Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Extraction Optimization, Structure Analysis and Antioxidant Activity of Polysaccharide from Sanghuangporus baumii

Author(s): Yunhe Qu, Pingping Zhang, Jing Cui, Xiuzhen Ni, Kai Song and Dongfang Shi*

Volume 20, Issue 4, 2024

Published on: 26 February, 2024

Page: [264 - 274] Pages: 11

DOI: 10.2174/0115734110289728240214103704

Price: $65

Abstract

Introduction: In this study, we optimized the extraction process, analyzed the structure and assessed the antioxidant activity of Sanghuangporus baumii polysaccharide (SBP). The present results provide important information for the Sanghuangporus baumii polysaccharides in potential natural antioxidant effects.

Background: The extraction and structural analysis of polysaccharides from Sanghuangporus has gained significant attention in the fields of chemistry, medicine, and life sciences. There is great significance in maximizing the extraction of polysaccharides from Sanghuangporus and developing their potential products in a scientific and rational manner.

Objective: The study was designed to establish an efficient and practical extraction process for SBP, and then investigated the structure and the antioxidant activity.

Methods: The Response Surface Methodology (RSM) based on Box-Behnken design was used to explore the ultrasound-assisted extraction of SBP, and the structure of SBP was studied by ultraviolet spectroscopy, infrared spectroscopy and other instrumental analysis methods. The total antioxidant capacity of SBP was studied by the Ferric Reducing Ability of Plasma (FRAP) method, and the scavenging capacity of ABTS+·, DPPH· and OH· was carried out as the index to investigate its antioxidant activity in vitro.

Results: The statistical analysis results showed that the optimal conditions for extracting SBP were an ultrasound time of 20.74 min, ultrasound power of 268.40 W and material-liquid ratio of 1:25.71. Under optimal conditions, the experimental yield of SBP was 3.36 ± 0.01%. The RSM optimization process was applied to the experiment of complex enzyme extraction of SBP, and the yield increased to 4.72 ± 0.03%. Structural analysis showed that SBP mainly consisted of glucose, a small amount of mannose and galactose, and the molecular weight distribution was uneven, mainly concentrating in the three parts of 24.5,6.4,2.5 kDa. Moreover, SBP exhibited dose-dependent and strong reducing power and radical scavenging activity. For DPPH·, ABTS+· and OH· radical scavenging assays, IC50 values were 1.505 ± 0.050 mg/ml, 0.065 ± 0.036 mg/ml and 0.442 ± 0.007 mg/ml, respectively.

Conclusion: In the present study, a β-linked heteroglucan (SBP) was extracted using the optimized process combining enzymes from the fruiting bodies of Sanghuangporus baumii. SBP exhibited effective and dose-dependent antioxidant activities. Our findings were of great value in terms of developing polysaccharides with potential natural antioxidants.

Graphical Abstract

[1]
He, P.; Zhang, Y.; Li, N. The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: A review. Food Funct., 2021, 12(5), 1856-1881.
[http://dx.doi.org/10.1039/D0FO02342F] [PMID: 33576366]
[2]
Wan, X.; Jin, X.; Wu, X.; Yang, X.; Lin, D.; Li, C.; Fu, Y.; Liu, Y.; Liu, X.; Lv, J.; Gontcharov, A.A.; Yang, H.; Wang, Q.; Li, Y. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii. Carbohydr. Polym., 2022, 276, 118798.
[http://dx.doi.org/10.1016/j.carbpol.2021.118798] [PMID: 34823804]
[3]
Cai, C.; Ma, J.; Han, C.; Jin, Y.; Zhao, G.; He, X. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci. Rep., 2019, 9(1), 7418.
[http://dx.doi.org/10.1038/s41598-019-43886-0] [PMID: 31092852]
[4]
Zuo, K.; Tang, K.; Liang, Y.; Xu, Y.; Sheng, K.; Kong, X.; Wang, J.; Zhu, F.; Zha, X.; Wang, Y. Purification and antioxidant and anti-Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola. J. Sci. Food Agric., 2021, 101(3), 1009-1020.
[http://dx.doi.org/10.1002/jsfa.10709] [PMID: 32767366]
[5]
Han, S.B.; Lee, C.W.; Jeon, Y.J.; Hong, N.D.; Yoo, I.D.; Yang, K.H.; Kim, H.M. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology, 1999, 41(2), 157-164.
[http://dx.doi.org/10.1016/S0162-3109(98)00063-0] [PMID: 10102797]
[6]
Cheng, J.; Song, J.; Wei, H.; Wang, Y.; Huang, X.; Liu, Y.; Lu, N.; He, L.; Lv, G.; Ding, H.; Yang, S.; Zhang, Z. Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia. Int. J. Biol. Macromol., 2020, 164, 3305-3314.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.202] [PMID: 32871118]
[7]
Yin, C.; Li, Y.; Li, J.; Fan, X.; Yao, F.; Shi, D.; Cheng, Y.; Liu, M.; Lu, Q.; Gao, H. Gastrointestinal digestion, probiotic fermentation behaviors and immunomodulatory effects of polysaccharides from Sanghuangporus vaninii. Int. J. Biol. Macromol., 2022, 223(Pt A), 606-617.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.012] [PMID: 36356870]
[8]
Zhou, L.W.; Vlasák, J.; Decock, C.; Assefa, A.; Stenlid, J.; Abate, D.; Wu, S-H.; Dai, Y-C. Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers., 2016, 77(1), 335-347.
[http://dx.doi.org/10.1007/s13225-015-0335-8]
[9]
Wang, H.; Ma, J.X.; Wu, D.M.; Gao, N.; Si, J.; Cui, B.K. Identifying bioactive ingredients and antioxidant activities of wild sanghuangporus species of medicinal fungi. J. Fungi, 2023, 9(2), 242.
[http://dx.doi.org/10.3390/jof9020242] [PMID: 36836356]
[10]
Wang, S.; Liu, Z.; Wang, X.; Liu, R.; Zou, L. Mushrooms do produce flavonoids: Metabolite profiling and transcriptome analysis of flavonoid synthesis in the medicinal mushroom sanghuangporus baumii. J. Fungi, 2022, 8(6), 582.
[http://dx.doi.org/10.3390/jof8060582] [PMID: 35736065]
[11]
Lee, J.J.; Kim, D.H.; Kim, D.G.; Lee, H.J.; Min, W.; Rhee, M.H.; Yun, B.S.; Kim, S. Phellinus baumii extract influences pathogenesis of Brucella abortus in phagocyte by disrupting the phagocytic and intracellular trafficking pathway. J. Appl. Microbiol., 2013, 114(2), 329-338.
[http://dx.doi.org/10.1111/jam.12072] [PMID: 23163237]
[12]
Kim, G.; Park, H-S.; Nam, B-H.; Lee, S-J.; Lee, J-D. Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. & M.A. Curtis). Teng. Bioresour. Technol., 2003, 89(1), 81-87.
[http://dx.doi.org/10.1016/S0960-8524(02)00273-0] [PMID: 12676504]
[13]
Li, S.C.; Yang, X.M.; Ma, H.L.; Yan, J.K.; Guo, D.Z. Purification, characterization and antitumor activity of polysaccharides extracted from Phellinus igniarius mycelia. Carbohydr. Polym., 2015, 133, 24-30.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.013] [PMID: 26344250]
[14]
Hu, Z.; Wang, P.; Zhou, H.; Li, Y. Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods., Int. J. Biol. Macromol., 2018, 120(Pt B), 2155-2164.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.125] [PMID: 30248430]
[15]
Omer, N.; Choo, Y.M.; Ahmad, N.; Mohd Yusof, N.S. Ultrasoundassisted encapsulation of Pandan (Pandanus amaryllifolius) extract. Ultrason. Sonochem., 2021, 79, 105793.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105793] [PMID: 34673338]
[16]
Yan, J.K.; Wang, Y.Y.; Ma, H.L.; Wang, Z.B. Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. Ultrason. Sonochem., 2016, 29, 251-257.
[http://dx.doi.org/10.1016/j.ultsonch.2015.10.005] [PMID: 26585005]
[17]
Guo, L; Tan, D; Hui, F; Gu, F; Xiao, K; Hua, Y. Optimization of the cellulase-ultrasonic synergistic extraction conditions of polysaccharides from lenzites betulina. Chem. Biodivers., 2019, 16(11), e190039.
[http://dx.doi.org/10.1002/cbdv.201900369]
[18]
Zhang, Z.; Song, T.; Chen, J.; Lv, G. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method. Front. Nutr., 2023, 9, 1095556.
[http://dx.doi.org/10.3389/fnut.2022.1095556] [PMID: 36712537]
[19]
Du, H.; Chen, J.; Tian, S.; Gu, H.; Li, N.; Sun, Y.; Ru, J.; Wang, J. Extraction optimization, preliminary characterization and immunological activities in vitro of polysaccharides from Elaeagnus angustifolia L. pulp. Carbohydr. Polym., 2016, 151, 348-357.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.068] [PMID: 27474576]
[20]
Xiong, X.; Yang, W.; Huang, G.; Huang, H. Ultrasonic-assisted extraction, characteristics and activity of Ipomoea batatas polysaccharide. Ultrason. Sonochem., 2023, 96, 106420.
[http://dx.doi.org/10.1016/j.ultsonch.2023.106420] [PMID: 37137244]
[21]
Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym., 2014, 113, 314-324.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.025] [PMID: 25256490]
[22]
Chopra, S.; Motwani, S.K.; Iqbal, Z.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K. Optimisation of polyherbal gels for vaginal drug delivery by Box-Behnken statistical design. Eur. J. Pharm. Biopharm., 2007, 67(1), 120-131.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.013] [PMID: 17270408]
[23]
DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[24]
Zhang, X.; Yu, L.; Bi, H.; Li, X.; Ni, W.; Han, H.; Li, N.; Wang, B.; Zhou, Y.; Tai, G. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym., 2009, 77(3), 544-552.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.034]
[25]
Liang, Z.; Yin, Z.; Liu, X.; Ma, C.; Wang, J.; Zhang, Y.; Kang, W. A glucomannogalactan from Pleurotus geesteranus: Structural characterization, chain conformation and immunological effect. Carbohydr. Polym., 2022, 287, 119346.
[http://dx.doi.org/10.1016/j.carbpol.2022.119346] [PMID: 35422294]
[26]
Xu, Y.; Li, Y.; Lu, Y.; Feng, X.; Tian, G.; Liu, Q. Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia. Food Sci. Hum. Wellness, 2021, 10(4), 536-544.
[http://dx.doi.org/10.1016/j.fshw.2021.04.016]
[27]
Li, W.; Li, J.; Wang, J.; He, Y.; Hu, Y.C.; Wu, D.T.; Zou, L. Effects of various degrees of esterification on antioxidant and immunostimulatory activities of okra pectic-polysaccharides. Front. Nutr., 2022, 9, 1025897.
[http://dx.doi.org/10.3389/fnut.2022.1025897] [PMID: 36337617]
[28]
Zhang, X.X.; Ni, Z.J.; Zhang, F.; Thakur, K.; Zhang, J.G.; Khan, M.R.; Busquets, R.; Wei, Z.J. Physicochemical and antioxidant properties of Lycium barbarum seed dreg polysaccharides prepared by continuous extraction. Food Chem. X, 2022, 14, 100282.
[http://dx.doi.org/10.1016/j.fochx.2022.100282] [PMID: 35299725]
[29]
Khemakhem, I.; Abdelhedi, O.; Trigui, I.; Ayadi, M.A.; Bouaziz, M. Structural, antioxidant and antibacterial activities of polysaccharides extracted from olive leaves. Int. J. Biol. Macromol., 2018, 106, 425-432.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.037] [PMID: 28802847]
[30]
Wu, S.; Li, F.; Jia, S.; Ren, H.; Gong, G.; Wang, Y.; Lv, Z.; liu, Y. Drying effects on the antioxidant properties of polysaccharides obtained from Agaricus blazei Murrill. Carbohydr. Polym., 2014, 103, 414-417.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.075] [PMID: 24528748]
[31]
Prakash Maran, J.; Mekala, V.; Manikandan, S. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydr. Polym., 2013, 92(2), 2018-2026.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.086] [PMID: 23399253]
[32]
Sun, H.; Li, C.; Ni, Y.; Yao, L.; Jiang, H.; Ren, X.; Fu, Y.; Zhao, C. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity. Carbohydr. Polym., 2019, 206, 557-564.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.010] [PMID: 30553357]
[33]
Jalili Safaryan, M.; Ganjloo, A.; Bimakr, M.; Zarringhalami, S. Optimization of ultrasound-assisted extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from green pea pods. Foods, 2016, 5(4), 78.
[http://dx.doi.org/10.3390/foods5040078] [PMID: 28231174]
[34]
Zhu, C.; Zhai, X.; Li, L.; Wu, X.; Li, B. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel. Food Chem., 2015, 177, 139-146.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.022] [PMID: 25660869]
[35]
Li, J.; Chen, Z.; Shi, H.; Yu, J.; Huang, G.; Huang, H. Ultrasoundassisted extraction and properties of polysaccharide from Ginkgo biloba leaves. Ultrason. Sonochem., 2023, 93, 106295.
[http://dx.doi.org/10.1016/j.ultsonch.2023.106295] [PMID: 36638652]
[36]
Wang, Y.X.; Xin, Y.; Yin, J.Y.; Huang, X.J.; Wang, J.Q.; Hu, J.L.; Geng, F.; Nie, S.P. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chem., 2022, 368, 130772.
[http://dx.doi.org/10.1016/j.foodchem.2021.130772] [PMID: 34399182]
[37]
Wang, J.; Chen, S.; Nie, S.; Cui, S.W.; Wang, Q.; Phillips, A.O.; Phillips, G.O.; Xie, M. Structural characterization and chain conformation of water-soluble β-glucan from wild cordyceps sinensis. J. Agric. Food Chem., 2019, 67(45), 12520-12527.
[http://dx.doi.org/10.1021/acs.jafc.9b05340] [PMID: 31634426]
[38]
Liang, Z.; Song, M.; Yin, Z.; Wang, G.; Wang, J.; Liu, L.; Kang, W. Structural characterization and anticoagulant activity of homogalacturonan from durian peel. J. Mol. Struct., 2022, 1248, 131467.
[http://dx.doi.org/10.1016/j.molstruc.2021.131467]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy