Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Editorial

Revolutionizing Drug Discovery: The Role of Artificial Intelligence and Machine Learning

Author(s): Abhishek Verma and Ankit Awasthi*

Volume 30, Issue 11, 2024

Published on: 23 February, 2024

Page: [807 - 810] Pages: 4

DOI: 10.2174/0113816128298691240222054120

Price: $65

Next »
[1]
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers 2021; 25(3): 1315-60.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[2]
Vemula D, Jayasurya P, Sushmitha V, Kumar YN, Bhandari V. CADD, AI and ML in drug discovery: A comprehensive review. Eur J Pharm Sci 2023; 181: 106324.
[http://dx.doi.org/10.1016/j.ejps.2022.106324] [PMID: 36347444]
[3]
Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41(3): 1427-73.
[http://dx.doi.org/10.1002/med.21764] [PMID: 33295676]
[4]
Alshehri FF. Integrated virtual screening, molecular modeling and machine learning approaches revealed potential natural inhibitors for epilepsy. Saudi Pharm J 2023; 31(12): 101835.
[http://dx.doi.org/10.1016/j.jsps.2023.101835] [PMID: 37965486]
[5]
Tropsha A, Isayev O, Varnek A, Schneider G, Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat Rev Drug Discov 2024; 23(2): 141-55.
[PMID: 38066301]
[6]
Husnain A, Rasool S, Saeed A, Hussain HK. Revolutionizing pharmaceutical research: Harnessing machine learning for a paradigm shift in drug discovery. Int J Multidiscip Sci Arts 2023; 2(2): 149-57.
[http://dx.doi.org/10.47709/ijmdsa.v2i2.2897]
[7]
Ayanoglu E, Davaslioglu K, Sagduyu YE. Machine learning in NextG networks via generative adversarial networks. IEEE Trans Cogn Commun Netw 2022; 8(2): 480-501.
[http://dx.doi.org/10.1109/TCCN.2022.3153004]
[8]
Doherty T, Yao Z, Khleifat AA, et al. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimers Dement 2023; 19(12): 5922-33.
[http://dx.doi.org/10.1002/alz.13428] [PMID: 37587767]
[9]
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Application of artificial intelligence in drug repurposing: A mini-review. Curr Chin Sci 2021; 1(3): 333-45.
[http://dx.doi.org/10.2174/2210298101666210204162006]
[10]
Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Karimi M, Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep 2023; 13(1): 18012.
[http://dx.doi.org/10.1038/s41598-023-43689-4] [PMID: 37865639]
[11]
Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. Int J Pharm 2023; 646: 123414.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123414] [PMID: 37714314]
[12]
Kaluarachchi T, Reis A, Nanayakkara S. A review of recent deep learning approaches in human-centered machine learning. Sensors 2021; 21(7): 2514.
[http://dx.doi.org/10.3390/s21072514] [PMID: 33916850]
[13]
Alonso JM, Casalino G. Explainable artificial intelligence for human-centric data analysis in virtual learning environments. In: Higher Education Learning Methodologies and Technologies Online. Springer 2019; pp. 125-38.
[http://dx.doi.org/10.1007/978-3-030-31284-8_10]
[14]
Kulkov I. The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technol Soc 2021; 66: 101629.
[http://dx.doi.org/10.1016/j.techsoc.2021.101629]
[15]
You Y, Lai X, Pan Y, et al. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther 2022; 7(1): 156.
[http://dx.doi.org/10.1038/s41392-022-00994-0] [PMID: 35538061]
[16]
Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT. Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 2016; 14: 177-84.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[17]
Sunil VS. The intersection of artificial intelligence and biological sciences
[18]
Greene D, Hoffmann AL, Stark L. Better, nicer, clearer, fairer: A critical assessment of the movement for ethical artificial intelligence and machine learning. Hawaii International Conference on System Sciences Hawai, January. 2019; pp. 1-10.
[http://dx.doi.org/10.24251/HICSS.2019.258]
[19]
Neethirajan S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Human-Centric Intelligent Systems 2023; pp. 1-16.
[20]
Xu Y, Yao H, Lin K. An overview of neural networks for drug discovery and the inputs used. Expert Opin Drug Discov 2018; 13(12): 1091-102.
[http://dx.doi.org/10.1080/17460441.2018.1547278] [PMID: 30449189]
[21]
Hafidi MM, Djezzar M, Hemam M, Amara FZ, Maimour M. Semantic web and machine learning techniques addressing semantic interoperability in Industry 4.0. Int J Web Inf Syst 2023; 19(3/4): 157-72.
[http://dx.doi.org/10.1108/IJWIS-03-2023-0046]
[22]
Blanco-González A, Cabezón A, Seco-González A, et al. The role of ai in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023; 16(6): 891.
[http://dx.doi.org/10.3390/ph16060891] [PMID: 37375838]
[23]
Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol Divers 2022; 26(3): 1893-913.
[http://dx.doi.org/10.1007/s11030-021-10326-z] [PMID: 34686947]
[24]
Tiwari PC, Pal R, Chaudhary MJ, Nath R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev Res 2023; 84(8): 1652-63.
[http://dx.doi.org/10.1002/ddr.22115] [PMID: 37712494]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy