2013, 110(18), 7434-7439.
[http://dx.doi.org/10.1073/pnas.1213050110] [PMID: 23592719]
[40]
Chen, Q.; Jiao, D.; Wang, J.; Hu, H.; Tang, X.; Chen, J.; Mou, H.; Lu, W. miR-206 regulates cisplatin resistance and EMT in human lung adenocarcinoma cells partly by targeting MET. Oncotarget, 2016, 7(17), 24510-24526.
[http://dx.doi.org/10.18632/oncotarget.8229] [PMID: 27014910]
[41]
Xie, S.L.; Fan, S.; Zhang, S.Y.; Chen, W.X.; Li, Q.X.; Pan, G.K.; Zhang, H.Q.; Wang, W.W.; Weng, B.; Zhang, Z.; Li, J.S.; Lin, Z.Y. SOX8 regulates cancer stem‐like properties and cisplatin‐induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β‐catenin pathway. Int. J. Cancer, 2018, 142(6), 1252-1265.
[http://dx.doi.org/10.1002/ijc.31134] [PMID: 29071717]
[42]
Takeda, T.; Tsubaki, M.; Matsuda, T.; Kimura, A.; Jinushi, M.; Obana, T.; Takegami, M.; Nishida, S. EGFR inhibition reverses epithelial mesenchymal transition, and decreases tamoxifen resistance via Snail and Twist downregulation in breast cancer cells. Oncol. Rep., 2022, 47(6), 109.
[http://dx.doi.org/10.3892/or.2022.8320] [PMID: 35445730]

© 2025 Bentham Science Publishers | Privacy Policy