[1]
Wang, Y.; Li, G.; Deng, M.; Liu, X.; Huang, W.; Zhang, Y.; Liu, M.; Chen, Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol. Ther., 2021, 221, 107783.
[2]
Ray, S.K.; Mukherjee, S. Targeting tumor hypoxia and hypoxia-inducible factors (HIFs) for the treatment of cancer- A story of transcription factors with novel approach in molecular medicine. Curr. Mol. Med., 2022, 22(3), 193-194.
[3]
Chen, Y.; Liu, M.; Niu, Y.; Wang, Y. Romance of the three kingdoms in hypoxia: HIFs, epigenetic regulators, and chromatin reprogramming. Cancer Lett., 2020, 495, 211-223.
[4]
Ray, S.K.; Mukherjee, S. Epigenetic reprogramming and landscape of transcriptomic interactions: Impending therapeutic interference of triple-negative breast cancer in molecular medicine. Curr. Mol. Med., 2022, 22(10), 835-850.
[5]
Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol., 2014, 9, 47-71.
[6]
Sadanandom, A.; Bailey, M.; Ewan, R.; Lee, J.; Nelis, S. The ubiquitin-proteasome system: central modifier of plant signaling. New Phytol., 2012, 196, 13-28.
[7]
Ray, S.K.; Mukherjee, S. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: Impressive tool in drug discovery. Recent Patents Anticancer Drug Discov., 2022, 17(1), 80-91.
[8]
Huang, Y.; Lin, D.; Taniguchi, C.M. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci. China Life Sci., 2017, 60(10), 1114-1124.
[9]
Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol., 2003, 21, 255-261.
[10]
Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem., 1998, 67, 425-479.
[11]
Wang, Y.; Liu, X.; Huang, W.; Liang, J.; Chen, Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol. Ther., 2022, 240, 108303.
[12]
Ivan, M.; Kondo, K.; Yang, H.; Kim, W.; Valiando, J.; Ohh, M.; Salic, A.; Asara, J.M.; Lane, W.S.; Kaelin, W.G., Jr HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292, 464-468.
[13]
Zhang, C.; Peng, Z.; Zhu, M.; Wang, P.; Du, X.; Li, X.; Liu, Y.; Jin, Y.; McNutt, M.A.; Yin, Y. USP9X destabilizes pVHL and promotes cell proliferation. Oncotarget, 2016, 7, 60519-60534.
[14]
Xu, Y.C.; Gu, Y.; Yang, J.Y.; Xi, K.; Tang, J.C.; Bian, J.; Cai, F.; Chen, L. RACK1 mediates the advanced glycation end product-induced degradation of HIF-1 alpha in nucleus pulposus cells via competing with HSP90 for HIF-1 alpha binding. Cell Biol. Int., 2021, 45, 1316-1326.
[15]
Koh, M.Y.; Darnay, B.G.; Powis, G. Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol. Cell. Biol., 2008, 28, 7081-7095.
[16]
Roe, J.S.; Kim, H.; Lee, S.M.; Kim, S.T.; Cho, E.J.; Youn, H.D. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol. Cell, 2006, 22, 395-405.
[17]
Mennerich, D.; Kubaichuk, K.; Kietzmann, T. DUBs, hypoxia, and cancer. Trends Cancer, 2019, 5, 632-653.
[18]
Ray, S.K.; Mukherjee, S. Altered expression of TRIM proteins-inimical outcome and inimitable oncogenic function in breast cancer with diverse carcinogenic hallmarks. Curr. Mol. Med., 2023, 23(1), 44-53.