Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS

Author(s): Chandramohan Kiruthiga, Kambati Niharika and Kasi Pandima Devi*

Volume 24, Issue 10, 2024

Published on: 23 February, 2024

Page: [773 - 788] Pages: 16

DOI: 10.2174/0118715206289038240214102951

Price: $65

Abstract

Background: Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated.

Objective: The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis.

Methods: The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis.

Results: The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses.

Conclusion: The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Majeed, U.; Manochakian, R.; Zhao, Y.; Lou, Y. Targeted therapy in advanced non-small cell lung cancer: Current advances and future trends. J. Hematol. Oncol., 2021, 14(1), 108.
[http://dx.doi.org/10.1186/s13045-021-01121-2] [PMID: 34238332]
[3]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[4]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[5]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[6]
Lee, E.H.; Kwak, S.H.; Kim, C.Y.; Gwon, H.R.; Kim, E.Y.; Chang, Y.S. New targeted therapies for non-small cell lung cancer. J. Korean Med. Assoc., 2023, 66(3), 180-190.
[http://dx.doi.org/10.5124/jkma.2023.66.3.180]
[7]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(0)(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[8]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy : Cellular and molecular mechanisms. J. Pathol., 2010, 221, 3-12.
[9]
Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev., 2016, 30(17), 1913-1930.
[http://dx.doi.org/10.1101/gad.287524.116] [PMID: 27664235]
[10]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[11]
Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), 3568.
[http://dx.doi.org/10.3390/ijms19113568] [PMID: 30424557]
[12]
Sakthivel, R.; Sheeja, M. D.; Archunan, G.; Pandima D, K. Phytol ameliorated benzo(a)pyrene induced lung carcinogenesis in Swiss albino mice via inhibition of oxidative stress and apoptosis. Environ. Toxicol., 2019, 34(4), 355-363.
[http://dx.doi.org/10.1002/tox.22690] [PMID: 30520250]
[13]
Sakthivel, R.; Malar, D.S.; Devi, K.P. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed. Pharmacother., 2018, 105, 742-752.
[http://dx.doi.org/10.1016/j.biopha.2018.06.035] [PMID: 29908495]
[14]
Song, Y.; Cho, S.K. Phytol induces apoptosis and ROS-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochem. Anal. Biochem., 2015, 4(4), 1.
[http://dx.doi.org/10.4172/2161-1009.1000211]
[15]
Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; Billah, M.M.; Pieczynska, M.D.; Zengin, G.; Malainer, C.; Nicoletti, F.; Gulei, D.; Berindan-Neagoe, I.; Apostolov, A.; Banach, M.; Yeung, A.W.K.; El-Demerdash, A.; Xiao, J.; Dey, P.; Yele, S.; Jóźwik, A.; Strzałkowska, N.; Marchewka, J.; Rengasamy, K.R.R.; Horbańczuk, J.; Kamal, M.A.; Mubarak, M.S.; Mishra, S.K.; Shilpi, J.A.; Atanasov, A.G. Phytol: A review of biomedical activities. Food Chem. Toxicol., 2018, 121, 82-94.
[http://dx.doi.org/10.1016/j.fct.2018.08.032] [PMID: 30130593]
[16]
Kamatou, G.P.P.; Viljoen, A.M. A review of the application and pharmacological properties of α ‐bisabolol and α ‐bisabolol‐rich oils. J. Am. Oil Chem. Soc., 2010, 87(1), 1-7.
[http://dx.doi.org/10.1007/s11746-009-1483-3]
[17]
Rigo, A.; Vinante, F. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis, 2016, 21(8), 917-927.
[http://dx.doi.org/10.1007/s10495-016-1257-y] [PMID: 27278818]
[18]
Wu, S.; Peng, L.; Sang, H.; Ping Li, Q.; Cheng, S. Anticancer effects of α-Bisabolol in human non-small cell lung carcinoma cells are mediated via apoptosis induction, cell cycle arrest, inhibition of cell migration and invasion and upregulation of P13K/AKT signalling pathway. J. BUON, 2018, 23(5), 1407-1412.
[PMID: 30570866]
[19]
Wu, L.; Leng, D.; Cun, D.; Foged, C.; Yang, M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J. Control. Release, 2017, 260, 78-91.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.023] [PMID: 28527735]
[20]
Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther., 2011, 10(9), 1533-1541.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0047] [PMID: 21878654]
[21]
Kiruthiga, C.; Jaya Balan, D.; Jafni, S.; Anandan, D.P.; Devi, K.P. Phytol and (−)-α-bisabolol synergistically trigger intrinsic apoptosis through redox and Ca2+ imbalance in non-small cell lung cancer. Biocatal. Agric. Biotechnol., 2024, 56, 103005.
[http://dx.doi.org/10.1016/j.bcab.2023.103005]
[22]
Sakthivel, R.; Muniasamy, S.; Archunan, G.; Devi, K.P. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo. Food Funct., 2016, 7(2), 1155-1165.
[http://dx.doi.org/10.1039/C5FO01094B] [PMID: 26822457]
[23]
Kiruthiga, C.; Jaya, D.; Nagaiah, B.; Prasath, H. Synergistic induction of apoptosis in lung cancer cells through co delivery of PLGA phytol/α bisabolol nanoparticles. Naunyn Schmiedebergs Arch. Pharmacol., 2024.
[http://dx.doi.org/10.1007/s00210-023-02935-2]
[24]
Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48.
[http://dx.doi.org/10.1186/s12943-015-0321-5] [PMID: 25743109]
[25]
Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.; Liu, S.; Buchan, J.; Cho, W. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci., 2017, 18(2), 367.
[http://dx.doi.org/10.3390/ijms18020367] [PMID: 28208579]
[26]
Kondo, Y.; Kanzawa, T.; Sawaya, R.; Kondo, S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer, 2005, 5(9), 726-734.
[http://dx.doi.org/10.1038/nrc1692] [PMID: 16148885]
[27]
Usman, R.M.; Razzaq, F.; Akbar, A.; Farooqui, A.A.; Iftikhar, A.; Latif, A.; Hassan, H.; Zhao, J.; Carew, J.S.; Nawrocki, S.T.; Anwer, F. Role and mechanism of autophagy‐regulating factors in tumorigenesis and drug resistance. Asia Pac. J. Clin. Oncol., 2020, 13449.
[http://dx.doi.org/10.1111/ajco.13449] [PMID: 32970929]
[28]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing drugs in oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[29]
Verschooten, L.; Barrette, K.; Van Kelst, S.; Rubio Romero, N.; Proby, C.; De Vos, R.; Agostinis, P.; Garmyn, M. Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLoS One, 2012, 7(10), e48264.
[http://dx.doi.org/10.1371/journal.pone.0048264] [PMID: 23110223]
[30]
Xie, Z.G.; Xie, Y.E.; Dong, Q.R. Inhibition of the mammalian target of rapamycin leads to autophagy activation and cell death of MG63 osteosarcoma cells. Oncol. Lett., 2013, 6(5), 1465-1469.
[http://dx.doi.org/10.3892/ol.2013.1531] [PMID: 24179542]
[31]
Salimi-Jeda, A.; Ghabeshi, S.; Gol, M.; Pour, Z.; Jazaeri, E.O.; Araiinejad, M.; Sheikholeslami, F.; Abdoli, M.; Edalat, M.; Abdoli, A. Autophagy modulation and cancer combination therapy: A smart approach in cancer therapy. Cancer Treat. Res. Commun., 2022, 30, 100512.
[http://dx.doi.org/10.1016/j.ctarc.2022.100512] [PMID: 35026533]
[32]
Gąsiorkiewicz, B.M.; Koczurkiewicz-Adamczyk, P.; Piska, K.; Pękala, E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest. New Drugs, 2021, 39(2), 538-563.
[http://dx.doi.org/10.1007/s10637-020-01032-y] [PMID: 33159673]
[33]
Jia, Y.-L.; Li, J.; Qin, Z.-H.; Liang, Z.-Q. Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J. Asian Nat. Prod. Res., 2009, 11, 918-928.
[http://dx.doi.org/10.1080/10286020903264077]
[34]
Zhao, L.; Liu, S.; Xu, J.; Li, W.; Duan, G.; Wang, H.; Yang, H.; Yang, Z.; Zhou, R. A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death Dis., 2017, 8(11), e3160-e3160.
[http://dx.doi.org/10.1038/cddis.2017.563] [PMID: 29095434]
[35]
Zhang, S.F.; Wang, X.L.; Yang, X.Q.; Chen, N. Autophagy-associated targeting pathways of natural products during cancer treatment. Asian Pac. J. Cancer Prev., 2015, 15(24), 10557-10563.
[http://dx.doi.org/10.7314/APJCP.2014.15.24.10557] [PMID: 25605139]
[36]
Zhang, B.; Yin, X.; Sui, S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol. Rep., 2018, 40, 2758-2765.
[http://dx.doi.org/10.3892/or.2018.6648]
[37]
Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005, 122(6), 927-939.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[38]
Gordy, C.; He, Y.W. The crosstalk between autophagy and apoptosis: Where does this lead? Protein Cell, 2012, 3(1), 17-27.
[http://dx.doi.org/10.1007/s13238-011-1127-x] [PMID: 22314807]
[39]
Decuypere, J.P.; Parys, J.B.; Bultynck, G. Regulation of the autophagic bcl-2/beclin 1 interaction. Cells, 2012, 1(3), 284-312.
[http://dx.doi.org/10.3390/cells1030284] [PMID: 24710477]
[40]
Liu, W.J.; Ye, L.; Huang, W.F.; Guo, L.J.; Xu, Z.G.; Wu, H.L.; Yang, C.; Liu, H.F. p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett., 2016, 21(1), 29.
[http://dx.doi.org/10.1186/s11658-016-0031-z] [PMID: 28536631]
[41]
Han, W.; Pan, H.; Chen, Y.; Sun, J.; Wang, Y.; Li, J.; Ge, W.; Feng, L.; Lin, X.; Wang, X.; Wang, X.; Jin, H. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One, 2011, 6(6), e18691.
[http://dx.doi.org/10.1371/journal.pone.0018691] [PMID: 21655094]
[42]
Kalai Selvi, S.; Vinoth, A.; Varadharajan, T.; Weng, C.F.; Vijaya Padma, V. Neferine augments therapeutic efficacy of cisplatin through ROS-mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food Chem. Toxicol., 2017, 103, 28-40.
[http://dx.doi.org/10.1016/j.fct.2017.02.020] [PMID: 28223119]
[43]
Tonissen, K.F.; Di Trapani, G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol. Nutr. Food Res., 2009, 53(1), 87-103.
[http://dx.doi.org/10.1002/mnfr.200700492] [PMID: 18979503]
[44]
Rajavel, T.; Packiyaraj, P.; Suryanarayanan, V.; Singh, S.K.; Ruckmani, K.; Pandima Devi, K. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci. Rep., 2018, 8(1), 2071.
[http://dx.doi.org/10.1038/s41598-018-20311-6] [PMID: 29391428]
[45]
Pelicano, H.; Carney, D.; Huang, P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat., 2004, 7(2), 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[46]
Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther., 2018, 3(1), 18.
[http://dx.doi.org/10.1038/s41392-018-0018-5] [PMID: 29967689]
[47]
Li, J.; Chen, Q.; Xu, S.; Wu, J.; Huang, Q.; Song, P.; Duan, F. Down-regulation of BAG3 inhibits proliferation and promotes apoptosis of glioblastoma multiforme through BAG3/HSP70/HIF-1α signaling pathway. Int. J. Clin. Exp. Pathol., 2018, 11(9), 4305-4318.
[PMID: 31949827]
[48]
Hu, G.; Zhang, J.; Xu, F.; Deng, H.; Zhang, W.; Kang, S.; Liang, W. Stomatin‐like protein 2 inhibits cisplatin‐induced apoptosis through MEK/ERK signaling and the mitochondrial apoptosis pathway in cervical cancer cells. Cancer Sci., 2018, 109(5), 1357-1368.
[http://dx.doi.org/10.1111/cas.13563] [PMID: 29516570]
[49]
Matsumoto, T.; Urushido, M.; Ide, H.; Ishihara, M.; Hamada-Ode, K.; Shimamura, Y.; Ogata, K.; Inoue, K.; Taniguchi, Y.; Taguchi, T.; Horino, T.; Fujimoto, S.; Terada, Y. Small heat shock protein beta-1 (HSPB1) is upregulated and regulates autophagy and apoptosis of renal tubular cells in acute kidney injury. PLoS One, 2015, 10(5), e0126229.
[http://dx.doi.org/10.1371/journal.pone.0126229] [PMID: 25962073]
[50]
Xing, H.; Zhang, S.; Weinheimer, C.; Kovacs, A.; Muslin, A.J. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J., 2000, 19(3), 349-358.
[http://dx.doi.org/10.1093/emboj/19.3.349] [PMID: 10654934]
[51]
Lee, C.J.; Yoon, M.J.; Kim, D.H.; Kim, T.U.; Kang, Y.J. Profilin-1; A novel regulator of DNA damage response and repair machinery in keratinocytes. Mol. Biol. Rep., 2021, 48(2), 1439-1452.
[http://dx.doi.org/10.1007/s11033-021-06210-6] [PMID: 33590416]
[52]
Chen, L.; Daum, G.; Chitaley, K.; Coats, S.A.; Bowen-Pope, D.F.; Eigenthaler, M.; Thumati, N.R.; Walter, U.; Clowes, A.W. Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1403-1408.
[http://dx.doi.org/10.1161/01.ATV.0000134705.39654.53] [PMID: 15178555]
[53]
Nemunaitis, J. Stathmin 1: A protein with many tasks. New biomarker and potential target in cancer. Expert Opin. Ther. Targets, 2012, 16(7), 631-634.
[http://dx.doi.org/10.1517/14728222.2012.696101] [PMID: 22686589]
[54]
Wang, Z.; Bu, J.; Yao, X.; Liu, C.; Shen, H.; Li, X.; Li, H.; Chen, G. Phosphorylation at S153 as a functional switch of phosphatidylethanolamine binding protein 1 in cerebral ischemia-reperfusion injury in rats. Front. Mol. Neurosci., 2017, 10, 358.
[http://dx.doi.org/10.3389/fnmol.2017.00358] [PMID: 29163033]
[55]
Zhao, J.; Dar, H.H.; Deng, Y.; St Croix, C.M.; Li, Z.; Minami, Y.; Shrivastava, I.H.; Tyurina, Y.Y.; Etling, E.; Rosenbaum, J.C.; Nagasaki, T.; Trudeau, J.B.; Watkins, S.C.; Bahar, I.; Bayır, H.; VanDemark, A.P.; Kagan, V.E.; Wenzel, S.E. PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc. Natl. Acad. Sci. USA, 2020, 117(25), 14376-14385.
[http://dx.doi.org/10.1073/pnas.1921618117] [PMID: 32513718]
[56]
Freund, A.; Laberge, R.M.; Demaria, M.; Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell, 2012, 23(11), 2066-2075.
[http://dx.doi.org/10.1091/mbc.e11-10-0884] [PMID: 22496421]
[57]
Gómez-H, L.; Felipe-Medina, N.; Condezo, Y.B.; Garcia-Valiente, R.; Ramos, I.; Suja, J.A.; Barbero, J.L.; Roig, I.; Sánchez-Martín, M.; de Rooij, D.G.; Llano, E.; Pendas, A.M. The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genet., 2019, 15(8), e1008316.
[http://dx.doi.org/10.1371/journal.pgen.1008316] [PMID: 31437213]
[58]
Groen, E.J.N.; Gillingwater, T.H. UBA1: At the crossroads of ubiquitin homeostasis and neurodegeneration. Trends Mol. Med., 2015, 21(10), 622-632.
[http://dx.doi.org/10.1016/j.molmed.2015.08.003] [PMID: 26432019]
[59]
Ong, J.R.; Bamodu, O.A.; Khang, N.V.; Lin, Y.K.; Yeh, C.T.; Lee, W.H.; Cherng, Y.G. SUMO-activating enzyme subunit 1 (SAE1) is a promising diagnostic cancer metabolism biomarker of hepatocellular carcinoma. Cells, 2021, 10(1), 178.
[http://dx.doi.org/10.3390/cells10010178] [PMID: 33477333]
[60]
Sengupta, S.; Sevigny, C.M.; Bhattacharya, P.; Jordan, V.C.; Clarke, R. Estrogen-induced apoptosis in breast cancers is phenocopied by blocking dephosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) protein. Mol. Cancer Res., 2019, 17(4), 918-928.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0481] [PMID: 30655322]
[61]
Becker, D.; Natarajan, Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Cell Health Cytoskelet., 2012, 4, 11.
[http://dx.doi.org/10.2147/CHC.S4955]
[62]
Momeni, H.R. Role of calpain in apoptosis. Cell J., 2011, 13(2), 65-72.
[PMID: 23507938]
[63]
Hsu, H.C.; Yang, P.; Wu, Q.; Wang, J.H.; Job, G.; Guentert, T.; Li, J.; Stockard, C.R.; Le, T.L.; Chaplin, D.D.; Grizzle, W.E.; Mountz, J.D. Inhibition of the catalytic function of activation-induced cytidine deaminase promotes apoptosis of germinal center B cells in BXD2 mice. Arthritis Rheum., 2011, 63(7), 2038-2048.
[http://dx.doi.org/10.1002/art.30257] [PMID: 21305519]
[64]
Mori, M.; Terui, Y.; Ikeda, M.; Tomizuka, H.; Uwai, M.; Kasahara, T.; Kubota, N.; Itoh, T.; Mishima, Y.; Douzono-Tanaka, M.; Yamada, M.; Shimamura, S.; Kikuchi, J.; Furukawa, Y.; Ishizaka, Y.; Ikeda, K.; Mano, H.; Ozawa, K.; Hatake, K. β2-microglobulin identified as an apoptosis-inducing factor and its characterization. Blood, 1999, 94(8), 2744-2753.
[65]
Stürner, E.; Behl, C. The role of the multifunctional BAG3 protein in cellular protein quality control and in disease. Front. Mol. Neurosci., 2017, 10, 177.
[http://dx.doi.org/10.3389/fnmol.2017.00177] [PMID: 28680391]
[66]
Li, H.; Wang, P.; Sun, Q.; Ding, W.X.; Yin, X.M.; Sobol, R.W.; Stolz, D.B.; Yu, J.; Zhang, L. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res., 2011, 71(10), 3625-3634.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4475] [PMID: 21444671]
[67]
Hu, Y.; Jiang, H.; Xu, Y.; Chen, G.; Fan, R.; Zhou, Y.; Liu, Y.; Yao, Y.; Liu, R.; Chen, W.; Zhang, K.; Chen, X.; Wang, R.; Qiu, Z. Stomatin-like protein 2 deficiency exacerbates adverse cardiac remodeling. Cell Death Discov., 2023, 9(1), 63.
[http://dx.doi.org/10.1038/s41420-023-01350-z] [PMID: 36788223]
[68]
Saurav, S.; Manna, S.K. Profilin upregulation induces autophagy through stabilization of AMP‐activated protein kinase. FEBS Lett., 2022, 596(14), 1765-1777.
[http://dx.doi.org/10.1002/1873-3468.14372] [PMID: 35532157]
[69]
Wang, L.; Li, H.; Zhang, J.; Lu, W.; Zhao, J.; Su, L.; Zhao, B.; Zhang, Y.; Zhang, S.; Miao, J. Phosphatidylethanolamine binding protein 1 in vacular endothelial cell autophagy and atherosclerosis. J. Physiol., 2013, 591(20), 5005-5015.
[http://dx.doi.org/10.1113/jphysiol.2013.262667] [PMID: 23959677]
[70]
Frankel, L.B.; Lund, A.H. MicroRNA regulation of autophagy. Carcinogenesis, 2012, 33(11), 2018-2025.
[http://dx.doi.org/10.1093/carcin/bgs266] [PMID: 22902544]
[71]
De Brasi-Velasco, S.; López-Vidal, O.; Martí, M.C.; Ortiz-Espín, A.; Sevilla, F.; Jiménez, A. Autophagy is involved in the viability of overexpressing thioredoxin o1 tobacco by-2 cells under oxidative conditions. Antioxidants, 2021, 10(12), 1884.
[http://dx.doi.org/10.3390/antiox10121884] [PMID: 34942987]
[72]
Till, A.; Saito, R.; Merkurjev, D.; Liu, J.J.; Syed, G.H.; Kolnik, M.; Siddiqui, A.; Glas, M.; Scheffler, B.; Ideker, T.; Subramani, S. Evolutionary trends and functional anatomy of the human expanded autophagy network. Autophagy, 2015, 11(9), 1652-1667.
[http://dx.doi.org/10.1080/15548627.2015.1059558] [PMID: 26103419]
[73]
Sharifi, M.N.; Mowers, E.E.; Drake, L.E.; Collier, C.; Chen, H.; Zamora, M.; Mui, S.; Macleod, K.F. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep., 2016, 15(8), 1660-1672.
[http://dx.doi.org/10.1016/j.celrep.2016.04.065] [PMID: 27184837]
[74]
Duan, X.; Yu, X.; Li, Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered, 2022, 13(2), 2387-2397.
[http://dx.doi.org/10.1080/21655979.2021.2024637] [PMID: 35030981]
[75]
Trisciuoglio, D.; Degrassi, F. The tubulin code and tubulin-modifying enzymes in autophagy and cancer. Cancer, 2021, 14, 1.
[http://dx.doi.org/10.3390/cancers14010006]
[76]
Wang, Y.; Pan, X.F.; Liu, G.D.; Liu, Z.H.; Zhang, C.; Chen, T.; Wang, Y.H. FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Res. Bull., 2021, 173, 132-140.
[http://dx.doi.org/10.1016/j.brainresbull.2021.05.017] [PMID: 34023434]
[77]
Blandin, A.F.; Renner, G.; Lehmann, M.; Lelong-Rebel, I.; Martin, S.; Dontenwill, M. β1 integrins as therapeutic targets to disrupt hallmarks of cancer. Front. Pharmacol., 2015, 6, 279.
[http://dx.doi.org/10.3389/fphar.2015.00279] [PMID: 26635609]
[78]
Hu, T.; Chen, X.; Lu, S.; Zeng, H.; Guo, L.; Han, Y. Biological role and mechanism of lipid metabolism reprogramming related gene ECHS1 in cancer. Technol. Cancer Res. Treat., 2022, 21, 15330338221140655.
[http://dx.doi.org/10.1177/15330338221140655] [PMID: 36567598]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy