Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Computational Modelling of Heat Transfer through Aluminium Metal Foams for LiFePO4 Battery Cooling

Author(s): Arjun P S and D. Arumuga Perumal*

Volume 17, Issue 3, 2024

Published on: 23 February, 2024

Page: [196 - 207] Pages: 12

DOI: 10.2174/0122127976289702240212040839

Price: $65

Abstract

Temperature is crucial for battery pack durability and power. Folded fin and serpentine channel cooling methods are mostly used to cool the pack. However, fluid absorption during cooling can reduce capacity and cause downstream temperatures to be higher than upstream. Consistent cooling is vital to prevent temperature variation and increase battery pack lifespan. This work is concerned with the computational study of heat dissipation from open-cell aluminium metal foam for cooling LiFePO4 battery packs. The battery module consists of six pieces of pouch cell and three pieces of the aluminium foam heat sink. In the present study, aluminium foams are positioned between the LiFePO4 battery modules that are arranged in a vertical manner. Thermal interaction between the battery module and aluminum foam was studied. The effect of pore density on heat dissipation performance at different mass flow rates was explored. It has been discovered that aluminium foam with suitable porosity and pore density can efficiently cool the LiFePO4 battery pack. This paper provides a theoretical framework for designing a thermal management system for lithium- ion batteries using aluminium foam.

Background: Metal foam cooling is an established technique for thermal management of Lithiumion batteries in electric vehicles.

Objective: The present study aims to analyze heat transfer through aluminium metal foams for vertically aligned LiFePO4 battery pack cooling.

Methods: The Darcy extended Forchheimer (DEF) model examines fluid flow through metallic foams, using the local thermal non-equilibrium model to determine heat transfer.

Results: The impact of the density of pores in the aluminium foam on the average wall temperature and temperature difference along the battery surface is determined. The variation of heat transfer of lithium-ion battery modules for different mass flow rates is also studied.

Conclusion: The results indicate that utilizing aluminium foam as a heat transfer medium for battery modules significantly enhances their thermal management performance.

[1]
Saw LH, Ye Y, Yew MC, Chong WT, Yew MK, Ng TC. Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system. Appl Energy 2017; 204: 1489-99.
[http://dx.doi.org/10.1016/j.apenergy.2017.04.022]
[2]
Fan Y, Bao Y, Ling C, Chu Y, Tan X, Yang S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng 2019; 155: 96-109.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.03.157]
[3]
Monika K, Chakraborty C, Roy S, Dinda S, Singh SA, Datta SP. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. J Energy Storage 2021; 35: 102301.
[http://dx.doi.org/10.1016/j.est.2021.102301]
[4]
Yates M, Akrami M, Javadi AA. Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries. J Energy Storage 2021; 33: 100913.
[http://dx.doi.org/10.1016/j.est.2019.100913]
[5]
Ding Y, Ji H, Wei M, Liu R. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields. Int J Heat Mass Transf 2022; 183: 122178.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122178]
[6]
Lv Y, Zhou D, Yang X, Liu X, Li X, Zhang G. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery. Appl Therm Eng 2019; 159: 113885.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.113885]
[7]
Patil MS, Seo JH, Panchal S, Jee SW, Lee MY. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. Int J Heat Mass Transf 2020; 155: 119728.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119728]
[8]
Shang Z, Qi H, Liu X, Ouyang C, Wang Y. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. Int J Heat Mass Transf 2019; 130: 33-41.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.10.074]
[9]
Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf 2018; 120: 751-62.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.12.083]
[10]
Liu J, Li H, Li W, Shi J, Wang H, Chen J. Thermal characteristics of power battery pack with liquid-based thermal management. Appl Therm Eng 2020; 164: 114421.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.114421]
[11]
Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Appl Therm Eng 2017; 122: 80-90.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.05.010]
[12]
Joe ES, Arumuga Perumal D. Computational analysis of fluid immersed active cooling for battery thermal management using thermal lattice Boltzmann method. Eur Phys J Spec Top 2022; 231(13-14): 2865-77.
[http://dx.doi.org/10.1140/epjs/s11734-022-00605-7]
[13]
Jouhara H, Serey N, Khordehgah N, Bennett R, Almahmoud S, Lester SP. Investigation, development and experimental analyses of a heat pipe based battery thermal management system. Int J Thermofluids 2020; 1-2: 100004.
[http://dx.doi.org/10.1016/j.ijft.2019.100004]
[14]
Tran TH, Harmand S, Desmet B, Filangi S. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Appl Therm Eng 2014; 63(2): 551-8.
[http://dx.doi.org/10.1016/j.applthermaleng.2013.11.048]
[15]
Mbulu H, Laoonual Y, Wongwises S. Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Stud Therm Eng 2021; 26: 101029.
[http://dx.doi.org/10.1016/j.csite.2021.101029]
[16]
Dan D, Yao C, Zhang Y, Zhang H, Zeng Z, Xu X. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Appl Therm Eng 2019; 162: 114183.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.114183]
[17]
Wei T, Xiaoming X, Hua D, Yaohua G, Jicheng L, Hongchao W. Sensitivity analysis of the battery thermal management system with a reciprocating cooling strategy combined with a flat heat pipe. ACS Omega 2020; 5(14): 8258-67.
[http://dx.doi.org/10.1021/acsomega.0c00552] [PMID: 32309736]
[18]
Alihosseini A, Shafaee M. Experimental study and numerical simulation of a Lithium-ion battery thermal management system using a heat pipe. J Energy Storage 2021; 39: 102616.
[http://dx.doi.org/10.1016/j.est.2021.102616]
[19]
Ye X, Zhao Y, Quan Z. Thermal management system of lithium-ion battery module based on micro heat pipe array. Int J Energy Res 2018; 42(2): 648-55.
[http://dx.doi.org/10.1002/er.3847]
[20]
Rao Z, Huo Y, Liu X. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery. Exp Therm Fluid Sci 2014; 57: 20-6.
[http://dx.doi.org/10.1016/j.expthermflusci.2014.03.017]
[21]
IEEE Power & Energy Society, IEEE Industry Applications Society, Institute of Electrical and Electronics Engineers 2020. IEEE Transportation Electrification Conference & Expo (ITEC)
[22]
Liu F, Huang L, Duan X, et al. A facile method to prepare noble metal nanoparticles modified Self-Assembly (SAM) electrode. J Exp Nanosci 2018; 13(1): 1-10.
[http://dx.doi.org/10.1080/17458080.2017.1373202]
[23]
Hong S, Zhang X, Wang S, Zhang Z. Experimental investigation on the characters of ultra-thin loop heat pipe applied in BTMSEnergy Procedia. Elsevier Ltd 2015; pp. 3192-200.
[http://dx.doi.org/10.1016/j.egypro.2015.07.669]
[24]
Rao Z, Wang S, Wu M, Lin Z, Li F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers Manage 2013; 65: 92-7.
[http://dx.doi.org/10.1016/j.enconman.2012.08.014]
[25]
Ling Z, Li S, Cai C, Lin S, Fang X, Zhang Z. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability. Appl Therm Eng 2021; 193: 117002.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117002]
[26]
Zhang J, Li X, Zhang G, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management. Energy Convers Manage 2020; 204: 112319.
[http://dx.doi.org/10.1016/j.enconman.2019.112319]
[27]
Zhang J, Li X, Zhang G, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. J Power Sources 2020; 480: 229116.
[http://dx.doi.org/10.1016/j.jpowsour.2020.229116]
[28]
Luo X, Guo Q, Li X, et al. Experimental investigation on a novel phase change material composites coupled with graphite film used for thermal management of lithium-ion batteries. Renew Energy 2020; 145: 2046-55.
[http://dx.doi.org/10.1016/j.renene.2019.07.112]
[29]
Zhang X, Liu C, Rao Z. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material. J Clean Prod 2018; 201: 916-24.
[http://dx.doi.org/10.1016/j.jclepro.2018.08.076]
[30]
Li WQ, Qu ZG, He YL, Tao YB. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sources 2014; 255: 9-15.
[http://dx.doi.org/10.1016/j.jpowsour.2014.01.006]
[31]
Zhang Z, Li Y. Experimental study of a passive thermal management system using copper foam-paraffin composite for lithium ion batteriesEnergy Procedia. Elsevier Ltd 2017; pp. 2403-8.
[http://dx.doi.org/10.1016/j.egypro.2017.12.174]
[32]
Luo M, Song J, Ling Z, Zhang Z, Fang X. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C. Mater Today Energy 2021; 20: 100652.
[http://dx.doi.org/10.1016/j.mtener.2021.100652]
[33]
Huang Q, Li X, Zhang G, et al. Pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials. ACS Appl Energy Mater 2021; 4(2): 1978-92.
[http://dx.doi.org/10.1021/acsaem.0c03116]
[34]
Jiang ZY, Qu ZG. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study. Appl Energy 2019; 242: 378-92.
[http://dx.doi.org/10.1016/j.apenergy.2019.03.043]
[35]
Li X, He F, Zhang G, Huang Q, Zhou D. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. Appl Therm Eng 2019; 146: 866-80.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.10.061]
[36]
Zhang J, Wu X, Chen K, Zhou D, Song M. Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. J Power Sources 2021; 490: 229539.
[http://dx.doi.org/10.1016/j.jpowsour.2021.229539]
[37]
Li F, Ibrahim M, Saeed T, El-Refaey AM, Fagiry MA, Elkhader BA. Numerical simulation of air outlet spacing change in thermal management lithium-ion battery pack with triangular arrangement for use in electric vehicles. J Energy Storage 2022; 49: 104117.
[http://dx.doi.org/10.1016/j.est.2022.104117]
[38]
Wang M, Hung TC, Xi H. Numerical study on performance enhancement of the air-cooled battery thermal management system by adding parallel plates. Energies 2021; 14(11): 3096.
[http://dx.doi.org/10.3390/en14113096]
[39]
Saechan P, Dhuchakallaya I. Numerical study on the air-cooled thermal management of Lithium-ion battery pack for electrical vehicles. Energy Rep 2022; 8: 1264-70.
[http://dx.doi.org/10.1016/j.egyr.2021.11.089]
[40]
Lu Z, Yu X, Wei L, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement. Appl Therm Eng 2018; 136: 28-40.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.02.080]
[41]
Jadhav PH. G T, Gnanasekaran N, Mobedi M. Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection. Int J Heat Mass Transf 2022; 182: 121911.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121911]
[42]
Garrity PT, Klausner JF, Mei R. Performance of aluminum and carbon foams for air side heat transfer augmentation. J Heat Transfer 2010; 132(12): 121901.
[http://dx.doi.org/10.1115/1.4002172]
[43]
Hunt ML, Tien CL. Hunt M.L, and Tien, C.L. Effects of thermal dispersion on forced convection in fibrous media, Int J Heat Mass Trans 1988; 31(2): 301-9.
[http://dx.doi.org/10.1016/0017-9310(88)90013-0]
[44]
Dietrich B. Pressure drop correlation for ceramic and metal sponges. Chem Eng Sci 2012; 74: 192-9.
[http://dx.doi.org/10.1016/j.ces.2012.02.047]
[45]
Dietrich B, Schabel W, Kind M, Martin H. Pressure drop measurements of ceramic sponges—Determining the hydraulic diameter. Chem Eng Sci 2009; 64(16): 3633-40.
[http://dx.doi.org/10.1016/j.ces.2009.05.005]
[46]
Nield DA, Bejan A. Convection in porous media. Springer 2006.
[47]
Veismoradi A, Modir A, Ghalambaz M, Chamkha A. A phase change/metal foam heatsink for thermal management of battery packs. Int J Therm Sci 2020; 157: 106514.
[http://dx.doi.org/10.1016/j.ijthermalsci.2020.106514]
[48]
Heyhat MM, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. J Energy Storage 2020; 28: 101235.
[http://dx.doi.org/10.1016/j.est.2020.101235]
[49]
Qu ZG, Li WQ, Tao WQ. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material. Int J Hydrogen Energy 2014; 39(8): 3904-13.
[http://dx.doi.org/10.1016/j.ijhydene.2013.12.136]
[50]
Jilte RD, Kumar R, Ahmadi MH. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. J Clean Prod 2019; 240: 118131.
[http://dx.doi.org/10.1016/j.jclepro.2019.118131]
[51]
Mashayekhi M, Houshfar E, Ashjaee M. Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries. Appl Therm Eng 2020; 178: 115543.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.115543]
[52]
Patel AK, Patel TV, Patel PD, Patel JJ. Experimental analysis of temperature control of lithium-ion battery by utilize heat pipe. Vidyabharati Int Interdiscip Res J 2021; 13: 302-9.
[53]
Sarchami A, Najafi M, Imam A, Houshfar E. Experimental study of thermal management system for cylindrical Li-ion battery pack based on nanofluid cooling and copper sheath. Int J Therm Sci 2022; 171: 107244.
[http://dx.doi.org/10.1016/j.ijthermalsci.2021.107244]
[54]
Mondal B, Lopez CF, Mukherjee PP. Exploring the efficacy of nanofluids for lithium-ion battery thermal management. Int J Heat Mass Transf 2017; 112: 779-94.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.130]
[55]
Sefidan AM, Sojoudi A, Saha SC. Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow. Int J Therm Sci 2017; 117: 44-58.
[http://dx.doi.org/10.1016/j.ijthermalsci.2017.03.006]
[56]
Kiani M, Omiddezyani S, Nejad AM, Ashjaee M, Houshfar E. Novel hybrid thermal management for Li-ion batteries with nanofluid cooling in the presence of alternating magnetic field: An experimental study. Case Stud Therm Eng 2021; 28: 101539.
[http://dx.doi.org/10.1016/j.csite.2021.101539]
[57]
Tousi M, Sarchami A, Kiani M, Najafi M, Houshfar E. Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath. J Energy Storage 2021; 41: 102910.
[http://dx.doi.org/10.1016/j.est.2021.102910]
[58]
Wu F, Rao Z. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Appl Therm Eng 2017; 115: 659-69.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.12.139]
[59]
Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. Int J Heat Mass Transf 2015; 91: 374-84.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.128]
[60]
Wiriyasart S, Hommalee C, Sirikasemsuk S, Prurapark R, Naphon P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud Therm Eng 2020; 18: 100583.
[http://dx.doi.org/10.1016/j.csite.2020.100583]
[61]
Chen K, Unsworth G, Li X. Measurements of heat generation in prismatic Li-ion batteries. J Power Sources 2014; 261: 28-37.
[http://dx.doi.org/10.1016/j.jpowsour.2014.03.037]
[63]
Kamath PM, Balaji C, Venkateshan SP. Experimental investigation of flow assisted mixed convection in high porosity foams in vertical channels. Int J Heat Mass Transf 2011; 54(25-26): 5231-41.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.08.020]
[64]
Zukauskas A. Heat Transfer from Tubes in Crossflow. Adv Heat Trans 1987; 18: 87-159.
[http://dx.doi.org/10.1016/S0065-2717(08)70118-7]
[65]
Lin W, Xie G, Yuan J, Sundén B. Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium modelHeat Transfer Engineering. Taylor and Francis Ltd. 2016; pp. 314-22.
[http://dx.doi.org/10.1080/01457632.2015.1052682]
[66]
Calmidi VV, Campmode RLM. Forced Convection in High Porosity Metal Foams 2000. Available from: http://asmedigitalcollection.asme.org/heattransfer/article-pdf/122/3/557/5789987/557_1.pdf
[http://dx.doi.org/10.1115/1.1287793]
[67]
Chen K, Chen Y, Li Z, Yuan F, Wang S. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. Int J Heat Mass Transf 2018; 127: 393-401.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.06.131]
[68]
Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. Improved thermal performance of a large laminated lithium-ion power battery by reciprocating air flow. Appl Therm Eng 2019; 152: 445-54.
[http://dx.doi.org/10.1016/j.applthermaleng.2019.02.061]
[69]
Zhang F, Lin A, Wang P, Liu P. Optimization design of a parallel air-cooled battery thermal management system with spoilers. Appl Therm Eng 2021; 182: 116062.
[http://dx.doi.org/10.1016/j.applthermaleng.2020.116062]
[70]
Ahsan M. Numerical analysis of friction factor for a fully developed turbulent flow using k-ε turbulence model with enhanced wall treatment. Beni Suef Univ J Basic Appl Sci 2014; 3(4): 269-77.
[http://dx.doi.org/10.1016/j.bjbas.2014.12.001]
[71]
Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol 2018; 325: 78-91.
[http://dx.doi.org/10.1016/j.powtec.2017.10.040]
[72]
Baragh S, Shokouhmand H, Ajarostaghi SSM, Nikian M. An experimental investigation on forced convection heat transfer of single-phase flow in a channel with different arrangements of porous media. Int J Therm Sci 2018; 134: 370-9.
[http://dx.doi.org/10.1016/j.ijthermalsci.2018.04.030]
[73]
Bağcı Ö, Dukhan N. Impact of pore density on oscillating liquid flow in metal foam. Exp Therm Fluid Sci 2018; 97: 246-53.
[http://dx.doi.org/10.1016/j.expthermflusci.2018.04.020]
[74]
Celik H, Mobedi M, Manca O, Ozkol U. A pore scale analysis for determination of interfacial convective heat transfer coefficient for thin periodic porous media under mixed convection. Int J Numer Methods Heat Fluid Flow 2017; 27(00)
[http://dx.doi.org/10.1108/HFF-01-2017-0036]
[75]
Bamorovat Abadi G, Kim KC. Experimental heat transfer and pressure drop in a metal-foam-filled tube heat exchanger. Exp Therm Fluid Sci 2017; 82: 42-9.
[http://dx.doi.org/10.1016/j.expthermflusci.2016.10.031]
[76]
Fen SS, Kuang JJ, Lu TJ, Ichimiya K. Heat transfer and pressure drop characteristics of finned metal foam heat sinks under uniform impinging flow, Journal of Electronic Packaging. Transactions of the ASME 137.
[http://dx.doi.org/10.1115/1.4029722]
[77]
Richard CP, Eric V, Tim AS. Lithium-ion battery pack having passive cooling. EP2438640B1 (2010).
[78]
Tony Q. Method and system for automotive battery cooling US20120148881A1 , 2012.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy