Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Molecular Players at the Sorting Stations of Malaria Parasite ‘Plasmodium falciparum’

Author(s): Jasweer Kaur, Prakash Chandra Mishra and Rachna Hora*

Volume 25, Issue 6, 2024

Published on: 23 February, 2024

Page: [427 - 437] Pages: 11

DOI: 10.2174/0113892037282522240130090156

Price: $65

Abstract

The apicomplexan pathogenic parasite ‘Plasmodium falciparum’ (Pf) is responsible for most of the malaria related mortality. It resides in and refurbishes the infected red blood cells (iRBCs) for its own survival and to suffice its metabolic needs. Remodeling of host erythrocytes involves alteration of physical and biochemical properties of the membrane and genesis of new parasite induced structures within the iRBCs. The generated structures include knobs and solute ion channels on the erythrocyte surface and specialized organelles i.e. Maurer’s clefts (MCs) in the iRBC cytosol. The above processes are mediated by exporting a large repertoire of proteins to the host cell, most of which are transported via MCs, the sorting stations in parasitized erythrocytes. Information about MC biogenesis and the molecules involved in maintaining MC architecture remains incompletely elucidated. Here, we have compiled a list of experimentally known MC resident proteins, several of which have roles in maintaining its architecture and function. Our short review covers available data on the domain organization, orthologues, topology and specific roles of these proteins. We highlight the current knowledge gaps in our understanding of MCs as crucial organelles involved in parasite biology and disease pathogenesis.

Next »
Graphical Abstract

[1]
World malaria report. 2022. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed on: August 12, 2023).
[2]
White, N.J.; Ho, M. The pathophysiology of Malaria. In: Advances in Parasitology; Baker, J.R.; Muller, R., Eds.; Academic Press, 1992; Vol. 31, pp. 83-173.
[http://dx.doi.org/10.1016/S0065-308X(08)60021-4]
[3]
Prevention CC for DC and. Biology. 2020. Available from: https://www.cdc.gov/malaria/about/biology/index.html (Accessed on: August 12, 2023).
[4]
Lopes, S.C.P.; Albrecht, L.; Carvalho, B.O.; Siqueira, A.M.; Thomson-Luque, R.; Nogueira, P.A.; Fernandez-Becerra, C.; del Portillo, H.A.; Russell, B.M.; Rénia, L.; Lacerda, M.V.G.; Costa, F.T.M. Paucity of Plasmodium vivax mature schizonts in peripheral blood is associated with their increased cytoadhesive potential. J. Infect. Dis., 2014, 209(9), 1403-1407.
[http://dx.doi.org/10.1093/infdis/jiu018] [PMID: 24415786]
[5]
Hiller, N.L.; Bhattacharjee, S.; van Ooij, C.; Liolios, K.; Harrison, T.; Lopez-Estraño, C.; Haldar, K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science, 2004, 306(5703), 1934-1937.
[http://dx.doi.org/10.1126/science.1102737] [PMID: 15591203]
[6]
Marti, M.; Baum, J.; Rug, M.; Tilley, L.; Cowman, A.F. Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol., 2005, 171(4), 587-592.
[http://dx.doi.org/10.1083/jcb.200508051] [PMID: 16301328]
[7]
Blisnick, T.; Morales Betoulle, M.E.; Barale, J.C.; Uzureau, P.; Berry, L.; Desroses, S.; Fujioka, H.; Mattei, D.; Breton, B.C. Pfsbp1, a maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol., 2000, 111(1), 107-121.
[http://dx.doi.org/10.1016/S0166-6851(00)00301-7] [PMID: 11087921]
[8]
Spielmann, T.; Hawthorne, P.L.; Dixon, M.W.A.; Hannemann, M.; Klotz, K.; Kemp, D.J.; Klonis, N.; Tilley, L.; Trenholme, K.R.; Gardiner, D.L. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell, 2006, 17(8), 3613-3624.
[http://dx.doi.org/10.1091/mbc.e06-04-0291] [PMID: 16760427]
[9]
Spycher, C.; Klonis, N.; Spielmann, T.; Kump, E.; Steiger, S.; Tilley, L.; Beck, H.P. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J. Biol. Chem., 2003, 278(37), 35373-35383.
[http://dx.doi.org/10.1074/jbc.M305851200] [PMID: 12815049]
[10]
Spycher, C.; Rug, M.; Klonis, N.; Ferguson, D.J.P.; Cowman, A.F.; Beck, H.P.; Tilley, L. Genesis of and trafficking to the Maurer’s clefts of Plasmodium falciparum-infected erythrocytes. Mol. Cell. Biol., 2006, 26(11), 4074-4085.
[http://dx.doi.org/10.1128/MCB.00095-06] [PMID: 16705161]
[11]
Tilley, L.; Sougrat, R.; Lithgow, T.; Hanssen, E. The twists and turns of Maurer’s cleft trafficking in P. falciparum-infected erythrocytes. Traffic, 2008, 9(2), 187-197.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00684.x] [PMID: 18088325]
[12]
Blythe, J.E.; Yam, X.Y.; Kuss, C.; Bozdech, Z.; Holder, A.A.; Marsh, K.; Langhorne, J.; Preiser, P.R. Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect. Immun., 2008, 76(7), 3329-3336.
[http://dx.doi.org/10.1128/IAI.01460-07] [PMID: 18474651]
[13]
Joannin, N.; Abhiman, S.; Sonnhammer, E.L.; Wahlgren, M. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics, 2008, 9(1), 19.
[http://dx.doi.org/10.1186/1471-2164-9-19] [PMID: 18197962]
[14]
Kaviratne, M.; Khan, S.M.; Jarra, W.; Preiser, P.R. Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot. Cell, 2002, 1(6), 926-935.
[http://dx.doi.org/10.1128/EC.1.6.926-935.2002] [PMID: 12477793]
[15]
Kyes, S.A.; Rowe, J.A.; Kriek, N.; Newbold, C.I. Rifins: A second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl. Acad. Sci., 1999, 96(16), 9333-9338.
[http://dx.doi.org/10.1073/pnas.96.16.9333] [PMID: 10430943]
[16]
Lavazec, C.; Sanyal, S.; Templeton, T.J. Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res., 2006, 34(22), 6696-6707.
[http://dx.doi.org/10.1093/nar/gkl942] [PMID: 17148488]
[17]
Mundwiler-Pachlatko, E.; Beck, H.P. Maurer’s clefts, the enigma of Plasmodium falciparum. Proc. Natl. Acad. Sci., 2013, 110(50), 19987-19994.
[http://dx.doi.org/10.1073/pnas.1309247110] [PMID: 24284172]
[18]
Niang, M.; Yan Yam, X.; Preiser, P.R. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog., 2009, 5(2), e1000307.
[http://dx.doi.org/10.1371/journal.ppat.1000307] [PMID: 19229319]
[19]
Przyborski, J.M.; Miller, S.K.; Pfahler, J.M.; Henrich, P.P.; Rohrbach, P.; Crabb, B.S.; Lanzer, M. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J., 2005, 24(13), 2306-2317.
[http://dx.doi.org/10.1038/sj.emboj.7600720] [PMID: 15961998]
[20]
Sam-Yellowe, T.Y.; Florens, L.; Johnson, J.R.; Wang, T.; Drazba, J.A.; Le Roch, K.G.; Zhou, Y.; Batalov, S.; Carucci, D.J.; Winzeler, E.A.; Yates, J.R., III A Plasmodium gene family encoding Maurer’s cleft membrane proteins: Structural properties and expression profiling. Genome Res., 2004, 14(6), 1052-1059.
[http://dx.doi.org/10.1101/gr.2126104] [PMID: 15140830]
[21]
Tsarukyanova, I.; Drazba, J.A.; Fujioka, H.; Yadav, S.P.; Sam-Yellowe, T.Y. Proteins of the Plasmodium falciparum two transmembrane maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol. Res., 2009, 104(4), 875-891.
[http://dx.doi.org/10.1007/s00436-008-1270-3] [PMID: 19130087]
[22]
Vincensini, L.; Richert, S.; Blisnick, T.; Van Dorsselaer, A.; Leize-Wagner, E.; Rabilloud, T.; Breton, B.C. Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol. Cell. Proteomics, 2005, 4(4), 582-593.
[http://dx.doi.org/10.1074/mcp.M400176-MCP200] [PMID: 15671043]
[23]
Kumar, V.; Kaur, J.; Singh, A.P.; Singh, V.; Bisht, A.; Panda, J.J.; Mishra, P.C.; Hora, R. PHIST c protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1. FEBS J., 2018, 285(2), 294-312.
[http://dx.doi.org/10.1111/febs.14340] [PMID: 29155505]
[24]
Pachlatko, E.; Rusch, S.; Müller, A.; Hemphill, A.; Tilley, L.; Hanssen, E.; Beck, H.P. MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer’s cleft tethers. Mol. Microbiol., 2010, 77(5), 1136-1152.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07278.x] [PMID: 20624222]
[25]
Hanssen, E.; Hawthorne, P.; Dixon, M.W.A.; Trenholme, K.R.; McMillan, P.J.; Spielmann, T.; Gardiner, D.L.; Tilley, L. Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer’s cleft organelles. Mol. Microbiol., 2008, 69(4), 938-953.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06329.x] [PMID: 18573183]
[26]
Wickert, H.; Göttler, W.; Krohne, G.; Lanzer, M. Maurer’s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur. J. Cell Biol., 2004, 83(10), 567-582.
[http://dx.doi.org/10.1078/0171-9335-00432] [PMID: 15679102]
[27]
Wickert, H.; Krohne, G. The complex morphology of Maurer’s clefts: From discovery to three-dimensional reconstructions. Trends Parasitol., 2007, 23(10), 502-509.
[http://dx.doi.org/10.1016/j.pt.2007.08.008] [PMID: 17888738]
[28]
Zhang, M.; Faou, P.; Maier, A.G.; Rug, M. Plasmodium falciparum exported protein PFE60 influences Maurer’s clefts architecture and virulence complex composition. Int. J. Parasitol., 2018, 48(1), 83-95.
[http://dx.doi.org/10.1016/j.ijpara.2017.09.003] [PMID: 29100811]
[29]
Grüring, C.; Heiber, A.; Kruse, F.; Ungefehr, J.; Gilberger, T.W.; Spielmann, T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat. Commun., 2011, 2(1), 165.
[http://dx.doi.org/10.1038/ncomms1169] [PMID: 21266965]
[30]
McMillan, P.J.; Millet, C.; Batinovic, S.; Maiorca, M.; Hanssen, E.; Kenny, S.; Muhle, R.A.; Melcher, M.; Fidock, D.A.; Smith, J.D.; Dixon, M.W.A.; Tilley, L. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell. Microbiol., 2013, 15(8), 1401-1418.
[http://dx.doi.org/10.1111/cmi.12125] [PMID: 23421990]
[31]
Cyrklaff, M.; Sanchez, C.P.; Kilian, N.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Lanzer, M. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science, 2011, 334(6060), 1283-1286.
[http://dx.doi.org/10.1126/science.1213775] [PMID: 22075726]
[32]
Rug, M.; Cyrklaff, M.; Mikkonen, A.; Lemgruber, L.; Kuelzer, S.; Sanchez, C.P.; Thompson, J.; Hanssen, E.; O’Neill, M.; Langer, C.; Lanzer, M.; Frischknecht, F.; Maier, A.G.; Cowman, A.F. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood, 2014, 124(23), 3459-3468.
[http://dx.doi.org/10.1182/blood-2014-06-583054] [PMID: 25139348]
[33]
Kilian, N.; Dittmer, M.; Cyrklaff, M.; Ouermi, D.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Sanchez, C.P.; Lanzer, M. Haemoglobin S and C affect the motion of Maurer’s clefts in Plasmodium falciparum -infected erythrocytes. Cell. Microbiol., 2013, 15(7), 1111-1126.
[http://dx.doi.org/10.1111/cmi.12102] [PMID: 23279197]
[34]
Knuepfer, E.; Rug, M.; Klonis, N.; Tilley, L.; Cowman, A.F. Trafficking of the major virulence factor to the surface of transfected P falciparum–infected erythrocytes. Blood, 2005, 105(10), 4078-4087.
[http://dx.doi.org/10.1182/blood-2004-12-4666] [PMID: 15692070]
[35]
Kriek, N.; Tilley, L.; Horrocks, P.; Pinches, R.; Elford, B.C.; Ferguson, D.J.P.; Lingelbach, K.; Newbold, C.I. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol. Microbiol., 2003, 50(4), 1215-1227.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03784.x] [PMID: 14622410]
[36]
Külzer, S.; Charnaud, S.; Dagan, T.; Riedel, J.; Mandal, P.; Pesce, E.R.; Blatch, G.L.; Crabb, B.S.; Gilson, P.R.; Przyborski, J.M. Plasmodium falciparum -encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell. Microbiol., 2012, 14(11), 1784-1795.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01840.x] [PMID: 22925632]
[37]
McHugh, E.; Carmo, O.M.S.; Blanch, A.; Looker, O.; Liu, B.; Tiash, S.; Andrew, D.; Batinovic, S.; Low, A.J.Y.; Cho, H.J.; McMillan, P.; Tilley, L.; Dixon, M.W.A. Role of Plasmodium falciparum protein GEXP07 in Maurer’s cleft morphology, knob architecture, and P. falciparum EMP1 trafficking. MBio, 2020, 11(2), e03320-19.
[http://dx.doi.org/10.1128/mBio.03320-19] [PMID: 32184257]
[38]
Saxena, R.; Kaur, J.; Hora, R.; Singh, P.; Singh, V.; Mishra, P.C. CX3CL1 binding protein-2 (CBP2) of Plasmodium falciparum binds nucleic acids. Int. J. Biol. Macromol., 2019, 138, 996-1005.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.178] [PMID: 31356937]
[39]
Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; Harb, O.S.; Heiges, M.; Innamorato, F.; Iodice, J.; Kissinger, J.C.; Kraemer, E.; Li, W.; Miller, J.A.; Nayak, V.; Pennington, C.; Pinney, D.F.; Roos, D.S.; Ross, C.; Stoeckert, C.J., Jr; Treatman, C.; Wang, H. PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37(Database), D539-D543.
[http://dx.doi.org/10.1093/nar/gkn814] [PMID: 18957442]
[40]
Saridaki, T.; Fröhlich, K.S.; Braun-Breton, C.; Lanzer, M. Export of PfSBP1 to the Plasmodium falciparum maurer’s clefts. Traffic, 2009, 10(2), 137-152.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00860.x] [PMID: 19054387]
[41]
Mbengue, A.; Vialla, E.; Berry, L.; Fall, G.; Audiger, N.; Demettre-Verceil, E.; Boteller, D.; Braun-Breton, C. NEW export pathway in plasmodium falciparum -infected erythrocytes: Role of the parasite group II Chaperonin, PFTRIC. Traffic, 2015, 16(5), 461-475.
[http://dx.doi.org/10.1111/tra.12266] [PMID: 25615740]
[42]
Kubota, H.; Hynes, G.; Willison, K. The chaperonin containing t-complex polypeptide 1 (TCP-1). Eur. J. Biochem., 1995, 230(1), 3-16.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20527.x] [PMID: 7601114]
[43]
Kats, L.M.; Proellocks, N.I.; Buckingham, D.W.; Blanc, L.; Hale, J.; Guo, X.; Pei, X.; Herrmann, S.; Hanssen, E.G.; Coppel, R.L.; Mohandas, N.; An, X.; Cooke, B.M. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim. Biophys. Acta Biomembr., 2015, 1848(7), 1619-1628.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.038] [PMID: 25883090]
[44]
Blisnick, T.; Vincensini, L.; Fall, G.; Braun-Breton, C. Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell. Microbiol., 2006, 8(4), 591-601.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00650.x] [PMID: 16548885]
[45]
Blisnick, T.; Vincensini, L.; Barale, J.C.; Namane, A.; Braun Breton, C. LANCL1, an erythrocyte protein recruited to the Maurer’s clefts during Plasmodium falciparum development. Mol. Biochem. Parasitol., 2005, 141(1), 39-47.
[http://dx.doi.org/10.1016/j.molbiopara.2005.01.013] [PMID: 15811525]
[46]
Cooke, B.M.; Buckingham, D.W.; Glenister, F.K.; Fernandez, K.M.; Bannister, L.H.; Marti, M.; Mohandas, N.; Coppel, R.L. A Maurer’s cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J. Cell Biol., 2006, 172(6), 899-908.
[http://dx.doi.org/10.1083/jcb.200509122] [PMID: 16520384]
[47]
Pasternak, N.D.; Dzikowski, R. PfEMP1: An antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int. J. Biochem. Cell Biol., 2009, 41(7), 1463-1466.
[http://dx.doi.org/10.1016/j.biocel.2008.12.012] [PMID: 19150410]
[48]
Maier, A.G.; Rug, M.; O’Neill, M.T.; Beeson, J.G.; Marti, M.; Reeder, J.; Cowman, A.F. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum–infected erythrocyte surface. Blood, 2007, 109(3), 1289-1297.
[http://dx.doi.org/10.1182/blood-2006-08-043364] [PMID: 17023587]
[49]
Chan, J.A.; Howell, K.B.; Langer, C.; Maier, A.G.; Hasang, W.; Rogerson, S.J.; Petter, M.; Chesson, J.; Stanisic, D.I.; Duffy, M.F.; Cooke, B.M.; Siba, P.M.; Mueller, I.; Bull, P.C.; Marsh, K.; Fowkes, F.J.I.; Beeson, J.G. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell. Mol. Life Sci., 2016, 73(21), 4141-4158.
[http://dx.doi.org/10.1007/s00018-016-2267-1] [PMID: 27193441]
[50]
Hawthorne, P.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Spielmann, T.; Fischer, K.; Dixon, M.W.A.; Ortega, M.R.; Anderson, K.L.; Kemp, D.J.; Gardiner, D.L. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts. Mol. Biochem. Parasitol., 2004, 136(2), 181-189.
[http://dx.doi.org/10.1016/j.molbiopara.2004.03.013] [PMID: 15481109]
[51]
Dixon, M.W.A.; Kenny, S.; McMillan, P.J.; Hanssen, E.; Trenholme, K.R.; Gardiner, D.L.; Tilley, L. Genetic ablation of a Maurer’s cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol. Microbiol., 2011, 81(4), 982-993.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07740.x] [PMID: 21696460]
[52]
Haase, S.; Herrmann, S.; Grüring, C.; Heiber, A.; Jansen, P.W.; Langer, C.; Treeck, M.; Cabrera, A.; Bruns, C.; Struck, N.S.; Kono, M.; Engelberg, K.; Ruch, U.; Stunnenberg, H.G.; Gilberger, T.W.; Spielmann, T. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol. Microbiol., 2009, 71(4), 1003-1017.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06582.x] [PMID: 19170882]
[53]
Spycher, C.; Rug, M.; Pachlatko, E.; Hanssen, E.; Ferguson, D.; Cowman, A.F.; Tilley, L.; Beck, H.P. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum -infected erythrocytes. Mol. Microbiol., 2008, 68(5), 1300-1314.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06235.x] [PMID: 18410498]
[54]
Marti, M.; Good, R.T.; Rug, M.; Knuepfer, E.; Cowman, A.F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 2004, 306(5703), 1930-1933.
[http://dx.doi.org/10.1126/science.1102452] [PMID: 15591202]
[55]
Mattei, D.; Scherf, A. The Pf332 gene codes for a megadalton protein of Plasmodium falciparum asexual blood stages. Mem. Inst. Oswaldo Cruz, 1992, 87(S3), 163-168.
[http://dx.doi.org/10.1590/S0074-02761992000700026] [PMID: 1364200]
[56]
Mattei, D.; Scherf, A. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene, 1992, 110(1), 71-79.
[http://dx.doi.org/10.1016/0378-1119(92)90446-V] [PMID: 1544579]
[57]
Moll, K.; Chêne, A.; Ribacke, U.; Kaneko, O.; Nilsson, S.; Winter, G.; Haeggström, M.; Pan, W.; Berzins, K.; Wahlgren, M.; Chen, Q. A novel DBL-domain of the P. falciparum 332 molecule possibly involved in erythrocyte adhesion. PLoS One, 2007, 2(5), e477.
[http://dx.doi.org/10.1371/journal.pone.0000477] [PMID: 17534427]
[58]
Carmo, O.M.S.; Shami, G.J.; Cox, D.; Liu, B.; Blanch, A.J.; Tiash, S.; Tilley, L.; Dixon, M.W.A. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog., 2022, 18(8), e1009882.
[http://dx.doi.org/10.1371/journal.ppat.1009882] [PMID: 35930605]
[59]
Almaazmi, S.Y.; Singh, H.; Dutta, T.; Blatch, G.L. Exported J domain proteins of the human malaria parasite. Front. Mol. Biosci., 2022, 9, 978663.
[http://dx.doi.org/10.3389/fmolb.2022.978663] [PMID: 36120546]
[60]
Waller, K.L.; Nunomura, W.; An, X.; Cooke, B.M.; Mohandas, N.; Coppel, R.L. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood, 2003, 102(5), 1911-1914.
[http://dx.doi.org/10.1182/blood-2002-11-3513] [PMID: 12730097]
[61]
Waller, K.L.; Stubberfield, L.M.; Dubljevic, V.; Buckingham, D.W.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim. Biophys. Acta Biomembr., 2010, 1798(5), 861-871.
[http://dx.doi.org/10.1016/j.bbamem.2010.01.018] [PMID: 20132790]
[62]
Glenister, F.K.; Fernandez, K.M.; Kats, L.M.; Hanssen, E.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood, 2009, 113(4), 919-928.
[http://dx.doi.org/10.1182/blood-2008-05-157735] [PMID: 18832660]
[63]
Nilsson, S.; Angeletti, D.; Wahlgren, M.; Chen, Q.; Moll, K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer’s clefts. PLoS One, 2012, 7(11), e46980.
[http://dx.doi.org/10.1371/journal.pone.0046980] [PMID: 23185236]
[64]
Kaur, J.; Kumar, V.; Singh, A.P.; Singh, V.; Bisht, A.; Dube, T.; Panda, J.J.; Behl, A.; Mishra, P.C.; Hora, R. Plasmodium falciparum protein ‘PfJ23’ hosts distinct binding sites for major virulence factor ‘PfEMP1’ and Maurer’s cleft marker ‘PfSBP1’. Pathog. Dis., 2018, 76(9), fty090.
[http://dx.doi.org/10.1093/femspd/fty090] [PMID: 30576479]
[65]
Lavazec, C.; Sanyal, S.; Templeton, T.J. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. Microbiol., 2007, 64(6), 1621-1634.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05767.x] [PMID: 17555442]
[66]
Bachmann, A.; Scholz, J.A.M.; Janßen, M.; Klinkert, M.Q.; Tannich, E.; Bruchhaus, I.; Petter, M. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar. J., 2015, 14(1), 274.
[http://dx.doi.org/10.1186/s12936-015-0784-2] [PMID: 26173856]
[67]
Yadavalli, R.; Peterson, J.W.; Drazba, J.A.; Sam-Yellowe, T.Y. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurer’s clefts. Pathogens, 2021, 10(4), 431.
[http://dx.doi.org/10.3390/pathogens10040431] [PMID: 33916455]
[68]
Maier, A.G.; Rug, M.; O’Neill, M.T.; Brown, M.; Chakravorty, S.; Szestak, T.; Chesson, J.; Wu, Y.; Hughes, K.; Coppel, R.L.; Newbold, C.; Beeson, J.G.; Craig, A.; Crabb, B.S.; Cowman, A.F. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell, 2008, 134(1), 48-61.
[http://dx.doi.org/10.1016/j.cell.2008.04.051] [PMID: 18614010]
[69]
Prajapati, S.K.; Singh, O.P. Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol. Dis., 2013, 51(3), 195-202.
[http://dx.doi.org/10.1016/j.bcmd.2013.06.003] [PMID: 23880461]
[70]
Kumar, V.; Behl, A.; Sharma, R.; Sharma, A.; Hora, R. Plasmodium helical interspersed subtelomeric family—an enigmatic piece of the Plasmodium biology puzzle. Parasitol. Res., 2019, 118(10), 2753-2766.
[http://dx.doi.org/10.1007/s00436-019-06420-9] [PMID: 31418110]
[71]
Regev-Rudzki, N.; Wilson, D.W.; Carvalho, T.G.; Sisquella, X.; Coleman, B.M.; Rug, M.; Bursac, D.; Angrisano, F.; Gee, M.; Hill, A.F.; Baum, J.; Cowman, A.F. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell, 2013, 153(5), 1120-1133.
[http://dx.doi.org/10.1016/j.cell.2013.04.029] [PMID: 23683579]
[72]
Sargeant, T.; Marti, M.; Caler, E.; Carlton, J.; Simpson, K.; Speed, T.; Cowman, A. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol., 2006, 7(2), R12.
[http://dx.doi.org/10.1186/gb-2006-7-2-r12] [PMID: 16507167]
[73]
Zhang, Q.; Ma, C.; Oberli, A.; Zinz, A.; Engels, S.; Przyborski, J.M. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci. Rep., 2017, 7(1), 42188.
[http://dx.doi.org/10.1038/srep42188] [PMID: 28218284]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy