Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Unsymmetrical Diaryl Tellurides Under Mechanical Ball Milling in Room Temperature

Author(s): Anup Roy, Subir Panja, Pradipta Kumar Basu and Debasish Kundu*

Volume 28, Issue 4, 2024

Published on: 21 February, 2024

Page: [319 - 324] Pages: 6

DOI: 10.2174/0113852728291474240123065931

Price: $65

Abstract

An efficient transition metal catalyst-free protocol for the synthesis of unsymmetrical diaryl tellurides has been developed by the reaction of diaryl tellurides and aryl diazonium tetrafluoroborates under mechanical ball milling in the absence of any solvent and base under room temperature. InBr (Indium Bromide) plays an important role in generating the organotelluride nucleophile via the Te-Te bond cleavage of ditelluride. A library of diaryl tellurides bearing both electron-donating and withdrawing groups in the aromatic ring has been synthesized in good to excellent yields by this protocol. Despite very high synthetic importance of diaryl tellurides in the field of organic synthesis, very few protocols have been reported to date for their synthesis. The reactions were also performed on a gram scale without any considerable change in the yields, which surely broadened the applicability of this methodology in the industrial field.

« Previous
Graphical Abstract

[1]
Behera, P.K.; Choudhury, P.; Behera, P.; Swain, A.; Pradhan, A.K.; Rout, P.L. Transition metal catalysed C-S cross-coupling reactions at room temperature. ChemistrySelect, 2022, 7(41), e2022202919.
[2]
Beletskaya, I.; Moberg, C. Element-element additions to unsaturated carbon-carbon bonds catalyzed by transition metal complexes. Chem. Rev., 2006, 106(6), 2320-2354.
[http://dx.doi.org/10.1021/cr050530j] [PMID: 16771452]
[3]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C-S, C-Se, and C-Te bond formations via cross-coupling and atom-economic addition reactions. Achievements and challenges. Chem. Rev., 2022, 122(21), 16110-16293.
[http://dx.doi.org/10.1021/acs.chemrev.1c00836] [PMID: 36112510]
[4]
Kundu, D.; Maity, P.; Ranu, B.C. Copper-assisted nickel catalyzed ligand-free C(sp2)-O cross-coupling of vinyl halides and phenols. Org. Lett., 2014, 16(4), 1040-1043.
[http://dx.doi.org/10.1021/ol500134p] [PMID: 24502267]
[5]
Kundu, D.; Bhadra, S.; Mukherjee, N.; Sreedhar, B.; Ranu, B.C. Heterogeneous Cu(II)-catalysed solvent-controlled selective N-arylation of cyclic amides and amines with bromo-iodoarenes. Chemistry, 2013, 19(46), 15759-15768.
[http://dx.doi.org/10.1002/chem.201302645] [PMID: 24123356]
[6]
Cavedon, C.; Seeberger, P.H.; Pieber, B. Photochemical strategies for carbon-heteroatom bond formation. Eur. J. Org. Chem., 2020, 2020(10), 1379-1392.
[http://dx.doi.org/10.1002/ejoc.201901173]
[7]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2180.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[8]
Katritzky, A.R.; Meth-Cohn, O.; Rees, C.W.; Metzner, P.; Thuillier, A., Eds.; Sulfur Reagents in Organic Synthesis; Academic Press: San Diego, 1994.
[9]
Kundu, D.; Chatterjee, T.; Ranu, B.C. Magnetically separable CuFe2O4 nanoparticles catalyzed ligand‐free C-S coupling in water: Access to (E)‐ and (Z)‐styrenyl‐ heteroaryl and sterically hindered aryl sulfides. Adv. Synth. Catal., 2013, 355(11-12), 2285-2296.
[http://dx.doi.org/10.1002/adsc.201300261]
[10]
Sikari, R.; Sinha, S.; Das, S.; Saha, A.; Chakraborty, G.; Mondal, R.; Paul, N.D. Achieving nickel catalyzed C-S cross-coupling under mild conditions using metal-ligand cooperativity. J. Org. Chem., 2019, 84(7), 4072-4085.
[http://dx.doi.org/10.1021/acs.joc.9b00075] [PMID: 30855958]
[11]
Christian, A.H. Metallaphotoredox-catalyzed C-S cross-coupling between heteroaryl bromides and α-thioacetic acids to access biaryl thioethers. J. Org. Chem., 2021, 86(15), 10914-10920.
[http://dx.doi.org/10.1021/acs.joc.1c01309] [PMID: 34260227]
[12]
Kundu, D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Advances, 2021, 11(12), 6682-6698.
[http://dx.doi.org/10.1039/D0RA10629A] [PMID: 35423206]
[13]
Barcellos, A.M.; Sacramento, M.; da Costa, G.P.; Perin, G.; João Lenardão, E.; Alves, D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C-S, C-Se and C-Te bond formation. Coord. Chem. Rev., 2021, 442, 214012.
[http://dx.doi.org/10.1016/j.ccr.2021.214012]
[14]
Bhunia, S.K.; Das, P.; Jana, R. Atom-economical selenation of electron-rich arenes and phosphonates with molecular oxygen at room temperature. Org. Biomol. Chem., 2018, 16(47), 9243-9250.
[http://dx.doi.org/10.1039/C8OB02792G] [PMID: 30483684]
[15]
Kundu, D.; Roy, A.; Singha, A.; Panja, S. Nickel-copper Co-catalyzed sustainable synthesis of diaryl-chalcogenides. Curr. Green Chem., 2021, 8(2), 147-156.
[http://dx.doi.org/10.2174/2213346108999210111224631]
[16]
Chen, Z.; Wang, Y.; Hu, C.; Wang, D.; Lei, P.; Yi, H.; Yuan, Y.; Lei, A. Electrochemical Mn-promoted radical selenylation of boronic acids with diselenide reagents. Org. Lett., 2022, 24(18), 3307-3312.
[http://dx.doi.org/10.1021/acs.orglett.2c00607] [PMID: 35486547]
[17]
Yamago, S.; Iida, K.; Yoshida, J. Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J. Am. Chem. Soc., 2002, 124(12), 2874-2875.
[http://dx.doi.org/10.1021/ja025554b] [PMID: 11902869]
[18]
Yamago, S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev., 2009, 109(11), 5051-5068.
[http://dx.doi.org/10.1021/cr9001269] [PMID: 19711982]
[19]
Oba, M.; Okada, Y.; Nishiyama, K.; Ando, W. Aerobic photooxidation of phosphite esters using diorganotelluride catalysts. Org. Lett., 2009, 11(9), 1879-1881.
[http://dx.doi.org/10.1021/ol900240s] [PMID: 19341270]
[20]
Okada, Y.; Oba, M.; Arai, A.; Tanaka, K.; Nishiyama, K.; Ando, W. Diorganotelluride-catalyzed oxidation of silanes to silanols under atmospheric oxygen. Inorg. Chem., 2010, 49(2), 383-385.
[http://dx.doi.org/10.1021/ic9022745] [PMID: 20014768]
[21]
Oba, M.; Okada, Y.; Endo, M.; Tanaka, K.; Nishiyama, K.; Shimada, S.; Ando, W. Formation of diaryl telluroxides and tellurones by photosensitized oxygenation of diaryl tellurides. Inorg. Chem., 2010, 49(22), 10680-10686.
[http://dx.doi.org/10.1021/ic101708y] [PMID: 20949904]
[22]
Petragnani, N.; Stefani, H.A. Advances in organic tellurium chemistry. Tetrahedron, 2005, 61(7), 1613-1679.
[http://dx.doi.org/10.1016/j.tet.2004.11.076]
[23]
Han, L.B.; Ishihara, K.; Kambe, N.; Ogawa, A.; Ryu, I.; Sonoda, N. Carbotelluration of alkynes. J. Am. Chem. Soc., 1992, 114(19), 7591-7592.
[http://dx.doi.org/10.1021/ja00045a058]
[24]
Stefani, H.A.; Pena, J.M.; Manarin, F.; Ando, R.A.; Leal, D.M.; Petragnani, N. Negishi cross-coupling of organotellurium compounds: Synthesis of biaryls, aryl-, and diaryl acetylenes. Tetrahedron Lett., 2011, 52(34), 4398-4401.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.025]
[25]
Zhang, S.; Kolluru, L.; Vedula, S.K.; Whippie, D.; Jin, J. Carbon-carbon bond forming reactions via Pd-catalyzed detellurative homocoupling of diorganyl tellurides. Tetrahedron Lett., 2017, 58(37), 3594-3597.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.087]
[26]
Petragnani, N.; Stefani, H.A. Tellurium in Organic Synthesis, Second Updated and Enlarged; Academic Press: Amsterdam, The Netherlands, 2007.
[27]
Alves, D.; Pena, J.M.; Vieira, A.S.; Botteselle, G.V.; Guadagnin, R.C.; Stefani, H.A. Copper catalyzed cross-coupling reactions of diaryl ditellurides with potassium aryltrifluoroborate salts. J. Braz. Chem. Soc., 2009, 20(5), 988-992.
[http://dx.doi.org/10.1590/S0103-50532009000500025]
[28]
Kundu, D.; Ahammed, S.; Ranu, B.C. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: A general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem., 2012, 14(7), 2024-2030.
[http://dx.doi.org/10.1039/c2gc35328h]
[29]
Kundu, D.; Mukherjee, N.; Ranu, B.C. A general and green procedure for the synthesis of organochalcogenides by CuFe2O4 nanoparticle catalysed coupling of organoboronic acids and dichalcogenides in PEG-400. RSC Advances, 2013, 3(1), 117-125.
[http://dx.doi.org/10.1039/C2RA22415A]
[30]
Ahammed, S.; Bhadra, S.; Kundu, D.; Sreedhar, B.; Ranu, B.C. An efficient and general procedure for the synthesis of alkynyl chalcogenides (selenides and tellurides) by alumina-supported Cu(II)-catalyzed reaction of alkynyl bromides and diphenyl dichalcogenides. Tetrahedron, 2012, 68(51), 10542-10549.
[http://dx.doi.org/10.1016/j.tet.2012.08.046]
[31]
Roy, S.; Chatterjee, T.; Islam, S.M. Solvent selective phenyl selenylation and phenyl tellurylation of aryl boronic acids catalyzed by Cu(II) grafted functionalized polystyrene. Tetrahedron Lett., 2015, 56(6), 779-783.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.055]
[32]
Panja, S.; Maity, P.; Kundu, D.; Ranu, B.C. Iron(0) nanoparticles mediated direct conversion of aryl/heteroaryl amines to chalcogenides viain situ diazotization. Tetrahedron Lett., 2017, 58(35), 3441-3445.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.070]
[33]
Goldani, B.; do Sacramento, M.; Lenardão, E.J.; Schumacher, R.F.; Barcellos, T.; Alves, D. Synthesis of symmetrical and unsymmetrical tellurides via silver catalysis. New J. Chem., 2018, 42(19), 15603-15609.
[http://dx.doi.org/10.1039/C8NJ01998C]
[34]
Blödorn, G.B.; Sacramento, M.; Sandagorda, E.M.A.; Lima, A.S.; Reis, J.S.; Silva, M.S.; Alves, D. Silver-catalyzed synthesis of symmetrical diaryl tellurides from arylboronic acids and tellurium. New J. Chem., 2022, 46(44), 21229-21234.
[http://dx.doi.org/10.1039/D2NJ04019K]
[35]
Yamamoto, Y.; Sato, F.; Chen, Q.; Kodama, S.; Nomoto, A.; Ogawa, A. Transition-metal-free synthesis of unsymmetrical diaryl tellurides via SH2 reaction of aryl radicals on tellurium. Molecules, 2022, 27(3), 809-817.
[http://dx.doi.org/10.3390/molecules27030809] [PMID: 35164075]
[36]
Sun, N.; Zheng, K.; Sun, P.; Chen, Y.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Trichloroisocyanuric acid‐promoted synthesis of arylselenides and aryltellurides from diorganyl dichalcogenides and arylboronic acids at ambient temperature. Adv. Synth. Catal., 2021, 363(14), 3577-3584.
[http://dx.doi.org/10.1002/adsc.202100371]
[37]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[38]
Rodríguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent‐free carbon‐carbon bond formations in ball mills. Adv. Synth. Catal., 2007, 349(14-15), 2213-2233.
[http://dx.doi.org/10.1002/adsc.200700252]
[39]
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem., 2010, 12(6), 985-991.
[http://dx.doi.org/10.1039/c000674b]
[40]
Schmidt, R.; Thorwirth, R.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Fast, ligand- and solvent-free synthesis of 1,4-substituted buta-1,3-diynes by Cu-catalyzed homocoupling of terminal alkynes in a ball mill. Chemistry, 2011, 17(29), 8129-8138.
[http://dx.doi.org/10.1002/chem.201100604] [PMID: 21626591]
[41]
Shao, Q.L.; Jiang, Z.J.; Su, W.K. Solvent-free mechanochemical Buchwald-Hartwig amination of aryl chlorides without inert gas protection. Tetrahedron Lett., 2018, 59(23), 2277-2280.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.078]
[42]
Cao, Q.; Nicholson, W.I.; Jones, A.C.; Browne, D.L. Robust Buchwald-Hartwig amination enabled by ball-milling. Org. Biomol. Chem., 2019, 17(7), 1722-1726.
[http://dx.doi.org/10.1039/C8OB01781F] [PMID: 30226258]
[43]
Chatterjee, T.; Saha, D.; Ranu, B.C. Solvent-free transesterification in a ball-mill over alumina surface. Tetrahedron Lett., 2012, 53(32), 4142-4144.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.127]
[44]
Jones, A.C.; Nicholson, W.I.; Smallman, H.R.; Browne, D.L. A robust Pd-catalyzed C-S cross-coupling process enabled by ball-milling. Org. Lett., 2020, 22(19), 7433-7438.
[http://dx.doi.org/10.1021/acs.orglett.0c02418] [PMID: 32941045]
[45]
Kundu, D.; Roy, A.; Panja, S. Transition metal catalyst, solvent, base free synthesis of diaryl diselenides under mechanical ball milling. Curr. Org. Chem., 2022, 19(4), 477-483.
[46]
Kundu, D.; Roy, A.; Panja, S.; Singh, R.K. Microwave-assisted cobalt-copper dual catalyzed ligand free C-Se cross-coupling. Curr. Microw. Chem., 2020, 7(2), 157-163.
[http://dx.doi.org/10.2174/2213335607666200212101502]
[47]
Kundu, D.; Roy, T.; Mahata, A. Recent advances in copper-catalyzed carbon chalcogenides cross-coupling reactions. Curr. Org. Synth., 2023, 20(3), 267-277.
[http://dx.doi.org/10.2174/1570179419666220324122735] [PMID: 35331115]
[48]
Kundu, D.; Mahata, A.; Roy, T. Synthesis of aryl/heteroaryl selenides using transition metals catalyzed cross coupling and C-H activation. Curr. Org. Chem., 2022, 26(15), 1470-1484.
[http://dx.doi.org/10.2174/1385272827666221103104321]
[49]
Ranu, B.C.; Chattopadhyay, K.; Banerjee, S. Indium(I) iodide promoted cleavage of diphenyl diselenide and disulfide and subsequent palladium(0)-catalyzed condensation with vinylic bromides. A simple one-pot synthesis of vinylic selenides and sulfides. J. Org. Chem., 2006, 71(1), 423-425.
[http://dx.doi.org/10.1021/jo052087i] [PMID: 16388676]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy