Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Solvent-free Organic Transformation via Iron-doped Nanocatalyst

Author(s): Dhananjay N. Gaikwad, Suresh T. Gaikwad*, Rajesh K. Manjul, Anjali S. Rajbhoj and Dayanand M. Suryavanshi

Volume 28, Issue 4, 2024

Published on: 22 February, 2024

Page: [286 - 297] Pages: 12

DOI: 10.2174/0113852728284846240124052127

Price: $65

Abstract

This article highlights current developments in iron-doped nanocatalyst-based solvent-free organic reactions. These catalysts have the potential to speed up processes under safe environmental settings and eliminate the need for hazardous organic solvents. Its application in a variety of fields is mostly due to its superparamagnetic nano diameters, which are affordable, easily separable, reusable, and eco-friendly. Thus, the present review article focuses on the compendious account of various doped iron nanocatalysts reported catalyzing organic transformation, including synthesis of bioactive compounds, condensation, multicomponent, annulation, esterification, coupling, alkylation, acylation reactions. The development of innovative, highly active, and reusable magnetic iron nanocomposite catalysts is crucial for the future of catalysis as it will pave the way for the creation of environmentally friendly and sustainable technology. The review will provide valuable insights for researchers who are designing new functionalized doped iron catalysts or utilizing these catalysts for various organic transformations that promote sustainable development. The development of new precursors and synthesis techniques, as well as recent improvements in the synthesis of these catalysts, are described. The article also emphasizes the significance of comprehending the underlying processes of these catalytic events, as well as the difficulties and possibilities for further study in this field. The potential of iron-doped nanocatalysts as an environmentally friendly and long-lasting method of organic synthesis is emphasized throughout this review.

Graphical Abstract

[1]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[2]
Al-Mulla, A.A. Review: Biological importance of heterocyclic compounds. Pharma Chem., 2017, 9(13), 141-147.
[3]
Delost, M.D.; Smith, D.T.; Anderson, B.J.; Njardarson, J.T. From oxiranes to oligomers: Architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles. J. Med. Chem., 2018, 61(24), 10996-11020.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00876] [PMID: 30024747]
[4]
Bansal, P.; Gupta, S.; Christopher, A.; Gupta, V. Advances in green synthesis of nanoparticles. Artif Cells Nanomed. Biotechnol., 2015, 47, 844-851.
[http://dx.doi.org/10.19070/2167-910X-1500029]
[5]
Kumar, G.; Saroha, B.; Kumar, R.; Kumari, M.; Kumar, S. Recent advances in synthesis and biological assessment of quinoline‐oxygen heterocycle hybrids. ChemistrySelect, 2021, 6(20), 5148-5165.
[http://dx.doi.org/10.1002/slct.202100906]
[6]
Singh, P.K.; Silakari, O. The current status of o‐heterocycles: A synthetic and medicinal overview. ChemMedChem, 2018, 13(11), 1071-1087.
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[7]
Manjul, R.K.; Gaikwad, S.T.; Gade, V.B.; Rajbhoj, A.S.; Jopale, M.K.; Patil, S.M.; Gaikwad, D.N.; Suryavanshi, D.M.; Goskulwad, S.P.; Shinde, S.D. [EMIm][BH3CN] ionic liquid as an efficient catalyst for the microwave- assisted one-pot synthesis of triaryl imidazole derivatives. Lett. Org. Chem., 2023, 20(10), 967-975.
[http://dx.doi.org/10.2174/1570178620666230510122033]
[8]
Manjul, R.K.; Gade, V.B.; Gaikwad, D.N.; Suryavanshi, D.M.; Rajbhoj, A.S.; Gaikwad, S.T. 1-Ethyl-3-methylimidazolium cyanoborohydride catalyzed solvent free microwave assisted one pot multicomponent synthesis of tetrahydrobenzo[b]pyran derivatives. Lett. Org. Chem., 2022, 19(6), 457-462.
[http://dx.doi.org/10.2174/1570178618666210405151600]
[9]
Chavhan, N.M.; Bhakare, S.D.; Muthe, R.C.; Hande, S.Y.; Gandule, A.S.; Gaikwad, D.N.; Suryawanshi, D.M. Magnesium sulphate-catalyzed green and efficient synthesis of some new derivatives of 1-amido alkyl naphthols under solvent-free conditions. Lett. Org. Chem., 2022, 19(10), 884-889.
[http://dx.doi.org/10.2174/1570178619666220113114613]
[10]
Li, G.; Cheng, Y.; Zhang, T.; Li, Y.; Han, L.; Liang, G. Characterization of oxygenated heterocyclic compounds and in vitro antioxidant activity of pomelo essential oil. Drug Des. Devel. Ther., 2021, 15, 937-947.
[http://dx.doi.org/10.2147/DDDT.S299678] [PMID: 33688168]
[11]
Avula, S.K.; Das, B.; Csuk, R.; Al-Harrasi, A. Naturally occurring Oheterocycles as anticancer agents. Anticancer. Agents Med. Chem., 2022, 22(19), 3208-3218.
[http://dx.doi.org/10.2174/1871520621666211108091444] [PMID: 34749628]
[12]
Singh, D. Neuroprotective effect of flavonoids: A systematic review. Int. J. Aging Res., 2019, 2(1), 26-26.
[13]
Krishnapriya; Sasikumar, P.; Aswathy, M.; Prem, P.T.; Radhakrishnan, K.V.; Baby Chakrapani, P.S. Plant derived bioactive compounds and their potential to enhance adult neurogenesis. Phytomedicine Plus, 2022, 2(1), 100191.
[http://dx.doi.org/10.1016/j.phyplu.2021.100191]
[14]
Abdel-Aziem, A.; Baaiu, B.S.; El-Sawy, E.R. Reactions and antibacterial activity of 6-bromo-3-(2-bromoacetyl)-2H-chromen-2-one. Polycycl. Aromat. Compd., 2022, 42(7), 4809-4818.
[http://dx.doi.org/10.1080/10406638.2021.1916543]
[15]
Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy - A mini-review. Int. J. Med. Sci., 2020, 17(18), 2964-2973.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[16]
(a) Rawal, M.; Singh, A.; Amiji, M. M. Quality-by-design concepts to improve nanotechnology-based drug development. Pharm. Res., 2019, 36(11), 153.
[http://dx.doi.org/10.1007/s11095-019-2692-6];
(b) Chao, W.; Gui, L.; Jiapei, W.; Lixin, X.; Dang, G.; Fengqiu, C.; Yusuke, A.; Yunqing, K.; Yusuke, Y. Modulating electronic metal-support interactions to boost visible-light-driven hydrolysis of ammonia borane: Nickelplatinum nanoparticles supported on phosphorus-doped titania. Angew. Chem. Int. Ed., 2023, 62, e202305371.
[http://dx.doi.org/10.1002/anie.202305371];
(c) Chao, W.; Xiaoling, L.; Jiapei, W.; Fengqiu, C.; Dang-Guo, C. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res., 2023, 16, 6260-6269.
[http://dx.doi.org/10.1007/s1227402353885];
(d) Chao, W.; Yu, L.; Liu, Z.; Jindou, H.C.; Jiapei, W.; Fengqiu, C.; Xiaoli, Z.; Dang-Guo, C. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Ener. Environ., 2024, 9(2), 333343.
[http://dx.doi.org/10.1016/j.gee.2022.06.007]
[17]
Sindhwani, S.; Chan, W.C.W. Nanotechnology for modern medicine: Next step towards clinical translation. J. Intern. Med., 2021, 290(3), 486-498.
[http://dx.doi.org/10.1111/joim.13254] [PMID: 33480120]
[18]
Rydel-Ciszek, K.; Pacześniak, T.; Zaborniak, I.; Błoniarz, P.; Surmacz, K.; Sobkowiak, A.; Chmielarz, P. Iron-based catalytically active complexes in preparation of functional materials. Processes, 2020, 8(12), 1683.
[http://dx.doi.org/10.3390/pr8121683]
[19]
Shesterkina, A.A.; Kustov, L.M.; Strekalova, A.A.; Kazansky, V.B. Heterogeneous iron-containing nanocatalysts - Promising systems for selective hydrogenation and hydrogenolysis. Catal. Sci. Technol., 2020, 10(10), 3160-3174.
[http://dx.doi.org/10.1039/D0CY00086H]
[20]
Shang, R.; Ilies, L.; Nakamura, E. Iron-catalyzed C-H bond activation. Chem. Rev., 2017, 117(13), 9086-9139.
[http://dx.doi.org/10.1021/acs.chemrev.6b00772] [PMID: 28378590]
[21]
Wei, D.; Darcel, C. Iron catalysis in reduction and hydrometalation reactions. Chem. Rev., 2019, 119(4), 2550-2610.
[http://dx.doi.org/10.1021/acs.chemrev.8b00372] [PMID: 30548065]
[22]
Wang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S-P.; Wu, W.D.; Wu, Z. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: A review. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(31), 15513-15546.
[http://dx.doi.org/10.1039/D0TA04541A]
[23]
Raya-Barón, Á.; Oña-Burgos, P.; Fernández, I. Iron-catalyzed homogeneous hydrosilylation of ketones and aldehydes: Advances and mechanistic perspective. ACS Catal., 2019, 9(6), 5400-5417.
[http://dx.doi.org/10.1021/acscatal.9b00201]
[24]
Michael, S.; Mark, S.; David, J.; Mindy, L.; Ismael, D.P.; Wolfgang, M.; Nongjian, T.; Erica, F. Total iron measurement in human serum with a smartphone. AIChE Annu. Meet. Conf. Proc., 2019.
[25]
Taheri, M.; Mohebat, R.; Moslemin, M.H. Microwave-assisted multi-component green synthesis of benzo[α]furo[2, 3-c]phenazine derivatives via a magnetically-separable Fe3O4@rGO@ZnO-HPA nanocatalyst under solvent-free conditions. Polycycl. Aromat. Compd., 2023, 43(1), 586-596.
[http://dx.doi.org/10.1080/10406638.2021.2019795]
[26]
Khodaei, M.M.; Alizadeh, A.; Haghipour, M. Supported 4-carboxybenzyl sulfamic acid on magnetic nanoparticles as a recoverable and recyclable catalyst for synthesis of 3,4,5-trisubstituted furan-2(5H)-one derivatives. J. Organomet. Chem., 2018, 870, 58-67.
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.012]
[27]
Shirzaei, M.; Mollashahi, E.; Taher Maghsoodlou, M.; Lashkari, M. Novel synthesis of silica-coated magnetic nano-particles based on acidic ionic liquid, as a highly efficient catalyst for three component system leads to furans derivatives. J. Saudi Chem. Soc., 2020, 24(2), 216-222.
[http://dx.doi.org/10.1016/j.jscs.2020.01.001]
[28]
Hao, F.; Wang, X.; Mohammadnia, M. Preparation and characterization of a novel magnetic nano catalyst for synthesis and antibacterial activities of novel furan-2(5H)-ones derivatives. Polycycl. Aromat. Compd., 2022, 42(7), 4255-4269.
[http://dx.doi.org/10.1080/10406638.2021.1887298]
[29]
Borade, R.M.; Somvanshi, S.B.; Kale, S.B.; Pawar, R.P.; Jadhav, K.M. Spinel zinc ferrite nanoparticles: An active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express, 2020, 7(1), 016116.
[http://dx.doi.org/10.1088/2053-1591/ab6c9c]
[30]
Aryan, R.; Mir, N.; Beyzaei, H.; Kharade, A. Design and synthesis of novel natural clinoptilolite-MnFe2O4 nanocomposites and their catalytic application in the facile and efficient synthesis of chalcone derivatives through Claisen-Schmidt reaction. Res. Chem. Intermed., 2018, 44(7), 4245-4258.
[http://dx.doi.org/10.1007/s11164-018-3366-4]
[31]
Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: A rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem., 2018, 40(Pt A), 78-83.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485]
[32]
Samiei, Z.; Soleimani-Amiri, S.; Azizi, Z. Fe3O4@C@OSO3H as an efficient, recyclable magnetic nanocatalyst in Pechmann condensation: Green synthesis, characterization, and theoretical study. Mol. Divers., 2021, 25(1), 67-86.
[http://dx.doi.org/10.1007/s11030-019-10025-w] [PMID: 31927717]
[33]
Pakdel, S.; Akhlaghinia, B.; Mohammadinezhad, A. Fe3O4@Boehmite-NH2-CoII NPs: An environment friendly nanocatalyst for solvent free synthesis of coumarin derivatives through pechmann condensation reaction. Chemistry Africa, 2019, 2(3), 367-376.
[http://dx.doi.org/10.1007/s42250-019-00042-5]
[34]
Zarei, F.; Soleimani-Amiri, S.; Azizi, Z. Heterogeneously catalyzed pechmann condensation employing the HFe(SO4)2.4H2 O-chitosan nano-composite: Ultrasound-accelerated green synthesis of coumarins. Polycycl. Aromat. Compd., 2022, 42(9), 6072-6089.
[http://dx.doi.org/10.1080/10406638.2021.1973520]
[35]
Yuan, J.; Mohammadnia, M. Preparation of a novel, efficient, and recyclable magnetic catalyst, Cu(II)-OHPC-Fe3O4 nanoparticles, and a solvent-free protocol for the synthesis of coumarin derivatives. J. Coord. Chem., 2021, 74(14), 2327-2343.
[http://dx.doi.org/10.1080/00958972.2021.1954172]
[36]
Feizpour Bonab, M.; Soleimani-Amiri, S.; Mirza, B. Fe3O4@C@PrS-SO3H: A novel efficient magnetically recoverable heterogeneous catalyst in the ultrasound-assisted synthesis of coumarin derivatives. Polycycl. Aromat. Compd., 2023, 43(2), 1628-1643.
[http://dx.doi.org/10.1080/10406638.2022.2032768]
[37]
Fekri, L.Z.; Nikpassand, M.; Shariati, S.; Aghazadeh, B.; Zarkeshvari, R.; Norouzpour, N. Synthesis and characterization of amino glucosefunctionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of 2,4,5– trisubstituted imidazoles, benzo[d]imidazoles, benzo[d]oxazoles and azolinked benzo[d]oxazoles. J. Organomet. Chem., 2018, 871, 60-73.
[http://dx.doi.org/10.1016/j.jorganchem.2018.07]
[38]
Nezami, Z.; Eshghi, H. Nanomagnetic catalysis (Fe3O4@S-TiO2): A novel magnetically nano catalyst for the synthesis of new highly substituted tetrahydropyridine derivatives under solvent-free conditions. J. Indian Chem. Soc., 2021, 18(8), 1997-2008.
[http://dx.doi.org/10.1007/s13738-021-02170-7]
[39]
Patil, S.M.; Ingale, A.P.; Pise, A.S.; Bhondave, R.S. Novel cobalt‐supported silica‐coated ferrite nanoparticles applicable for acylation of amine, phenol, and thiols derivatives under solvent‐free condition. ChemistrySelect, 2022, 7(26), e202201590.
[http://dx.doi.org/10.1002/slct.202201590]
[40]
Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe(NO3)3.9H2O as catalyst. Green Chem. Lett. Rev., 2010, 3(4), 329-334.
[http://dx.doi.org/10.1080/17518253.2010.487841]
[41]
Gu, Z.Z.; Guo, F.C.; Zhang, P.; Qin, Y.J.; Guo, Z.X. Solvent-free mechanochemical synthesis of diacylfuroxans. Tetrahedron Lett., 2019, 60(26), 1687-1690.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.024]
[42]
Shaabani, A.; Soleimani, E.; Badri, Z. Triflouroacetic acid as an efficient catalyst for the synthesis of quinoline. Synth. Commun., 2007, 37(4), 629-635.
[http://dx.doi.org/10.1080/00397910601055230]
[43]
Soleimani, E.; Naderi Namivandi, M.; Sepahvand, H. ZnCl2 supported on Fe3O4@SiO2core-shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent-free condition. Applied Organometallic Chemistry, 2016, 31(2), e3566.
[http://dx.doi.org/10.1002/aoc.3566]
[44]
Rajabi, F.; Abdollahi, M.; Diarjani, E.S.; Osmolowsky, M.G.; Osmolovskaya, O.M.; Gómez-López, P.; Puente-Santiago, A.R.; Luque, R. Solvent-free preparation of 1,8-dioxo-octahydroxanthenes employing iron oxide nanomaterials. Materials, 2019, 12(15), 2386.
[http://dx.doi.org/10.3390/ma12152386] [PMID: 31357446]
[45]
Jamatia, R.; Saha, M.; Pal, A.K. An efficient facile and one-pot synthesis of benzodiazepines and chemoselective 1,2-disubstituted benzimidazoles using a magnetically retrievable Fe3O4 nanocatalyst under solvent free conditions. RSC Advances, 2014, 4(25), 12826-12833.
[http://dx.doi.org/10.1039/C3RA47860B]
[46]
Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M. Iron-doped single walled carbon nanotubes as an efficient and reusable heterogeneous catalyst for the synthesis of organophosphorus compounds under solvent-free conditions. Tetrahedron, 2013, 69(23), 4708-4724.
[http://dx.doi.org/10.1016/j.tet.2013.03.073]
[47]
Teimuri-Mofrad, R.; Gholamhosseini-Nazari, M.; Payami, E.; Esmati, S. Ferrocene‐tagged ionic liquid stabilized on silica‐coated magnetic nanoparticles: Efficient catalyst for the synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions. Appl. Organomet. Chem., 2018, 32(1), e3955.
[http://dx.doi.org/10.1002/aoc.3955]
[48]
Ghereghlou, M.; Esmaeili, A.A.; Darroudi, M. Preparation of Fe3O4@C‐dots as a recyclable magnetic nanocatalyst using Elaeagnus angustifolia and its application for the green synthesis of formamidines. Appl. Organomet. Chem., 2021, 35(11), e6387.
[http://dx.doi.org/10.1002/aoc.6387]
[49]
Eidi, E.; Kassaee, M.Z.; Nasresfahani, Z.; Cummings, P.T. Synthesis of quinazolines over recyclable Fe3O4@SiO2‐PrNH2‐Fe3+ nanoparticles: A green, efficient, and solvent‐free protocol. Appl. Organomet. Chem., 2018, 32(12), e4573.
[http://dx.doi.org/10.1002/aoc.4573]
[50]
Kardooni, R.; Kiasat, A.R.; Motamedi, H. Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@SiO2PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines. J. Taiwan Inst. Chem. Eng., 2017, 81, 373-382.
[http://dx.doi.org/10.1016/j.jtice.2017.10.013]
[51]
Bhosale, M.A.; Ummineni, D.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B.M. Magnetically separable γ-Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition. J. Mol. Catal. Chem., 2015, 404-405, 8-17.
[http://dx.doi.org/10.1016/j.molcata.2015.04.002]
[52]
Esmati, M.; Zeynizadeh, B. Synthesis of GO and rGO@Fe3O4@Ni as remarkable nanocatalyst systems for solvent‐free and chemoselective coupling reactions of dimedone with aromatic aldehydes. Appl. Organomet. Chem., 2021, 35(9), e6321.
[http://dx.doi.org/10.1002/aoc.6321]
[53]
Salimi, M.; Nasseri, M.A.; Jazi, B.N. Cu(II)-immobilized on functionalized magnetic nano-fibrillated cellulose (Fe3O4@NFC/E-CHDA-CuII): A novel, efficient and magnetically nanocatalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. J. Indian Chem. Soc., 2019, 16(10), 2221-2230.
[http://dx.doi.org/10.1007/s13738-019-01689-0]
[54]
Mahmoudi-GomYek, S.; Azarifar, D.; Ghaemi, M.; Keypour, H.; Mahmoudabadi, M. Fe3O4‐supported Schiff‐base copper (II) complex: A valuable heterogeneous nanocatalyst for one‐pot synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Appl. Organomet. Chem., 2019, 33(6), e4918.
[http://dx.doi.org/10.1002/aoc.4918]
[55]
Kalhor, M.; Zarnegar, Z.; Janghorban, F.; Mirshokraei, S.A. Fe3O4@zeolite-SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of perimidines. Res. Chem. Intermed., 2020, 46(1), 821-836.
[http://dx.doi.org/10.1007/s11164-019-03992-0]
[56]
Gulati, U.; Rajesh, U.C.; Rawat, D.S. CuO/Fe2O3 NPs: Robust and magnetically recoverable nanocatalyst for decarboxylative A3 and KA2 coupling reactions under neat conditions. Tetrahedron Lett., 2016, 57(40), 4468-4472.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.066]
[57]
Mousavi, S.R.; Rashidi Nodeh, H.; Zamiri Afshari, E.; Foroumadi, A. Graphene oxide incorporated strontium nanoparticles as a highly efficient and green acid catalyst for one-pot synthesis of Tetramethyl-9-aryl-hexahydroxanthenes and 13-Aryl-5H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraones under solvent-free conditions. Catal. Lett., 2019, 149(4), 1075-1086.
[http://dx.doi.org/10.1007/s10562-019-02675-0]
[58]
Sharghi, H.; Jokar, M.; Doroodmand, M.M. Iron‐doped single‐walled carbon nanotubes as new heterogeneous and highly efficient catalyst for acylation of alcohols, phenols, carboxylic acids and amines under solvent‐free conditions. Adv. Synth. Catal., 2011, 353(2-3), 426-442.
[http://dx.doi.org/10.1002/adsc.201000365]
[59]
Wang, K.; Gao, W.; Jiang, P.; Lan, K.; Yang, M.; Huang, X.; Ma, L.; Niu, F.; Li, R. Bi-functional catalyst of porous N-doped carbon with bimetallic FeCu for solvent-free resultant imines and hydrogenation of nitroarenes. Molecular Catalysis, 2019, 465, 43-53.
[http://dx.doi.org/10.1016/j.mcat.2018.12.029]
[60]
Rajabi, F.; Abdollahi, M.; Luque, R. Solvent-free esterification of carboxylic acids using supported iron oxide nanoparticles as an efficient and recoverable catalyst. Materials, 2016, 9(7), 557.
[http://dx.doi.org/10.3390/ma9070557] [PMID: 28773685]
[61]
Zarei, Z.; Akhlaghinia, B. ZnII doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-ZnII): A novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acridinediones under solvent-free conditions. New J. Chem., 2017, 41(24), 15485-15500.
[http://dx.doi.org/10.1039/C7NJ03281A]
[62]
Harsha, K.B.; Rangappa, S.; Preetham, H.D.; Swaroop, T.R.; Gilandoust, M.; Rakesh, K.S.; Rangappa, K.S. An easy and efficient method for the synthesis of quinoxalines using recyclable and heterogeneous nanomagnetic‐supported acid catalyst under solvent‐free condition. ChemistrySelect, 2018, 3(18), 5228-5232.
[http://dx.doi.org/10.1002/slct.201800053]
[63]
Choudhary, V.R.; Tillu, V.H.; Narkhede, V.S.; Borate, H.B.; Wakharkar, R.D. Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst. Catal. Commun., 2003, 4(9), 449-453.
[http://dx.doi.org/10.1016/S1566-7367(03)00111-0]
[64]
Leila, Z.F.; Mohammad, N.; Mahsa, M. Fe+3-Montmorillonite K10: As an effective and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones. Bull. Chem. Soc. Ethiop., 2017, 31(2), 313-321.
[http://dx.doi.org/10.4314/bcse.v31i2.12]
[65]
Pourhasan, B.; Mohammadi-Nejad, A. Piperazine‐functionalized nickel ferrite nanoparticles as efficient and reusable catalysts for the solvent‐free synthesis of 2‐amino‐4H‐chromenes. J. Chin. Chem. Soc., 2019, 66(10), 1356-1362.
[http://dx.doi.org/10.1002/jccs.201800291]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy