[2]
Dzik KP, Flis DJ, Kaczor-Keller KB, Bytowska ZK, Karnia MJ, Ziółkowski W, et al. Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice. Journal of molecular medicine (Berlin, Germany) 2024.
[3]
Maiese K. Mitochondria, Mitophagy, Mitoptosis, and Programmed Cell Death: Implications from Aging to Cancer. Curr Neurovasc Res 2024.
[4]
Barcena ML, Tonini G, Haritonow N, Breiter P, Milting H, Baczko I, et al. Sex and age differences in AMPK phosphorylation, mitochondrial homeostasis, and inflammation in hearts from inflammatory cardiomyopathy patients. Aging Cell 2023; 22(8): e13894.
[5]
Barthels D, Prateeksha P, Nozohouri S, Villalba H, Zhang Y, Sharma S, et al. Dental Pulp-Derived Stem Cells Preserve Astrocyte Health During Induced Gliosis by Modulating Mitochondrial Activity and Functions. Cell Mol Neurobiol 2023; 43(5): 2105-27.
[6]
Fernandes J, Uppal K, Liu KH, Hu X, Orr M, Tran V, et al. Antagonistic Interactions in Mitochondria ROS Signaling Responses to Manganese. Antioxidants 2023; 12(4): 804.
[7]
Goulart Nacácio e Silva S, Occhiutto ML, Costa VP. The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma. European Journal of Ophthalmology 2023; 33(5): 1801-15.
[8]
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2023; 97(1): 217-33.
[9]
Lee A, Henderson R, Arachchige BJ, Robertson T, McCombe PA. Proteomic investigation of ALS motor cortex identifies known and novel pathogenetic mechanisms. J Neurol Sci 2023; 452: 120753.
[10]
Lisco G, De Tullio A, Iovino M, Disoteo O, Guastamacchia E, Giagulli VA, et al. Dopamine in the Regulation of Glucose Homeostasis, Pathogenesis of Type 2 Diabetes, and Chronic Conditions of Impaired Dopamine Activity/Metabolism: Implication for Pathophysiological and Therapeutic Purposes. Biomedicines 2023; 11(11): 2993.
[11]
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13(5): 816.
[12]
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI J 2023; 22: 690-715.
[13]
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Frontiers in immunology 2023; 14(Nov 03): 1273570.
[14]
Mehra S, Ahsan AU, Sharma M, Budhwar M, Chopra M. Gestational Fisetin Exerts Neuroprotection by Regulating Mitochondria-Directed Canonical Wnt Signaling, BBB Integrity, and Apoptosis in Prenatal VPA-Induced Rodent Model of Autism. Mol Neurobiol 2023.
[15]
Ng PQ, Saint-Geniez M, Kim LA, Shu DY. Divergent Metabolomic Signatures of TGFbeta2 and TNFalpha in the Induction of Retinal Epithelial-Mesenchymal Transition. Metabolites 2023; 13(2)
[16]
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12(12)
[17]
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, et al. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162: 114573.
[18]
Tramutola A, Lanzillotta S, Aceto G, Pagnotta S, Ruffolo G, Cifelli P, et al. Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer’s Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel, Switzerland) 2023; 12(1): 111.
[19]
Zhong S, Chen W, Wang B, Gao C, Liu X, Song Y, et al. Energy stress modulation of AMPK/FoxO3 signaling inhibits mitochondria-associated ferroptosis. Redox biology 2023; 63: 102760.
[20]
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123: 110721.
[21]
Birnie MT, Claydon MDB, Troy O, Flynn BP, Yoshimura M, Kershaw YM, et al. Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proc Natl Acad Sci USA 2023; 120(15): e2211996120.
[22]
Felten M, Dame C, Lachmann G, Spies C, Rubarth K, Balzer F, et al. Circadian rhythm disruption in critically ill patients. Acta Physiol (Oxf) 2023; 238(1): e13962.
[23]
Huang C, Zhang C, Cao Y, Li J, Bi F. Major roles of the circadian clock in cancer. Cancer Biol Med 2023; 20(1): 1-24.
[24]
Kalam F, James DL, Li YR, Coleman MF, Kiesel VA, Cespedes Feliciano EM, et al. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023(61): 84-103.
[25]
Walton JC, Nelson RJ. Therapeutic Aspects of Circadian Rhythms. Biomolecules 2023; 13(8): 1169.
[26]
Xu Y, Wang Y, Jiang Y, Liu M, Zhong W, Ge Z, et al. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Frontiers in aging neuroscience 2023; 15: 1174541.
[27]
Benveniste H, Lee H, Volkow ND. The Glymphatic Pathway: Waste Removal from the CNS via Cerebrospinal Fluid Transport. Neuroscientist 2017; 23(5): 454-65.
[28]
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11(7): 1002.
[29]
Maiese K. Sleep Disorders, Neurodegeneration, Glymphatic Pathways, and Circadian Rhythm Disruption. Curr Neurovasc Res 2021; 18(3): 269-70.
[30]
Park KM, Kim KT, Lee DA, Motamedi GK, Cho YW. Glymphatic system dysfunction in restless legs syndrome: evidenced by diffusion tensor imaging along the perivascular space. Sleep 2023; 46(11)
[31]
Bramante CT, Beckman KB, Mehta T, Karger AB, Odde DJ, Tignanelli CJ, et al. Metformin reduces SARS-CoV-2 in a Phase 3 Randomized Placebo Controlled Clinical Trial. medRxiv 2023.
[32]
Ehtewish H, Mesleh A, Ponirakis G, De la Fuente A, Parray A, Bensmail I, et al. Blood-Based Proteomic Profiling Identifies Potential Biomarker Candidates and Pathogenic Pathways in Dementia. International journal of molecular sciences 2023; 24(9)
[33]
Espinoza SE, Khosla S, Baur JA, de Cabo R, Musi N. Drugs Targeting Mechanisms of Aging to Delay Age-Related Disease and Promote Healthspan: Proceedings of a National Institute on Aging Workshop. J Gerontol A Biol Sci Med Sci 2023; 78 (Supplement_1): 53-60.
[34]
Fang X, Song J, Chen Y, Zhu S, Tu W, Ke B, et al. LncRNA SNHG1 knockdown inhibits hyperglycemia induced ferroptosis viamiR‐16‐5p/ACSL4 axis to alleviate diabetic nephropathy. Journal of Diabetes Investigation 2023; 14(9): 1056-69.
[35]
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Critical reviews in food science and nutrition 2023; Jan 2: 1-26.
[36]
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Curr Neurovasc Res 2023; 20(3): 314-33.
[37]
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12(22): 2595.
[38]
Mohamadi N, Baradaran Rahimi V, Fadaei MR, Sharifi F, Askari VR. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications. Inflammopharmacology 2023; 31(6): 2885-99.
[39]
Moheghi A, Noori Mougehi SMH, Amini A, Mostafavinia A, Rezaei F, Bagheri Tadi F, et al. Anti-inflammatory, Antioxidant, and Wound-Healing Effects of Photobiomodulation on Type-2 Diabetic Rats. J Lasers Med Sci 2023; 14: e45.
[40]
Raghuvanshi DS, Chakole S, Kumar M. Relationship Between Vitamins and Diabetes. Cureus 2023; 15(3): e36815.
[41]
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer’s disease. Geroscience 2023; 45(3): 1343-81.
[42]
Wang J, Chen S, Zhao X, Guo Q, Yang R, Zhang C, et al. Effect of PPARgamma on oxidative stress in diabetes-related dry eye. Exp Eye Res 2023; 231: 109498.
[43]
Yang L, Cheng CF, Li ZF, Huang XJ, Cai SQ, Ye SY, et al. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway. Int J Mol Med 2023; 51(6): 49.
[44]
Zhou L, Liu J, Zhou M. A comprehensive meta-analysis on the association between vitamin C intake and gestational diabetes mellitus: Insights and novel perspectives. Medicine 2023; 102(32): e34740.
[45]
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer’s disease transgenic experimental models. The International journal of neuroscience 2023; May 10: 1-19.
[46]
Dong L, Hou B, Liu C, Mao C, Huang X, Shang L, et al. Association Between Wnt Target Genes and Cortical Volumes in Alzheimer’s Disease. J Mol Neurosci 2023; 73(11-12): 1010-6.
[47]
Ju DT, Huang RS, Tsai BC, Su YC, Chiu PL, Chang YM, et al. Folic Acid and Folinic Acid Protect Hearts of Aging Triple-transgenic Alzheimer’s Disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK Pathways. Neurotox Res 2023; 41(6): 648-59.
[48]
Kuan XY, Fauzi NSA, Ng KY, Bakhtiar A. Exploring the Causal Relationship Between Telomere Biology and Alzheimer’s Disease. Mol Neurobiol 2023; 60(8): 4169-83.
[49]
Lai KY, Webster C, Kumari S, Gallacher JEJ, Sarkar C. The associations of socioeconomic status with incident dementia and Alzheimer’s disease are modified by leucocyte telomere length: a population-based cohort study. Scientific reports 2023; 13(1): 6163.
[50]
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biological reviews of the Cambridge Philosophical Society 2023; 98(4): 1424-58.
[51]
Maiese K. The Implications of Telomere Length: Advanced Aging, Cell Senescence, MRI Phenotypes, Stem Cells and Alzheimer’s Disease. Curr Neurovasc Res 2023; 20(2): 171-4.
[52]
Matysek A, Sun L, Kimmantudawage SP, Feng L, Maier AB. Targeting impaired nutrient sensing via the sirtuin pathway with novel compounds to prevent or treat dementia: A systematic review. Ageing research reviews 2023; 90: 102029.
[53]
Olejniczak I, Pilorz V, Oster H. Circle(s) of Life: The Circadian Clock from Birth to Death. Biology (Basel) 2023; 12(3): 383.
[54]
Slezakova D, Kadlic P, Jezberova M, Bolekova V, Valkovic P, Minar M. Brain volume loss in multiple sclerosis is independent of disease activity and might be prevented by early disease-modifying therapy. Neurol Neurochir Pol 2023; 57(3): 282-8.
[55]
Topiwala A, Nichols TE, Williams LZJ, Robinson EC, Alfaro-Almagro F, Taschler B, et al. Telomere length and brain imaging phenotypes in UK Biobank. PLoS One 2023; 18(3): e0282363.
[56]
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, et al. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Abeta generation. Acta Pharmacol Sin 2023; 44(11): 2151-68.
[57]
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, et al. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. International journal of molecular sciences 2024; 25(3): 1689.
[58]
Okoduwa I, Ashiwaju B, Ogugua J, Arowoogun J, Awonuga K, Anyanwu E. Reviewing the progress of cancer research in the USA. World Journal of Biology Pharmacy and Health Sciences 2024; 17(2): 68-79.
[59]
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024.
[60]
Dhillon V, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. International journal of molecular sciences 2024; 25(2): 718.
[61]
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78 (Suppl. 6): S63-77.
[62]
Egstrand S, Olgaard K, Lewin E. Circadian rhythms of mineral metabolism in chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2020; 29(4): 367-77.
[63]
Kurki SN, Kantonen J, Kaivola K, Hokkanen L, Mayranpaa MI, Puttonen H, et al. APOE epsilon4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study. Acta neuropathologica communications 2021; 9(1): 199.
[64]
Lee FK, Lee JC, Shui B, Reining S, Jibilian M, Small DM, et al. Genetically engineered mice for combinatorial cardiovascular optobiology. eLife 2021; 10.
[65]
Maiese K. Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Curr Neurovasc Res 2017; 14(2): 184-9.
[66]
Maiese K. Forkhead Transcription Factors: Formulating a FOXO Target for Cognitive Loss. Curr Neurovasc Res 2017; 14(4): 415-20.
[67]
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[68]
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177: 9-20.
[69]
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11(1): 164-78.
[70]
Orkaby AR, Dushkes R, Ward R, Djousse L, Buring JE, Lee IM, et al. Effect of Vitamin D3 and Omega-3 Fatty Acid Supplementation on Risk of Frailty: An Ancillary Study of a Randomized Clinical Trial. JAMA Netw Open 2022; 5(9): e2231206.
[71]
Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, et al. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018; 9(24): 17181-98.
[72]
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, et al. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130: 104481.
[73]
Wang N, Luo Z, Jin M, Sheng W, Wang HT, Long X, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11(10): 3117-37.
[74]
Wang S, Schianchi F, Neumann D, Wong LY, Sun A, van Nieuwenhoven FA, et al. Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR-v-ATPase axis. Mol Metab 2021; 53: 101293.
[75]
Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther 2021; 13(1): 110.
[76]
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, et al. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29(1): 142.
[77]
Chen G, Zeng L, Yan F, Liu J, Qin M, Wang F, et al. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Front Pharmacol 2022; 13: 919905.
[78]
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, et al. Enhancing autophagy in Alzheimer’s disease through drug repositioning. Pharmacol Ther 2022; 237: 108171.
[79]
Gonzalez-Alcocer A, Gopar-Cuevas Y, Soto-Dominguez A, Loera-Arias MJ, Saucedo-Cardenas O, Montes de Oca-Luna R, et al. Peripheral tissular analysis of rapamycin’s effect as a neuroprotective agent in vivo. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(10): 1239-55.
[80]
Liu L, Cao Q, Gao W, Li BY, Zeng C, Xia Z, et al. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 2021; 35(12): e22040.
[81]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[82]
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[83]
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer’s Disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[84]
Mocayar Maron FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199: 105595.
[85]
Ojo JO, Reed JM, Crynen G, Vallabhaneni P, Evans J, Shackleton B, et al. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains. Molecular brain 2021; 14(1): 110.
[86]
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169: 382-96.
[87]
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int 2022; 155: 105311.
[88]
Maiese K. New Insights for Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev 2015; 2015(2015:875961): 875961.
[89]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[90]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert opinion on therapeutic targets 2012; 16(12): 1203-14.
[91]
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38(1-3): 234-57.
[92]
Qin D, Li D, Wang C, Guo S. Ferroptosis and central nervous system demyelinating diseases. J Neurochem 2023; 165(6): 759-71.
[93]
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer’s disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11(1): 102.
[94]
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, et al. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13(12): 6147-75.
[95]
Zheng Z, Xie J, Ma L, et al. Receptor Activation Targets ROS-Mediated Crosstalk Between Autophagy and Apoptosis in Hepatocytes in Cholestasic Mice. Cellular and Molecular Gastroenterology and Hepatology 2023; 15(4): 887-901.
[96]
Ciesielska K, Gajewska M. Fatty Acids as Potent Modulators of Autophagy Activity in White Adipose Tissue. Biomolecules 2023; 13(2): 255.
[97]
Guo Y, Zeng Q, Brooks D, Geisbrecht ER. A conserved STRIPAK complex is required for autophagy in muscle tissue. Mol Biol Cell 2023; 34(9): ar91.
[98]
Jo DH, Lee SH, Jeon M, Cho CS, Kim DE, Kim H, et al. Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium. Mol Cells 2023; 46(11): 675-87.
[99]
Mastrapasqua M, Rossi R, De Cosmo L, Resta A, Errede M, Bizzoca A, et al. Autophagy increase in Merosin-Deficient Congenital Muscular Dystrophy type 1A. Eur J Transl Myol 2023; 33(3): 11501.
[100]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[101]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[102]
Chen X, Jiang L, Zhou Z, Yang B, He Q, Zhu C, et al. The Role of Membrane-Associated E3 Ubiquitin Ligases in Cancer. Front Pharmacol 2022; 13: 928794.
[103]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[104]
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18(12): 4690-703.
[105]
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/beta-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021; 476(10): 3551-61.
[106]
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, et al. Role of endothelial NAD(+) deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316(6): H1253-66.
[107]
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102(3): 1449-94.
[108]
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, et al. Innate Immunity in Diabetic Wound Healing: Focus on the Mastermind Hidden in Chronic Inflammatory. Front Pharmacol 2021; 12: 653940.
[109]
Kahmini FR, Ghaleh HD, Shahgaldi S. Sirtuins: Subtle Regulators Involved in Convoluted Mechanisms of Pregnancy. Cell Physiol Biochem 2022; 56(6): 644-62.
[110]
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14(9): 3446-85.
[111]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[112]
Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022; 27(3): 950.
[113]
Wasserfurth P, Nebl J, Ruhling MR, Shammas H, Bednarczyk J, Koehler K, et al. Impact of Dietary Modifications on Plasma Sirtuins 1, 3 and 5 in Older Overweight Individuals Undergoing 12-Weeks of Circuit Training. Nutrients 2021; 13(11): 3824.
[114]
Zhang Y, Yuan Y, Zhang J, Zhao Y, Zhang Y, Fu J. Astragaloside IV supplementation attenuates cognitive impairment by inhibiting neuroinflammation and oxidative stress in type 2 diabetic mice. Front Aging Neurosci 2022; 14: 1004557.
[115]
Hassanein EHM, Saleh FM, Ali FEM, Rashwan EK, Atwa AM, Abd El-Ghafar OAM. Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-gamma, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol Immunotoxicol 2023; 45(3): 304-16.
[116]
Merino M, González S, Tronch MC, Sánchez-Sánchez AV, Clares MP, García-España A, et al. Small Molecule Pytren-4QMn Metal Complex Slows down Huntington’s Disease Progression in Male zQ175 Transgenic Mice. Int J Mol Sci 2023; 24(20)
[117]
Pouresmaeil V, Al Abudi AH, Mahimid AH, Sarafraz Yazdi M, Es-Haghi A. Evaluation of Serum Selenium and Copper Levels with Inflammatory Cytokines and Indices of Oxidative Stress in Type 2 Diabetes. Biol Trace Elem Res 2023; 201(2): 617-26.
[118]
Yamamoto H, Shimomura N, Oura K, Hasegawa Y. Nacre Extract from Pearl Oyster Shell Prevents D-Galactose-Induced Brain and Skin Aging. Mar Biotechnol (NY) 2023; 25(4): 503-18.
[119]
Andrianov VV, Kulchitsky VA, Yafarova GG, Bazan LV, Bogodvid TK, Deryabina IB, et al. Investigation of NO Role in Neural Tissue in Brain and Spinal Cord Injury. Molecules 2023; 28(21)
[120]
Inoue M, Tanida T, Kondo T, Takenaka S, Nakajima T. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture. J Vet Med Sci 2023; 85(8): 799-808.
[121]
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17(5): 765-83.
[122]
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[123]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[124]
AlSaleh A, Shahid M, Farid E, Bindayna K. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study. Toxins (Basel) 2023; 15(1): 38.
[125]
Li M, Zhang L, Pan L, Zhou P, Yu R, Zhang Z, et al. Nicotinamide Efficiently Suppresses Porcine Epidemic Diarrhea Virus and Porcine Deltacoronavirus Replication. Viruses 2023; 15(7): 1591.
[126]
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10(7): 871.
[127]
Ramirez-Cruz A, Gomez-Gonzalez B, Baiza-Gutman LA, Manuel-Apolinar L, Angeles-Mejia S, Lopez-Cervantes SP, et al. Nicotinamide, an acetylcholinesterase uncompetitive inhibitor, protects the blood‒brain barrier and improves cognitive function in rats fed a hypercaloric diet. Eur J Pharmacol 2023; 959: 176068.
[128]
Tai SH, Chao LC, Huang SY, Lin HW, Lee AH, Chen YY, et al. Nicotinamide Deteriorates Post-Stroke Immunodepression Following Cerebral Ischemia-Reperfusion Injury in Mice. Biomedicines 2023; 11(8): 2145.
[129]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Frontiers in bioscience (Landmark edition) 2020; 25(11): 1925-73.
[130]
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med 2023; 21(1): 297.
[131]
Mosharaf MP, Alam K, Gow J, Mahumud RA. Exploration of key drug target proteins highlighting their related regulatory molecules, functional pathways and drug candidates associated with delirium: evidence from meta-data analyses. BMC Geriatr 2023; 23(1): 767.
[132]
Chen L, Xu W, Zhang Y, Chen H, Han Y. Gandouling alleviates nerve injury through PI3K/Akt/FoxO1 and Sirt1/FoxO1 signaling pathway to inhibit autophagy in the rats model of Wilson’s disease. Brain Behav 2023; 13(12): e3325.
[133]
Melecchi A, Amato R, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Restored retinal physiology after administration of niacin with citicoline in a mouse model of hypertensive glaucoma. Front Med (Lausanne) 2023; 10: 1230941.
[134]
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22(8): 870-905.
[135]
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, et al. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13(1): 15133.
[136]
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37(10-12): 704-25.
[137]
Hsu NW, Chou KC, Wang YT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med 2022; 20(1): 190.
[138]
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, et al. Roles of clock genes in the pathogenesis of Parkinson’s disease. Ageing Res Rev 2022; 74: 101554.
[139]
Yalcin M, Mundorf A, Thiel F, Amatriain-Fernandez S, Kalthoff IS, Beucke JC, et al. It’s About Time: The Circadian Network as Time-Keeper for Cognitive Functioning, Locomotor Activity and Mental Health. Front Physiol 2022; 13: 873237.
[140]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[141]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in bioscience (Landmark edition) 2021; 26(9): 614-27.
[142]
Finger AM, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231(3): e13548.
[143]
Yalcin M, Malhan D, Basti A, Peralta AR, Ferreira JJ, Relogio A. A Computational Analysis in a Cohort of Parkinson’s Disease Patients and Clock-Modified Colorectal Cancer Cells Reveals Common Expression Alterations in Clock-Regulated Genes. Cancers 2021; 13(23)
[144]
Diallo AB, Gay L, Coiffard B, Leone M, Mezouar S, Mege JL. Daytime variation in SARS-CoV-2 infection and cytokine production. Microb Pathog 2021; 158: 105067.
[145]
Wang W, Balfe P, Eyre DW, Lumley SF, O’Donnell D, Warren F, et al. Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. J Biol Rhythms 2022; 37(1): 124-9.
[146]
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[147]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478(1): 185-96.
[148]
Cai W, Rudolph JL, Sengoku T, Andres DA. Rit GTPase regulates a p38 MAPK-dependent neuronal survival pathway. Neurosci Lett 2012; 531(2): 125-30.
[149]
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28(9-10): 395-406.
[150]
Tourette C, Li B, Bell R, O’Hare S, Kaltenbach LS, Mooney SD, et al. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 2014; 289(10): 6709-26.