Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Mini-Review Article

Neurological Manifestations of Influenza Virus and RSV Infections in Children

In Press, (this is not the final "Version of Record"). Available online 22 February, 2024
Author(s): Federica Xerra, Giulia Cafarella, Federica Ferrante, Gaetano Macchione, Melania Amato, Cecilia Lugarà, Simone Foti Randazzese, Antonella Gambadauro* and Ylenia Giorgianni
Published on: 22 February, 2024

DOI: 10.2174/011573398X284282240215114315

Price: $95

Abstract

The most significant viral contributors to acute respiratory tract infections in children are Respiratory Syncytial Viruses (RSV) and influenza virus, causing substantial seasonal respiratory infections annually. Furthermore, severe neurological complications, notably seizures and encephalopathy, can be attributed to these viruses. Children with chronic or pre-existing neurological conditions are particularly susceptible to increased morbidity and sequelae. An active area of research to date is focused on the potential mechanisms of viral neurological invasion, which could be relevant for future therapeutic strategies. Influenza virus is frequently an important cause of epidemic or pandemic disease causing high costs of hospitalization and primary care. Furthermore, different subtypes of influenza viruses can induce various influenza-associated neurological complications, varying from mild (i.e. headache) to severe (i.e. meningoencephalitis and acute necrotizing encephalopathy), both in adults and children. While affecting the respiratory tract, RSV can also give rise to neurological manifestations, potentially resulting in long-term neurological impairment. Neurological changes associated with RSV encompass seizures, lethargy, ataxia, febrile or epileptic states, central apnea, difficulties in feeding or swallowing, tone abnormalities, strabismus, abnormalities in cerebrospinal fluid, and encephalopathy. Patients infected with RSV can also develop neuromotor difficulties or present learning impairment. In conclusion, viral respiratory infections can result in significant extrapulmonary symptoms, potentially leading to enduring health consequences in affected children. Substantial research efforts are necessary to prevent or treat these infections, particularly within the most vulnerable populations.

[1]
Chiriboga-Salazar NR, Hong SJ. Respiratory syncytial virus and influenza infections: The brain is also susceptible. J Pediatr 2021; 239: 14-5.
[http://dx.doi.org/10.1016/j.jpeds.2021.08.037] [PMID: 34450121]
[2]
Global influenza strategy 2019-2030. World Health Organization 2019. Available from: https://apps.who.int/iris/handle/10665/311184
[3]
Li Y, Wang X, Blau DM, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022; 399(10340): 2047-64.
[http://dx.doi.org/10.1016/S0140-6736(22)00478-0] [PMID: 35598608]
[4]
Saravanos GL, King CL, Deng L, et al. Respiratory syncytial virus–associated neurologic complications in children: A systematic review and aggregated case series. J Pediatr 2021; 239: 39-49.e9.
[http://dx.doi.org/10.1016/j.jpeds.2021.06.045] [PMID: 34181989]
[5]
Frankl S, Coffin SE, Harrison JB, Swami SK, McGuire JL. Influenza-associated neurologic complications in hospitalized children. J Pediatr 2021; 239: 24-31.e1.
[http://dx.doi.org/10.1016/j.jpeds.2021.07.039] [PMID: 34293371]
[6]
Antoon JW, Hall M, Herndon A, et al. Prevalence, Risk Factors, and Outcomes of Influenza-Associated Neurologic Complications in Children. J Pediatr 2021; 239: 32-38.e5.
[http://dx.doi.org/10.1016/j.jpeds.2021.06.075] [PMID: 34216629]
[7]
Tregoning JS, Schwarze J. Respiratory viral infections in infants: Causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23(1): 74-98.
[http://dx.doi.org/10.1128/CMR.00032-09] [PMID: 20065326]
[8]
Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 2018; 12: 386.
[http://dx.doi.org/10.3389/fncel.2018.00386] [PMID: 30416428]
[9]
McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 2011; 11(5): 318-29.
[http://dx.doi.org/10.1038/nri2971] [PMID: 21508982]
[10]
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[11]
Gonzalez-Scarano F, Tyler KL. Molecular pathogenesis of neurotropic viral infections. Ann Neurol 1987; 22(5): 565-74.
[http://dx.doi.org/10.1002/ana.410220502] [PMID: 3322182]
[12]
Suen W, Prow N, Hall R, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: A critical appraisal. Viruses 2014; 6(7): 2796-825.
[http://dx.doi.org/10.3390/v6072796] [PMID: 25046180]
[13]
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe 2013; 13(4): 379-93.
[http://dx.doi.org/10.1016/j.chom.2013.03.010] [PMID: 23601101]
[14]
Swanson P, McGavern D. Portals of viral entry into the central nervous system. The Blood-Brain Barrier in Health and Disease, Volume Two. CRC Press 2015; pp. 23-47.
[http://dx.doi.org/10.1201/b19299-3]
[15]
Swanson PA II, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11: 44-54.
[http://dx.doi.org/10.1016/j.coviro.2014.12.009] [PMID: 25681709]
[16]
Salinas S, Schiavo G, Kremer EJ. A hitchhiker’s guide to the nervous system: The complex journey of viruses and toxins. Nat Rev Microbiol 2010; 8(9): 645-55.
[http://dx.doi.org/10.1038/nrmicro2395] [PMID: 20706281]
[17]
Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL. Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18(1): 35-51.
[http://dx.doi.org/10.1002/rmv.560] [PMID: 17992661]
[18]
Dietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future Virol 2008; 3(5): 481-90.
[http://dx.doi.org/10.2217/17460794.3.5.481] [PMID: 19578477]
[19]
Young VA, Rall GF. Making it to the synapse: Measles virus spread in and among neurons. Curr Top Microbiol Immunol 2009; 330: 3-30.
[http://dx.doi.org/10.1007/978-3-540-70617-5_1] [PMID: 19203102]
[20]
Espinoza JA, Bohmwald K, Céspedes PF, et al. Impaired learning resulting from Respiratory Syncytial Virus infection. Proc Natl Acad Sci 2013; 110(22): 9112-7.
[http://dx.doi.org/10.1073/pnas.1217508110] [PMID: 23650398]
[21]
Amlie-Lefond C, Bernard TJ, Sébire G, et al. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: Results of the international pediatric stroke study. Circulation 2009; 119(10): 1417-23.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.806307] [PMID: 19255344]
[22]
Askalan R, Laughlin S, Mayank S, et al. Chickenpox and stroke in childhood: A study of frequency and causation. Stroke 2001; 32(6): 1257-62.
[http://dx.doi.org/10.1161/01.STR.32.6.1257] [PMID: 11387484]
[23]
Sträter R, Becker S, von Eckardstein A, et al. Prospective assessment of risk factors for recurrent stroke during childhood-a 5-year follow-up study. Lancet 2002; 360(9345): 1540-5.
[http://dx.doi.org/10.1016/S0140-6736(02)11520-0] [PMID: 12443591]
[24]
Messacar K, Asturias EJ, Hixon AM, et al. Enterovirus D68 and acute flaccid myelitis—evaluating the evidence for causality. Lancet Infect Dis 2018; 18(8): e239-47.
[http://dx.doi.org/10.1016/S1473-3099(18)30094-X] [PMID: 29482893]
[25]
Messacar K, Spence-Davizon E, Osborne C, et al. Clinical characteristics of enterovirus A71 neurological disease during an outbreak in children in Colorado, USA, in 2018: An observational cohort study. Lancet Infect Dis 2020; 20(2): 230-9.
[http://dx.doi.org/10.1016/S1473-3099(19)30632-2] [PMID: 31859216]
[26]
LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the united states for COVID-19 or multisystem inflammatory syndrome. JAMA Neurol 2021; 78(5): 536-47.
[http://dx.doi.org/10.1001/jamaneurol.2021.0504] [PMID: 33666649]
[27]
Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V, Ebrahimpour S. A brief review of influenza virus infection. J Med Virol 2021; 93(8): 4638-46.
[http://dx.doi.org/10.1002/jmv.26990] [PMID: 33792930]
[28]
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res 2018; 7(1): 1-15.
[http://dx.doi.org/10.7774/cevr.2018.7.1.1] [PMID: 29399575]
[29]
Paules C, Subbarao K. Influenza. Lancet 2017; 390(10095): 697-708.
[http://dx.doi.org/10.1016/S0140-6736(17)30129-0] [PMID: 28302313]
[30]
Tamerius J, Nelson MI, Zhou SZ, Viboud C, Miller MA, Alonso WJ. Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environ Health Perspect 2011; 119(4): 439-45.
[http://dx.doi.org/10.1289/ehp.1002383] [PMID: 21097384]
[31]
Sagripanti JL, Lytle CD. Inactivation of influenza virus by solar radiation. Photochem Photobiol 2007; 83(5): 1278-82.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00177.x] [PMID: 17880524]
[32]
Cowling BJ, Ip DKM, Fang VJ, et al. Aerosol transmission is an important mode of influenza A virus spread. Nat Commun 2013; 4(1): 1935.
[http://dx.doi.org/10.1038/ncomms2922] [PMID: 23736803]
[33]
Killingley B, Greatorex J, Digard P, et al. The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control. J Infect Public Health 2016; 9(3): 278-88.
[http://dx.doi.org/10.1016/j.jiph.2015.10.009] [PMID: 26653976]
[34]
Li L, Chen QY, Li YY, Wang YF, Yang ZF, Zhong NS. Comparison among nasopharyngeal swab, nasal wash, and oropharyngeal swab for respiratory virus detection in adults with acute pharyngitis. BMC Infect Dis 2013; 13(1): 281.
[http://dx.doi.org/10.1186/1471-2334-13-281] [PMID: 23786598]
[35]
Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol 2008; 3(1): 499-522.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.154316] [PMID: 18039138]
[36]
Goenka A, Michael BD, Ledger E, et al. Neurological manifestations of influenza infection in children and adults: Results of a National British Surveillance Study. Clin Infect Dis 2014; 58(6): 775-84.
[http://dx.doi.org/10.1093/cid/cit922] [PMID: 24352349]
[37]
Britton PN, Blyth CC, Macartney K, et al. The spectrum and burden of influenza-associated neurological disease in children: Combined encephalitis and influenza sentinel site surveillance from Australia, 2013–2015. Clin Infect Dis 2017; 65(4): 653-60.
[http://dx.doi.org/10.1093/cid/cix412] [PMID: 29017268]
[38]
Newland JG, Laurich VM, Rosenquist AW, et al. Neurologic complications in children hospitalized with influenza: Characteristics, incidence, and risk factors. J Pediatr 2007; 150(3): 306-10.
[http://dx.doi.org/10.1016/j.jpeds.2006.11.054] [PMID: 17307552]
[39]
Surana P, Tang S, McDougall M, Tong CYW, Menson E, Lim M. Neurological complications of pandemic influenza A H1N1 2009 infection: European case series and review. Eur J Pediatr 2011; 170(8): 1007-15.
[http://dx.doi.org/10.1007/s00431-010-1392-3] [PMID: 21234600]
[40]
Zeng H, Quinet S, Huang W, et al. Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children. Pediatr Radiol 2013; 43(9): 1182-9.
[http://dx.doi.org/10.1007/s00247-013-2682-5] [PMID: 23567910]
[41]
Landau YE, Grisaru-Soen G, Reif S, Fattal-Valevski A. Pediatric neurologic complications associated with influenza A H1N1. Pediatr Neurol 2011; 44(1): 47-51.
[http://dx.doi.org/10.1016/j.pediatrneurol.2010.08.011] [PMID: 21147387]
[42]
Ismail MHI, Teh CM, Lee YL. Neurologic manifestations and complications of pandemic influenza A H1N1 in Malaysian children: What have we learnt from the ordeal? Brain Dev 2015; 37(1): 120-9.
[http://dx.doi.org/10.1016/j.braindev.2014.03.008] [PMID: 24746706]
[43]
Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol 2004; 41(2): 101-7.
[http://dx.doi.org/10.1354/vp.41-2-101] [PMID: 15017022]
[44]
Kawada J, Kimura H, Ito Y, et al. Systemic cytokine responses in patients with influenza-associated encephalopathy. J Infect Dis 2003; 188(5): 690-8.
[http://dx.doi.org/10.1086/377101] [PMID: 12934185]
[45]
Aiba H, Mochizuki M, Kimura M, Hojo H. Predictive value of serum interleukin-6 level in influenza virus–associated encephalopathy. Neurology 2001; 57(2): 295-9.
[http://dx.doi.org/10.1212/WNL.57.2.295] [PMID: 11468315]
[46]
Shinohara M, Saitoh M, Takanashi J, et al. Carnitine palmitoyl transferase II polymorphism is associated with multiple syndromes of acute encephalopathy with various infectious diseases. Brain Dev 2011; 33(6): 512-7.
[http://dx.doi.org/10.1016/j.braindev.2010.09.002] [PMID: 20934285]
[47]
Shinohara M, Saitoh M, Nishizawa D, et al. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology 2013; 80(17): 1571-6.
[http://dx.doi.org/10.1212/WNL.0b013e31828f18d8] [PMID: 23535492]
[48]
Fung SG, Fakhraei R, Condran G, et al. Neuropsychiatric outcomes in offspring after fetal exposure to maternal influenza infection during pregnancy: A systematic review. Reprod Toxicol 2022; 113: 155-69.
[http://dx.doi.org/10.1016/j.reprotox.2022.09.002] [PMID: 36100136]
[49]
Xia Y, Qi F, Zou J, Yao Z, Influenza A. Influenza A(H1N1) vaccination during early pregnancy transiently promotes hippocampal neurogenesis and working memory. Involvement of Th1/Th2 balance. Brain Res 2014; 1592: 34-43.
[http://dx.doi.org/10.1016/j.brainres.2014.09.076] [PMID: 25307140]
[50]
Sellers SA, Hagan RS, Hayden FG, Fischer WA II. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 2017; 11(5): 372-93.
[http://dx.doi.org/10.1111/irv.12470] [PMID: 28745014]
[51]
Mizuguchi M. Influenza encephalopathy and related neuropsychiatric syndromes. Influenza Other Respir Viruses 2013; 7(S3): 67-71.
[http://dx.doi.org/10.1111/irv.12177] [PMID: 24215384]
[52]
Marseglia LM, Nicotera A, Salpietro V, et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns. Oxid Med Cell Longev 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/543134] [PMID: 25829992]
[53]
Steininger C, Popow-Kraupp T, Laferl H, et al. Acute encephalopathy associated with influenza A virus infection. Clin Infect Dis 2003; 36(5): 567-74.
[http://dx.doi.org/10.1086/367623] [PMID: 12594636]
[54]
Dadak M, Pul R, Lanfermann H, et al. Varying patterns of CNS imaging in influenza a encephalopathy in childhood. Clin Neuroradiol 2020; 30(2): 243-9.
[http://dx.doi.org/10.1007/s00062-018-0756-3] [PMID: 30610262]
[55]
Ka A, Britton P, Troedson C, et al. Mild encephalopathy with reversible splenial lesion: An important differential of encephalitis. Eur J Paediatr Neurol 2015; 19(3): 377-82.
[http://dx.doi.org/10.1016/j.ejpn.2015.01.011] [PMID: 25707871]
[56]
Weitkamp JH, Spring MD, Brogan T, Moses H, Bloch KC, Wright PF. Influenza A virus-associated acute necrotizing encephalopathy in the United States. Pediatr Infect Dis J 2004; 23(3): 259-63.
[http://dx.doi.org/10.1097/01.inf.0000115631.99896.41] [PMID: 15014305]
[57]
Ma Y, Xu K, Chen G, Wang L, Wang Y, Jin Z. Acute encephalopathy with biphasic seizures and late reduced diffusion. Medicine 2020; 99(43): e22940.
[http://dx.doi.org/10.1097/MD.0000000000022940] [PMID: 33120854]
[58]
Rona G, Arifoğlu M, Günbey HP, Yükselmiş U, Influenza A. Influenza A (H1N1)-associated acute necrotizing encephalopathy with unusual posterior reversible encephalopathy syndrome in a child. SN Compr Clin Med 2021; 3(7): 1528-33.
[http://dx.doi.org/10.1007/s42399-021-00928-x] [PMID: 33937633]
[59]
Boeck KD. Respiratory syncytial virus bronchiolitis: Clinical aspects and epidemiology. Monaldi Arch Chest Dis 1996; 51(3): 210-3.
[PMID: 8766196]
[60]
Manti S, Leonardi S, Rezaee F, Harford TJ, Perez MK, Piedimonte G. Effects of vertical transmission of respiratory viruses to the offspring. Front Immunol 2022; 13: 853009.
[http://dx.doi.org/10.3389/fimmu.2022.853009] [PMID: 35359954]
[61]
Manti S, Esper F, Alejandro-Rodriguez M, et al. Respiratory syncytial virus seropositivity at birth is associated with adverse neonatal respiratory outcomes. Pediatr Pulmonol 2020; 55(11): 3074-9.
[http://dx.doi.org/10.1002/ppul.25001] [PMID: 32741145]
[62]
Andeweg SP, Schepp RM, van de Kassteele J, Mollema L, Berbers GAM, van Boven M. Population-based serology reveals risk factors for RSV infection in children younger than 5 years. Sci Rep 2021; 11(1): 8953.
[http://dx.doi.org/10.1038/s41598-021-88524-w] [PMID: 33903695]
[63]
Salas A, Pardo-Seco J, Cebey-López M, et al. Whole exome sequencing reveals new candidate genes in host genomic susceptibility to respiratory syncytial virus disease. Sci Rep 2017; 7(1): 15888.
[http://dx.doi.org/10.1038/s41598-017-15752-4] [PMID: 29162850]
[64]
Sweetman LL, Ng Y, Butler IJ, Bodensteiner JB. Neurologic complications associated with respiratory syncytial virus. Pediatr Neurol 2005; 32(5): 307-10.
[http://dx.doi.org/10.1016/j.pediatrneurol.2005.01.010] [PMID: 15866430]
[65]
Morichi S, Kawashima H, Ioi H, et al. Classification of acute encephalopathy in respiratory syncytial virus infection. J Infect Chemother 2011; 17(6): 776-81.
[http://dx.doi.org/10.1007/s10156-011-0259-5] [PMID: 21647570]
[66]
Manti S, Xerra F, Spoto G, et al. Neurotrophins: Expression of brain–lung axis development. Int J Mol Sci 2023; 24(8): 7089.
[http://dx.doi.org/10.3390/ijms24087089] [PMID: 37108250]
[67]
Eisenhut M. Extrapulmonary manifestations of severe respiratory syncytial virus infection--a systematic review. Crit Care 2006; 10(4): R107.
[http://dx.doi.org/10.1186/cc4984] [PMID: 16859512]
[68]
Manti S, Piedimonte G. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma. Front Pediatr 2022; 10: 998296.
[http://dx.doi.org/10.3389/fped.2022.998296] [PMID: 36204661]
[69]
Amore G, Spoto G, Valentini G. te al. Overview of guillain-barrè syndrome. J Biol Regul Homeost Agents 2022; 36(1(S1)): 3-8.
[http://dx.doi.org/10.23812/j.biol.regul.homeost.agents.202236.1S1.2]
[70]
Kawashima H, Ioi H, Ushio M, Yamanaka G, Matsumoto S, Nakayama T. Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection. Scand J Infect Dis 2009; 41(3): 228-31.
[http://dx.doi.org/10.1080/00365540802669543] [PMID: 19117245]
[71]
Otake Y, Yamagata T, Morimoto Y, et al. Elevated CSF IL-6 in a patient with respiratory syncytial virus encephalopathy. Brain Dev 2007; 29(2): 117-20.
[http://dx.doi.org/10.1016/j.braindev.2006.06.008] [PMID: 16920309]
[72]
Eisenhut M. Cerebral involvement in respiratory syncytial virus disease. Brain Dev 2007; 29(7): 454.
[http://dx.doi.org/10.1016/j.braindev.2006.11.007] [PMID: 17174501]
[73]
Millichap JJ, Wainwright MS. Neurological complications of respiratory syncytial virus infection: Case series and review of literature. J Child Neurol 2009; 24(12): 1499-503.
[http://dx.doi.org/10.1177/0883073808331362] [PMID: 19264736]
[74]
Wallace SJ, Zealley H. Neurological, electroencephalographic, and virological findings in febrile cheldren. Arch Dis Child 1970; 45(243): 611-23.
[http://dx.doi.org/10.1136/adc.45.243.611] [PMID: 4320122]
[75]
Manti S, Harford TJ, Salpietro C, Rezaee F, Piedimonte G. Induction of high-mobility group Box-1 in vitro and in vivo by respiratory syncytial virus. Pediatr Res 2018; 83(5): 1049-56.
[http://dx.doi.org/10.1038/pr.2018.6] [PMID: 29329282]
[76]
Rayyan M, Naulaers G, Daniels H, Allegaert K, Debeer A, Devlieger H. Characteristics of respiratory syncytial virus-related apnoea in three infants. Acta Paediatr 2004; 93(6): 847-9.
[http://dx.doi.org/10.1111/j.1651-2227.2004.tb03030.x] [PMID: 15244239]
[77]
Lindgren C, Grögaard J. Reflex apnoea response and inflammatory mediators in infants with respiratory tract infection. Acta Paediatr 1996; 85(7): 798-803.
[http://dx.doi.org/10.1111/j.1651-2227.1996.tb14154.x] [PMID: 8819544]
[78]
Piedimonte G. Pathophysiological mechanisms for the respiratory syncytial virus-reactive airway disease link. Respir Res 2002; 3(S1): 4.
[http://dx.doi.org/10.1186/rr185] [PMID: 12119054]
[79]
Miyamoto K, Fujisawa M, Tsuboi T, et al. Systemic inflammatory response syndrome and prolonged hypoperfusion lesions in an infant with respiratory syncytial virus encephalopathy. J Infect Chemother 2013; 19(5): 978-82.
[http://dx.doi.org/10.1007/s10156-013-0558-0] [PMID: 23354937]
[80]
Ng Y, Cox C, Atkins J, Butler IJ. Encephalopathy associated with respiratory syncytial virus bronchiolitis. J Child Neurol 2001; 16(2): 105-8.
[http://dx.doi.org/10.1177/088307380101600207] [PMID: 11292214]
[81]
Picone S, Mondì V, Di Palma F, Martini L, Paolillo P. Neonatal encephalopathy and SIADH during RSV infection. Am J Perinatol 2019; 36(S02): S106-9.
[http://dx.doi.org/10.1055/s-0039-1692132]
[82]
Kawashima H, Kashiwagi Y, Ioi H, et al. Production of chemokines in respiratory syncytial virus infection with central nervous system manifestations. J Infect Chemother 2012; 18(6): 827-31.
[http://dx.doi.org/10.1007/s10156-012-0418-3] [PMID: 22572852]
[83]
Kho N, Kerrigan JF, Tong T, Browne R, Knilans J. Respiratory syncytial virus infection and neurologic abnormalities: retrospective cohort study. J Child Neurol 2004; 19(11): 859-64.
[http://dx.doi.org/10.1177/08830738040190110301] [PMID: 15658790]
[84]
Spoto G, Saia MC, Amore G, et al. Neonatal seizures: An overview of genetic causes and treatment options. Brain Sci 2021; 11(10): 1295.
[http://dx.doi.org/10.3390/brainsci11101295] [PMID: 34679360]
[85]
Peña M, Jara C, Flores JC, et al. Severe respiratory disease caused by human respiratory syncytial virus impairs language learning during early infancy. Sci Rep 2020; 10(1): 22356.
[http://dx.doi.org/10.1038/s41598-020-79140-1] [PMID: 33349647]
[86]
Manti S, Cuppari C, Lanzafame A, et al. Detection of respiratory syncytial virus (RSV) at birth in a newborn with respiratory distress. Pediatr Pulmonol 2017; 52(10): E81-4.
[http://dx.doi.org/10.1002/ppul.23775] [PMID: 28834426]
[87]
Bird CM, Burgess N. The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci 2008; 9(3): 182-94.
[http://dx.doi.org/10.1038/nrn2335] [PMID: 18270514]
[88]
Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021; 15: 655164.
[http://dx.doi.org/10.3389/fnsys.2021.655164] [PMID: 34177475]
[89]
Kumar A. Long-term potentiation at CA3–CA1 hippocampal synapses with special emphasis on aging, disease, and stress. Front Aging Neurosci 2011; 3: 7.
[http://dx.doi.org/10.3389/fnagi.2011.00007] [PMID: 21647396]
[90]
Bohmwald K, Soto JA, Andrade-Parra C, et al. Lung pathology due to hRSV infection impairs blood–brain barrier permeability enabling astrocyte infection and a long-lasting inflammation in the CNS. Brain Behav Immun 2021; 91: 159-71.
[http://dx.doi.org/10.1016/j.bbi.2020.09.021] [PMID: 32979471]
[91]
Li X, Fu ZF, Alvarez R, Henderson C, Tripp RA. Respiratory syncytial virus (RSV) infects neuronal cells and processes that innervate the lung by a process involving RSV G protein. J Virol 2006; 80(1): 537-40.
[http://dx.doi.org/10.1128/JVI.80.1.537-540.2006] [PMID: 16352577]
[92]
Mori K, Sasamoto T, Nakayama T, et al. Chemokine/interleukin imbalance aggravates the pathology of respiratory syncytial virus infection. J Clin Med 2022; 11(20): 6042.
[http://dx.doi.org/10.3390/jcm11206042] [PMID: 36294363]
[93]
Bokun V, Moore JJ, Moore R, et al. Respiratory syncytial virus exhibits differential tropism for distinct human placental cell types with Hofbauer cells acting as a permissive reservoir for infection. PLoS One 2019; 14(12): e0225767.
[http://dx.doi.org/10.1371/journal.pone.0225767] [PMID: 31790466]
[94]
Manti S, Spoto G, Nicotera AG, Di Rosa G, Piedimonte G. Impact of respiratory viral infections during pregnancy on the neurological outcomes of the newborn: current knowledge. Front Neurosci 2024; 17: 1320319.
[http://dx.doi.org/10.3389/fnins.2023.1320319] [PMID: 38260010]
[95]
Park A, Suh S, Son GR, et al. Respiratory syncytial virus-related encephalitis: Magnetic resonance imaging findings with diffusion-weighted study. Neuroradiology 2014; 56(2): 163-8.
[http://dx.doi.org/10.1007/s00234-013-1305-z] [PMID: 24337535]
[96]
Marino A. Autoimmune rhomboencephalitis: A pediatric case report. Turk Arch Pediatr 2020; 55: 449-52.
[97]
Elhassanien A, Aziz H. Acute demyelinating encephalomyelitis: Clinical characteristics and outcome. J Pediatr Neurosci 2013; 8(1): 26-30.
[http://dx.doi.org/10.4103/1817-1745.111418] [PMID: 23772240]
[98]
Radhakrishnan A, Jagtap SA, Das GK, Kambale HJ, Nair MD. Limbic encephalitis: Clinical spectrum and long-term outcome from a developing country perspective. Ann Indian Acad Neurol 2014; 17(2): 161-5.
[http://dx.doi.org/10.4103/0972-2327.132615] [PMID: 25024565]
[99]
Minejima E, Wong-Beringer A. Implementation of rapid diagnostics with antimicrobial stewardship. Expert Rev Anti Infect Ther 2016; 14(11): 1065-75.
[http://dx.doi.org/10.1080/14787210.2016.1233814] [PMID: 27599796]
[100]
Shiley KT, Lautenbach E, Lee I. The use of antimicrobial agents after diagnosis of viral respiratory tract infections in hospitalized adults: Antibiotics or anxiolytics? Infect Control Hosp Epidemiol 2010; 31(11): 1177-83.
[http://dx.doi.org/10.1086/656596] [PMID: 20923284]
[101]
Lin CY, Hwang D, Chiu NC, et al. Increased detection of viruses in children with respiratory tract infection using PCR. Int J Environ Res Public Health 2020; 17(2): 564.
[http://dx.doi.org/10.3390/ijerph17020564] [PMID: 31952364]
[102]
Harada Y, Kinoshita F, Yoshida LM, et al. Does respiratory virus coinfection increases the clinical severity of acute respiratory infection among children infected with respiratory syncytial virus? Pediatr Infect Dis J 2013; 32(5): 441-5.
[http://dx.doi.org/10.1097/INF.0b013e31828ba08c] [PMID: 23838658]
[103]
Franz A, Adams O, Willems R, et al. Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol 2010; 48(4): 239-45.
[http://dx.doi.org/10.1016/j.jcv.2010.05.007] [PMID: 20646956]
[104]
Martin ET, Kuypers J, Wald A, Englund JA. Multiple versus single virus respiratory infections: Viral load and clinical disease severity in hospitalized children. Influenza Other Respir Viruses 2012; 6(1): 71-7.
[http://dx.doi.org/10.1111/j.1750-2659.2011.00265.x] [PMID: 21668660]
[105]
Wang Y, Zhang Y, Kong WH, et al. [Epidemiological characteristics of influenza virus and respiratory syncytial virus among children in Wuhan area from 2008 to 2012]. Chin J Prev Med 2013; 47(5): 415-9.
[PMID: 23958123]
[106]
Price OH, Sullivan SG, Sutterby C, Druce J, Carville KS. Using routine testing data to understand circulation patterns of influenza A, respiratory syncytial virus and other respiratory viruses in Victoria, Australia. Epidemiol Infect 2019; 147: e221.
[http://dx.doi.org/10.1017/S0950268819001055] [PMID: 31364539]
[107]
Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev 2018; 31(4): e00111-17.
[http://dx.doi.org/10.1128/CMR.00111-17] [PMID: 29976554]
[108]
Meskill SD, Revell PA, Chandramohan L, Cruz AT. Prevalence of co-infection between respiratory syncytial virus and influenza in children. Am J Emerg Med 2017; 35(3): 495-8.
[http://dx.doi.org/10.1016/j.ajem.2016.12.001] [PMID: 28012809]
[109]
George JA, AlShamsi SH, Alhammadi MH, Alsuwaidi AR. Exacerbation of influenza a virus disease severity by respiratory syncytial virus co-infection in a mouse model. Viruses 2021; 13(8): 1630.
[http://dx.doi.org/10.3390/v13081630] [PMID: 34452495]
[110]
Carman KB, Calik M, Karal Y, et al. Viral etiological causes of febrile seizures for respiratory pathogens (EFES Study). Hum Vaccin Immunother 2019; 15(2): 496-502.
[http://dx.doi.org/10.1080/21645515.2018.1526588] [PMID: 30235060]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy