Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Gender Differences in the Predictive Value of Obesity Indices for Insulin Resistance in Adult Mexican Individuals

Author(s): Elizalde-Barrera Cesar Ivan*, Estrada-Garcia Teresa, Lopez-Saucedo Catalina, Rubio-Guerra Alberto Francisco and Ramirez-Velasco Diana Elena

Volume 24, Issue 14, 2024

Published on: 23 February, 2024

Page: [1640 - 1650] Pages: 11

DOI: 10.2174/0118715303284893240215070923

Price: $65

Abstract

Background: Obesity-linked insulin resistance (IR) is an important risk factor for metabolic diseases, and anthropometric indices are commonly used for risk assessment.

Aim: The study aimed to assess possible differences between women and men in the predictive value and association of nine obesity indices with IR, as assessed by HOMA-IR, in a nondiabetic adult population.

Methods: The cross-sectional study included individuals recruited from a hospital in Mexico City. Indices evaluated were waist circumference (WC), hip circumference (HC), body mass index (BMI), waist-to-hip ratio, waist-to-height ratio, visceral adiposity index, body adiposity index (BAI), relative fat mass (RFM), and conicity index (CI). Fasting plasma glucose and insulin were measured to calculate HOMA-IR. Correlation analysis was performed between obesity indices and HOMA-IR. Receiver operating characteristics curve analyses were performed to determine predictive accuracy and cut-off values of obesity indices for IR. A binary logistic regression (BLR) analysis with OR calculation was performed to determine the strength of association with HOMA-IR.

Results: We included 378 individuals (59% females, mean age 46.38 ±12.25 years). The highest Pearson coefficient value was observed for BMI among women, while among men, the highest values were found for BMI and BAI. WC among women, and BAI and RFM among men showed the highest sensitivity, while the highest specificity was observed for WHR among women and WC among men with respect to insulin prediction. In the adjusted BLR model, BMI, WC, and WHR among women and WC and RFM and BAI among men were independently associated with IR, showing the highest odds ratio (OR).

Conclusion: In Mexican adults, WC, WHR, RFM and BAI could be complementary tools for BMI in screening for IR.

[1]
WHO. Obesity and overweight. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed Dec 15 2021).
[2]
Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism, 2019, 92, 6-10.
[http://dx.doi.org/10.1016/j.metabol.2018.09.005] [PMID: 30253139]
[3]
Gomez‐Cuevas, R. II Consenso Latino‐Americano de Obesidad. 2016. Available from: http://www.administracion.usmp.edu.pe/institutoconsumo/wp-content/uploads/LIBRO-II-CONSENSO-LATINOAMERICANO-DE-OBESIDAD-2017.pdf
[4]
Dai, H.; Alsalhe, T.A.; Chalghaf, N.; Riccò, M.; Bragazzi, N.L.; Wu, J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS Med., 2020, 17(7), e1003198.
[http://dx.doi.org/10.1371/journal.pmed.1003198] [PMID: 32722671]
[5]
Bakhtiyari, M.; Kazemian, E.; Kabir, K.; Hadaegh, F.; Aghajanian, S.; Mardi, P.; Ghahfarokhi, N.T.; Ghanbari, A.; Mansournia, M.A.; Azizi, F. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: A population-based cohort study. Sci. Rep., 2022, 12(1), 1544.
[http://dx.doi.org/10.1038/s41598-022-05536-w] [PMID: 35091663]
[6]
Encuesta Nacional de Salud y Nutrición 2018-2019. Resultados nacionales. Available from: www.ensanut.insp.mx/encuestas/ensanut2018
[7]
Barquera, S.; Hernández-Barrera, L.; Trejo, B.; Shamah, T.; Campos-Nonato, I.; Rivera-Dommarco, J. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018-19. Salud Publica Mex., 2020, 62(6, Nov-Dic), 682-692.
[http://dx.doi.org/10.21149/11630] [PMID: 33620965]
[8]
Stefan, N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol., 2020, 8(7), 616-627.
[http://dx.doi.org/10.1016/S2213-8587(20)30110-8] [PMID: 32559477]
[9]
Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis., 2014, 56(4), 369-381.
[http://dx.doi.org/10.1016/j.pcad.2013.10.016] [PMID: 24438728]
[10]
Snijder, M.B.; Zimmet, P.Z.; Visser, M.; Dekker, J.M.; Seidell, J.C.; Shaw, J.E. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The AusDiab Study. Int. J. Obes., 2004, 28(3), 402-409.
[http://dx.doi.org/10.1038/sj.ijo.0802567] [PMID: 14724659]
[11]
Yusuf, S.; Hawken, S.; Ôunpuu, S.; Bautista, L.; Franzosi, M.G.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; Tanomsup, S.; Wangai, P., Jr; Razak, F.; Sharma, A.M.; Anand, S.S. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: A case-control study. Lancet, 2005, 366(9497), 1640-1649.
[http://dx.doi.org/10.1016/S0140-6736(05)67663-5] [PMID: 16271645]
[12]
Vecchié, A.; Dallegri, F.; Carbone, F.; Bonaventura, A.; Liberale, L.; Portincasa, P.; Frühbeck, G.; Montecucco, F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med., 2018, 48, 6-17.
[http://dx.doi.org/10.1016/j.ejim.2017.10.020] [PMID: 29100895]
[13]
Goossens, G.H. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obes. Facts, 2017, 10(3), 207-215.
[http://dx.doi.org/10.1159/000471488] [PMID: 28564650]
[14]
Perez-Campos, E.; Mayoral, L.P-C.; Andrade, G.M.; Mayoral, E.P-C.; Huerta, T.H.; Canseco, S.P.; Canales, F.J.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Santiago, A.D.; Alpuche, J.J.; Zenteno, E.; Ruíz, H.M.; Cruz, R.M.; Jeronimo, J.H. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res., 2020, 151(1), 11-21.
[http://dx.doi.org/10.4103/ijmr.IJMR_1768_17] [PMID: 32134010]
[15]
Piché, M.E.; Tchernof, A.; Després, J.P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res., 2020, 126(11), 1477-1500.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316101] [PMID: 32437302]
[16]
Nazare, J.A.; Smith, J.; Borel, A.L.; Aschner, P.; Barter, P.; Van Gaal, L.; Tan, C.E.; Wittchen, H.U.; Matsuzawa, Y.; Kadowaki, T.; Ross, R.; Brulle-Wohlhueter, C.; Alméras, N.; Haffner, S.M.; Balkau, B.; Després, J.P. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am. J. Cardiol., 2015, 115(3), 307-315.
[http://dx.doi.org/10.1016/j.amjcard.2014.10.039] [PMID: 25499404]
[17]
Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; Griffin, B.A.; Zambon, A.; Barter, P.; Fruchart, J.C.; Eckel, R.H.; Matsuzawa, Y.; Després, J.P. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol., 2020, 16(3), 177-189.
[http://dx.doi.org/10.1038/s41574-019-0310-7] [PMID: 32020062]
[18]
Kissebah, A.H.; Vydelingum, N.; Murray, R.; Evans, D.J.; Kalkhoff, R.K.; Adams, P.W.; Adams, P.W. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab., 1982, 54(2), 254-260.
[http://dx.doi.org/10.1210/jcem-54-2-254] [PMID: 7033275]
[19]
Krotkiewski, M.; Björntorp, P.; Sjöström, L.; Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest., 1983, 72(3), 1150-1162.
[http://dx.doi.org/10.1172/JCI111040] [PMID: 6350364]
[20]
Qiao, Q.; Nyamdorj, R. Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index? Eur. J. Clin. Nutr., 2010, 64(1), 30-34.
[http://dx.doi.org/10.1038/ejcn.2009.93] [PMID: 19724291]
[21]
Ashwell, M.; Gunn, P.; Gibson, S. Waist‐to‐height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta‐analysis. Obes. Rev., 2012, 13(3), 275-286.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00952.x] [PMID: 22106927]
[22]
Elizalde-Barrera, C.I.; Rubio-Guerra, A.F.; Lozano-Nuevo, J.J.; Olvera-Gomez, J.L. Triglycerides and waist to height ratio are more accurate than visceral adiposity and body adiposity index to predict impaired fasting glucose. Diabetes Res. Clin. Pract., 2019, 153, 49-54.
[http://dx.doi.org/10.1016/j.diabres.2019.05.019] [PMID: 31132383]
[23]
Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity, 2011, 19(5), 1083-1089.
[http://dx.doi.org/10.1038/oby.2011.38] [PMID: 21372804]
[24]
Freedman, D.S.; Thornton, J.C.; Pi-Sunyer, F.X. The body adiposity index (hip circumference ÷ height(1.5) is not a more accurate measure of adiposity than is BMI, waist circumference, or hip circumference. Obesity, 2012, 20(12), 2438-2444.
[http://dx.doi.org/10.1038/oby.2012.81]
[25]
Valdez, R. A simple model-based index of abdominal adiposity. J. Clin. Epidemiol., 1991, 44(9), 955-956.
[http://dx.doi.org/10.1016/0895-4356(91)90059-I] [PMID: 1890438]
[26]
do Prado, C.B.; Martins, C.A.; Cremonini, A.C.P.; Ferreira, J.R.S.; Cattafesta, M.; Almeida-de-Souza, J.; Zandonade, E.; Bezerra, O.M.P.A.; Salaroli, L.B. Cut points of the conicity index and associated factors in brazilian rural workers. Nutrients, 2022, 14(21), 4487.
[http://dx.doi.org/10.3390/nu14214487] [PMID: 36364746]
[27]
Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care, 2010, 33(4), 920-922.
[http://dx.doi.org/10.2337/dc09-1825] [PMID: 20067971]
[28]
Kang, Y.M.; Jung, C.H.; Cho, Y.K.; Jang, J.E.; Hwang, J.Y.; Kim, E.H.; Lee, W.J.; Park, J.Y.; Kim, H.K. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype. PLoS One, 2017, 12(6), e0179635.
[http://dx.doi.org/10.1371/journal.pone.0179635] [PMID: 28644850]
[29]
Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage — A cross-sectional study in American adult individuals. Sci. Rep., 2018, 8(1), 10980.
[http://dx.doi.org/10.1038/s41598-018-29362-1] [PMID: 30030479]
[30]
Kobo, O.; Leiba, R.; Avizohar, O.; Karban, A. Relative fat mass is a better predictor of dyslipidemia and metabolic syndrome than body mass index. Cardiovasc. Endocrinol. Metab., 2019, 8(3), 77-81.
[http://dx.doi.org/10.1097/XCE.0000000000000176] [PMID: 31646301]
[31]
Guzmán-León, A.E.; Velarde, A.G.; Vidal-Salas, M.; Urquijo-Ruiz, L.G.; Caraveo-Gutiérrez, L.A.; Valencia, M.E. External validation of the relative fat mass (RFM) index in adults from north-west Mexico using different reference methods. PLoS One, 2019, 14(12), e0226767.
[http://dx.doi.org/10.1371/journal.pone.0226767] [PMID: 31891616]
[32]
Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol., 2019, 234(6), 8152-8161.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[33]
Lee, S.H.; Park, S.Y.; Choi, C.S. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab. J., 2022, 46(1), 15-37.
[http://dx.doi.org/10.4093/dmj.2021.0280] [PMID: 34965646]
[34]
Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846.
[http://dx.doi.org/10.1038/nature05482] [PMID: 17167471]
[35]
Gołacki, J.; Matuszek, M.; Matyjaszek-Matuszek, B. Link between insulin resistance and obesity—from diagnosis to treatment. Diagnostics, 2022, 12(7), 1681.
[http://dx.doi.org/10.3390/diagnostics12071681] [PMID: 35885586]
[36]
Lebovitz, H.E.; Banerji, M.A. Point: Visceral adiposity is causally related to insulin resistance. Diabetes Care, 2005, 28(9), 2322-2325.
[http://dx.doi.org/10.2337/diacare.28.9.2322] [PMID: 16123512]
[37]
DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. Endocrinol. Metab., 1979, 237(3), E214-E223.
[http://dx.doi.org/10.1152/ajpendo.1979.237.3.E214] [PMID: 382871]
[38]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and? -cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[39]
Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 2000, 23(1), 57-63.
[http://dx.doi.org/10.2337/diacare.23.1.57] [PMID: 10857969]
[40]
Geer, E.B.; Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med., 2009, 6(Suppl 1)(Suppl. 1), 60-75.
[http://dx.doi.org/10.1016/j.genm.2009.02.002] [PMID: 19318219]
[41]
Guglielmi, V.; Sbraccia, P. Obesity phenotypes: Depot-differences in adipose tissue and their clinical implications. Eat. Weight Disord., 2018, 23(1), 3-14.
[http://dx.doi.org/10.1007/s40519-017-0467-9] [PMID: 29230714]
[42]
Haffner, S.M.; Gonzalez, C.; Miettinen, H.; Kennedy, E.; Stern, M.P. A prospective analysis of the HOMA model. The mexico city diabetes study. Diabetes Care, 1996, 19(10), 1138-1141.
[http://dx.doi.org/10.2337/diacare.19.10.1138] [PMID: 8886564]
[43]
Kawada, T.; Otsuka, T.; Inagaki, H.; Wakayama, Y.; Li, Q.; Li, Y.J.; Katsumata, M. Insulin resistance, as expressed by HOMA-R, is strongly determined by waist circumference or body mass index among Japanese working men. Obes. Res. Clin. Pract., 2010, 4(1), e9-e14.
[http://dx.doi.org/10.1016/j.orcp.2009.07.001] [PMID: 24345621]
[44]
Ybarra, J.; Sanchez-Hernandez, J.; Pou, J.M.; Fernández, S.; Gich, I.; Ordóñez-Llanos, J.; Jurado, J.; De Leiva, A.; Pérez, A. Anthropometrical measures are easily obtainable sensitive and specific predictors of insulin resistance in healthy individuals. Glob. Heart, 2005, 1(2), 175-181.
[http://dx.doi.org/10.1016/j.precon.2005.05.001]
[45]
Rueda, M.; Herencia, J.A.; Orozco, J.; Rodenas, L.M.; Valero, L.; Garrote, J.A.; Moreno, P.; Abril, J.; Hernández, A.J.; Escribano, F. Association of insulin resistance to different anthropometric measures and cardiovascular risk factors in a non-diabetic population. Endocrinol. Nutr., 2011, 58(9), 464-471.
[http://dx.doi.org/10.1016/j.endonu.2011.06.003] [PMID: 21963533]
[46]
Zhang, M.; Hu, T. Associations of different adipose tissue depots with insulin resistance: A systematic review and meta-analysis of observational studies. Sci. Rep., 2015, 5(1), 18495.
[http://dx.doi.org/10.1038/srep18495]
[47]
Štěpánek, L.; Horáková, D.; Cibičková, Ľ.; Vaverková, H.; Karásek, D.; Nakládalová, M.; Zapletalová, J. Can visceral adiposity index serve as a simple tool for identifying individuals with insulin resistance in daily clinical practice? Medicina, 2019, 55(9), 545.
[http://dx.doi.org/10.3390/medicina55090545] [PMID: 31470593]
[48]
Barazzoni, R.; Cappellari, G.; Semolic, A.; Ius, M.; Zanetti, M.; Gabrielli, A.; Vinci, P.; Guarnieri, G.; Simon, G. Central adiposity markers, plasma lipid profile and cardiometabolic risk prediction in overweight-obese individuals. Clin. Nutr., 2019, 38(3), 1171-1179.
[http://dx.doi.org/10.1016/j.clnu.2018.04.014] [PMID: 29779870]
[49]
Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Rizzo, M.; Banach, M.; Rysz, J. Predictors of insulin resistance in patients with obesity: A pilot study. Angiology, 2014, 65(1), 22-30.
[http://dx.doi.org/10.1177/0003319712468291] [PMID: 23267236]
[50]
Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol., 2017, 75(11), 1185-1191.
[http://dx.doi.org/10.5603/KP.a2017.0149] [PMID: 28715064]
[51]
Matos, L.N.; Giorelli, G.V.; Dias, C.B. Correlation of anthropometric indicators for identifying insulin sensitivity and resistance. Sao Paulo Med. J., 2011, 129(1), 30-35.
[http://dx.doi.org/10.1590/S1516-31802011000100006] [PMID: 21437506]
[52]
Sung, Y.A.; Oh, J.Y.; Lee, H. Comparison of the body adiposity index to body mass index in Korean women. Yonsei Med. J., 2014, 55(4), 1028-1035.
[http://dx.doi.org/10.3349/ymj.2014.55.4.1028] [PMID: 24954333]
[53]
Kurniawan, L.B.; Syamsir, B.; Rahman, I.A.; Adnan, E.; Esa, T.; Widaningsih, Y.; Bahrun, U.; Arif, M. Anthropometric features in predicting insulin resistance among non-menopausal Indonesian adult females. Rom. J. Intern. Med., 2020, 58(3), 168-172.
[http://dx.doi.org/10.2478/rjim-2020-0015] [PMID: 32549128]
[54]
Nadeem, A.; Naveed, A.K.; Hussain, M.M.; Raza, S.I. Cut-off values of anthropometric indices to determine insulin resistance in Pakistani adults. J. Pak. Med. Assoc., 2013, 63(10), 1220-1225.
[PMID: 24392548]
[55]
Pekgor, S.; Duran, C.; Berberoglu, U.; Eryilmaz, M.A. The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients. Metab. Syndr. Relat. Disord., 2019, 17(5), 296-302.
[http://dx.doi.org/10.1089/met.2019.0005] [PMID: 30932744]
[56]
Bevan, P. Insulin signalling. J. Cell Sci., 2001, 114(8), 1429-1430.
[http://dx.doi.org/10.1242/jcs.114.8.1429] [PMID: 11282018]
[57]
Wu, H.; Ballantyne, C.M. Metabolic inflammation and insulin resistance in obesity. Circ. Res., 2020, 126(11), 1549-1564.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315896] [PMID: 32437299]
[58]
Wondmkun, Y.T. Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab. Syndr. Obes., 2020, 13, 3611-3616.
[http://dx.doi.org/10.2147/DMSO.S275898] [PMID: 33116712]
[59]
Tong, Y.; Xu, S.; Huang, L.; Chen, C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov. Today, 2022, 27(3), 822-830.
[http://dx.doi.org/10.1016/j.drudis.2021.11.001] [PMID: 34767960]
[60]
Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res. Clin. Pract., 2005, 69, 29-35.
[61]
El-Wakkad, A.; Hassan, N.E.; Sibaii, H.; El-Zayat, S.R. Proinflammatory, anti-inflammatory cytokines and adiponkines in students with central obesity. Cytokine, 2013, 61, 682-687.
[http://dx.doi.org/10.1016/j.cyto.2012.11.010]
[62]
Strawbridge, R.J.; Laumen, H.; Hamsten, A.; Breier, M.; Grallert, H.; Hauner, H.; Arner, P.; Dahlman, I. Effects of genetic loci associated with central obesity on adipocyte lipolysis. PLoS One, 2016, 11(4), e0153990.
[http://dx.doi.org/10.1371/journal.pone.0153990] [PMID: 27104953]
[63]
Preis, S.R.; Massaro, J.M.; Robins, S.J.; Hoffmann, U.; Vasan, R.S.; Irlbeck, T.; Meigs, J.B.; Sutherland, P.; D’Agostino, R.B., Sr; O’Donnell, C.J.; Fox, C.S. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity, 2010, 18(11), 2191-2198.
[http://dx.doi.org/10.1038/oby.2010.59] [PMID: 20339361]
[64]
Liu, L.; Feng, J.; Zhang, G.; Yuan, X.; Li, F.; Yang, T.; Hao, S.; Huang, D.; Hsue, C.; Lou, Q. Visceral adipose tissue is more strongly associated with insulin resistance than subcutaneous adipose tissue in Chinese subjects with pre-diabetes. Curr. Med. Res. Opin., 2018, 34(1), 123-129.
[http://dx.doi.org/10.1080/03007995.2017.1364226] [PMID: 28776439]
[65]
de Mutsert, R.; Gast, K.; Widya, R.; de Koning, E.; Jazet, I.; Lamb, H.; le Cessie, S.; de Roos, A.; Smit, J.; Rosendaal, F.; den Heijer, M. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands Epidemiology of Obesity Study. Metab. Syndr. Relat. Disord., 2018, 16(1), 54-63.
[http://dx.doi.org/10.1089/met.2017.0128] [PMID: 29338526]
[66]
Oka, R.; Yagi, K.; Sakurai, M.; Nakamura, K.; Nagasawa, S.; Miyamoto, S.; Nohara, A.; Kawashiri, M.; Hayashi, K.; Takeda, Y.; Yamagishi, M. Impact of visceral adipose tissue and subcutaneous adipose tissue on insulin resistance in middle-aged Japanese. J. Atheroscler. Thromb., 2012, 19(9), 814-822.
[http://dx.doi.org/10.5551/jat.12294] [PMID: 22813532]
[67]
Vega, G.L.; Adams-Huet, B.; Peshock, R.; Willett, D.; Shah, B.; Grundy, S.M. Influence of body fat content and distribution on variation in metabolic risk. J. Clin. Endocrinol. Metab., 2006, 91(11), 4459-4466.
[http://dx.doi.org/10.1210/jc.2006-0814] [PMID: 16926254]
[68]
Lee, M.J.; Wu, Y.; Fried, S.K. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med., 2013, 34(1), 1-11.
[http://dx.doi.org/10.1016/j.mam.2012.10.001] [PMID: 23068073]
[69]
Karpe, F.; Pinnick, K.E. Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes. Nat. Rev. Endocrinol., 2015, 11(2), 90-100.
[http://dx.doi.org/10.1038/nrendo.2014.185] [PMID: 25365922]
[70]
Carroll, J.F.; Chiapa, A.L.; Rodriquez, M.; Phelps, D.R.; Cardarelli, K.M.; Vishwanatha, J.K.; Bae, S.; Cardarelli, R. Visceral fat, waist circumference, and BMI: Impact of race/ethnicity. Obesity, 2008, 16(3), 600-607.
[http://dx.doi.org/10.1038/oby.2007.92] [PMID: 18239557]
[71]
Grundy, S.M.; Neeland, I.J.; Turer, A.T. Waist circumference as measure of abdominal fat compartments. J. Obes., 2013, 454285.
[http://dx.doi.org/10.1155/2013/454285]
[72]
Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity, 2011, 19(2), 402-408.
[http://dx.doi.org/10.1038/oby.2010.248] [PMID: 20948514]
[73]
Kuk, J.L.; Lee, S.; Heymsfield, S.B.; Ross, R. Waist circumference and abdominal adipose tissue distribution: Influence of age and sex. Am. J. Clin. Nutr., 2005, 81(6), 1330-1334.
[http://dx.doi.org/10.1093/ajcn/81.6.1330] [PMID: 15941883]
[74]
Esmaillzadeh, A.; Mirmiran, P.; Moeini, S.H.; Azizi, F. Larger hip circumference independently contributed to reduced metabolic risks in Tehranian adult women. Int. J. Cardiol., 2006, 108(3), 338-345.
[http://dx.doi.org/10.1016/j.ijcard.2005.05.019] [PMID: 15963581]
[75]
Cichosz, S.L.; Rasmussen, N.H.; Vestergaard, P.; Hejlesen, O. Is predicted body-composition and relative fat mass an alternative to body-mass index and waist circumference for disease risk estimation? Diabetes Metab. Syndr., 2022, 16(9), 102590.
[http://dx.doi.org/10.1016/j.dsx.2022.102590] [PMID: 35986982]
[76]
Khan, S.; Shahid, R.; Fazal, N.; Ijaz, A. Comparison of various abdominal obesity measures for predicting metabolic syndrome, diabetes, nephropathy, and dyslipidemia. J. Coll. Physicians Surg. Pak., 2019, 29(12), 1159-1164.
[http://dx.doi.org/10.29271/jcpsp.2019.12.1159] [PMID: 31839087]
[77]
Endukuru, C.K.; Gaur, G.S.; Dhanalakshmi, Y.; Sahoo, J.; Vairappan, B. Cut-off values and clinical efficacy of body roundness index and other novel anthropometric indices in identifying metabolic syndrome and its components among Southern-Indian adults. Diabetol. Int., 2022, 13(1), 188-200.
[http://dx.doi.org/10.1007/s13340-021-00522-5] [PMID: 35059255]
[78]
Gupta, S.; Kapoor, S. Body adiposity index: Its relevance and validity in assessing body fatness of adults. ISRN Obes., 2014, 2014, 1-5.
[http://dx.doi.org/10.1155/2014/243294] [PMID: 24587942]
[79]
Chiu, T.H.; Huang, Y.C.; Chiu, H.; Wu, P.Y.; Chiou, H.Y.C.; Huang, J.C.; Chen, S.C. Comparison of various obesity-related indices for identification of metabolic syndrome: A population-based study from taiwan biobank. Diagnostics, 2020, 10(12), 1081.
[http://dx.doi.org/10.3390/diagnostics10121081] [PMID: 33322810]
[80]
Melmer, A.; Lamina, C.; Tschoner, A.; Ress, C.; Kaser, S.; Laimer, M.; Sandhofer, A.; Paulweber, B.; Ebenbichler, C.F. Body adiposity index and other indexes of body composition in the SAPHIR study: Association with cardiovascular risk factors. Obesity, 2013, 21(4), 775-781.
[http://dx.doi.org/10.1002/oby.20289] [PMID: 23712981]
[81]
Lokpo, S.Y.; Ametefe, C.Y.; Osei-Yeboah, J.; Owiredu, W.K.B.A.; Ahenkorah-Fondjo, L.; Agordoh, P.D.; Acheampong, E.; Duedu, K.O.; Adejumo, E.N.; Appiah, M.; Asiamah, E.A.; Ativi, E.; Kwadzokpui, P.K. Performance of body adiposity index and relative fat mass in predicting bioelectric impedance analysis-derived body fat percentage: a cross-sectional study among patients with type 2 diabetes in the ho municipality, ghana. BioMed Res. Int., 2023, 2023, 1-11.
[http://dx.doi.org/10.1155/2023/1500905] [PMID: 37101689]
[82]
Kamińska, M.S.; Lubkowska, A.; Panczyk, M.; Walaszek, I.; Grochans, S.; Grochans, E.; Cybulska, A.M. Relationships of body mass index, relative fat mass index, and waist circumference with serum concentrations of parameters of chronic inflammation. Nutrients, 2023, 15(12), 2789.
[http://dx.doi.org/10.3390/nu15122789] [PMID: 37375693]
[83]
López, A.A.; Cespedes, M.L.; Vicente, T.; Tomas, M.; Bennasar-Veny, M.; Tauler, P.; Aguilo, A. Body adiposity index utilization in a Spanish Mediterranean population: Comparison with the body mass index. PLoS One, 2012, 7(4), e35281.
[http://dx.doi.org/10.1371/journal.pone.0035281] [PMID: 22496915]
[84]
Suthahar, N.; Meems, L.M.G.; Withaar, C.; Gorter, T.M.; Kieneker, L.M.; Gansevoort, R.T.; Bakker, S.J.L.; van Veldhuisen, D.J.; de Boer, R.A. Relative fat mass, a new index of adiposity, is strongly associated with incident heart failure: Data from PREVEND. Sci. Rep., 2022, 12(1), 147.
[http://dx.doi.org/10.1038/s41598-021-02409-6] [PMID: 34996898]
[85]
Segheto, W.; Coelho, F.A.; Cristina Guimarães da Silva, D.; Hallal, P.C.; Marins, J.C.B.; Ribeiro, A.Q.; Pessoa, M.C.; Morais, S.H.O.; Longo, G.Z. Validity of body adiposity index in predicting body fat in Brazilians adults. Am. J. Hum. Biol., 2017, 29(1), e22901.
[http://dx.doi.org/10.1002/ajhb.22901] [PMID: 27502080]
[86]
Lam, B.C.C.; Koh, G.C.H.; Chen, C.; Wong, M.T.K.; Fallows, S.J. Comparison of body mass index (BMI), body adiposity index (BAI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in singapore. PLoS One, 2015, 10(4), e0122985.
[http://dx.doi.org/10.1371/journal.pone.0122985] [PMID: 25880905]
[87]
Paek, J.K.; Kim, J.; Kim, K.; Lee, S.Y. Usefulness of relative fat mass in estimating body adiposity in Korean adult population. Endocr. J., 2019, 66(8), 723-729.
[http://dx.doi.org/10.1507/endocrj.EJ19-0064] [PMID: 31142689]
[88]
Yang, F.; Wang, G.; Wang, Z.; Sun, M.; Cao, M.; Zhu, Z.; Fu, Q.; Mao, J.; Shi, Y.; Yang, T. Visceral adiposity index may be a surrogate marker for the assessment of the effects of obesity on arterial stiffness. PLoS One, 2014, 9(8), e104365.
[http://dx.doi.org/10.1371/journal.pone.0104365] [PMID: 25105797]
[89]
Lichtash, C.T.; Cui, J.; Guo, X.; Chen, Y.D.I.; Hsueh, W.A.; Rotter, J.I.; Goodarzi, M.O. Body adiposity index versus body mass index and other anthropometric traits as correlates of cardiometabolic risk factors. PLoS One, 2013, 8(6), e65954.
[http://dx.doi.org/10.1371/journal.pone.0065954] [PMID: 23776578]
[90]
Fedewa, M.V.; Nickerson, B.S.; Esco, M.R. The validity of relative fat mass and body adiposity index as measures of body composition in healthy adults. Meas. Phys. Educ. Exerc. Sci., 2020, 24(2), 137-146.
[http://dx.doi.org/10.1080/1091367X.2020.1720689] [PMID: 34017163]
[91]
Woolcott, O.O.; Bergman, R.N. Defining cutoffs to diagnose obesity using the relative fat mass (RFM): Association with mortality in NHANES 1999–2014. Int. J. Obes., 2020, 44(6), 1301-1310.
[http://dx.doi.org/10.1038/s41366-019-0516-8] [PMID: 31911664]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy