Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

An Overview of the Dichotomous Role of Microbiota in Cancer Progression and Management

In Press, (this is not the final "Version of Record"). Available online 21 February, 2024
Author(s): Pooja Jain*, Sradhanjali Mohapatra, Uzma Farooq, Nazia Hassan, Mohd. Aamir Mirza* and Zeenat Iqbal*
Published on: 21 February, 2024

DOI: 10.2174/0115680096282503240124104029

Abstract

It is a well-known fact that cancer is considered the second leading cause of mortality across the globe. Although the human oral cavity and intestine are the natural habitat of thousands of microbes, dysbiosis results in malignancies, such as oral squamous cell carcinoma and colorectal cancer. Amongst the intestinal microbes, H. pylori is a deadly carcinogen. Also, causative pathogens for the development of pancreatic and colorectal cancer are found in the oral cavity, such as Fusobacterium nucleatum and Porphyromonas gingivalis. Many periodontopathic micro- organisms, like Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Fusobacterium sp., Porphyromonas gingivalis, and Capnocytophaga gingivalis, strongly have an impact on the development of oral cancers. Three basic mechanisms are involved in pathogen-mediated cancer development, like chronic inflammation-mediated angiogenesis, inhibition of cellular apoptosis, and release of carcinogenic by-products. Microbiota has a dichotomous role to play in cancer, i.e., microbiota can be used for cancer management too. Shreds of evidence are there to support the fact that microbiota enhances the chemotherapeutic drug efficacy. This review presents the possible mechanism of the oncogenic effect of microbiota with emphasis on the oral microbiome and also attempts to explain the intricate role of microbiota in cancer management.

[1]
Montero, P.H.; Patel, S.G. Cancer of the oral cavity. Surgical Oncology Clinics, 2015, 24(3), 491-508.
[PMID: 25979396]
[2]
Nagy, K.N.; Sonkodi, I.; Szöke, I.; Nagy, E.; Newman, H.N. The microflora associated with human oral carcinomas. Oral Oncol., 1998, 34(4), 304-308.
[http://dx.doi.org/10.1016/S1368-8375(98)80012-2] [PMID: 9813727]
[3]
Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; Dai, R.M.; Kiu, H.; Cardone, M.; Naik, S.; Patri, A.K.; Wang, E.; Marincola, F.M.; Frank, K.M.; Belkaid, Y.; Trinchieri, G.; Goldszmid, R.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161), 967-970.
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[4]
Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342, 971-976.
[5]
Wallace, B.D.; Wang, H.; Lane, K.T.; Scott, J.E.; Orans, J.; Koo, J.S.; Venkatesh, M.; Jobin, C.; Yeh, L.A.; Mani, S.; Redinbo, M.R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science, 2010, 330(6005), 831-835.
[http://dx.doi.org/10.1126/science.1191175] [PMID: 21051639]
[6]
Wargo, J.A.; Golub, T.R.; Straussman, R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357(6356), 1156-1160.
[7]
Nauts, H.C. The Beneficial Effects of Bacterial Infections on Host Resistance to Cancer End Results in 449 Cases: A Study and Abstracts of Reports in the World Medical Literature (1775-1980) and Personal Communications; Cancer Research Institute, 1980.
[8]
Richardson, M.A.; Ramirez, T.; Russell, N.C.; Moye, L.A. Coley toxins immunotherapy: A retrospective review. Altern. Ther. Health Med., 1999, 5(3), 42-47.
[PMID: 10234867]
[9]
Zacharski, L.R.; Sukhatme, V.P. Coley’s toxin revisited: Immunotherapy or plasminogen activator therapy of cancer? J. Thromb. Haemost., 2005, 3(3), 424-427.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01110.x] [PMID: 15748226]
[10]
Hoption Cann, S.A.; van Netten, J.P.; van Netten, C. Dr William Coley and tumour regression: A place in history or in the future. Postgrad. Med. J., 2003, 79(938), 672-680.
[http://dx.doi.org/10.1093/postgradmedj/79.938.672] [PMID: 14707241]
[11]
Nauts, H.C.; McLaren, J.R. Coley toxins—the first century. In: Consensus on Hyperthermia for the 1990s; Springer, 1990; pp. 483-500.
[http://dx.doi.org/10.1007/978-1-4684-5766-7_52]
[12]
Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(6), 356-365.
[http://dx.doi.org/10.1038/nrgastro.2017.20] [PMID: 28270698]
[13]
Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol., 2018, 15(6), 382-396.
[http://dx.doi.org/10.1038/s41571-018-0006-2] [PMID: 29636538]
[14]
Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; Fidelle, M.; Flament, C.; Poirier-Colame, V.; Opolon, P.; Klein, C.; Iribarren, K.; Mondragón, L.; Jacquelot, N.; Qu, B.; Ferrere, G.; Clémenson, C.; Mezquita, L.; Masip, J.R.; Naltet, C.; Brosseau, S.; Kaderbhai, C.; Richard, C.; Rizvi, H.; Levenez, F.; Galleron, N.; Quinquis, B.; Pons, N.; Ryffel, B.; Minard-Colin, V.; Gonin, P.; Soria, J.C.; Deutsch, E.; Loriot, Y.; Ghiringhelli, F.; Zalcman, G.; Goldwasser, F.; Escudier, B.; Hellmann, M.D.; Eggermont, A.; Raoult, D.; Albiges, L.; Kroemer, G.; Zitvogel, L. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 2018, 359(6371), 91-97.
[http://dx.doi.org/10.1126/science.aan3706] [PMID: 29097494]
[15]
Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; Cogdill, A.P.; Zhao, L.; Hudgens, C.W.; Hutchinson, D.S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W.S.; Reddy, S.M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P.L.; Shpall, E.J.; Rezvani, K.; Alousi, A.M.; Chemaly, R.F.; Shelburne, S.; Vence, L.M.; Okhuysen, P.C.; Jensen, V.B.; Swennes, A.G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J.L.; Haydu, L.E.; Burton, E.M.; Gardner, J.M.; Sirmans, E.; Hu, J.; Lazar, A.J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I.C.; Hwu, W.J.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Davies, M.A.; Gershenwald, J.E.; Hwu, P.; Lee, J.E.; Zhang, J.; Coussens, L.M.; Cooper, Z.A.; Futreal, P.A.; Daniel, C.R.; Ajami, N.J.; Petrosino, J.F.; Tetzlaff, M.T.; Sharma, P.; Allison, J.P.; Jenq, R.R.; Wargo, J.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371), 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[16]
Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359(6371), 104-108.
[http://dx.doi.org/10.1126/science.aao3290] [PMID: 29302014]
[17]
Patyar, S.; Joshi, R.; Byrav, D.S.P.; Prakash, A.; Medhi, B.; Das, B.K. Bacteria in cancer therapy: A novel experimental strategy. J. Biomed. Sci., 2010, 17(1), 21.
[http://dx.doi.org/10.1186/1423-0127-17-21] [PMID: 20331869]
[18]
Raman, M.; Ambalam, P.; Kondepudi, K.K.; Pithva, S.; Kothari, C.; Patel, A.T.; Purama, R.K.; Dave, J.M.; Vyas, B.R.M. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes, 2013, 4(3), 181-192.
[http://dx.doi.org/10.4161/gmic.23919] [PMID: 23511582]
[19]
Orlandi, E.; Iacovelli, N.A.; Tombolini, V.; Rancati, T.; Polimeni, A.; De Cecco, L.; Valdagni, R.; De Felice, F. Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer. Oral Oncol., 2019, 99, 104453.
[http://dx.doi.org/10.1016/j.oraloncology.2019.104453] [PMID: 31683170]
[20]
Parikh, A.S.; Puram, S.V.; Faquin, W.C.; Richmon, J.D.; Emerick, K.S.; Deschler, D.G.; Varvares, M.A.; Tirosh, I.; Bernstein, B.E.; Lin, D.T. Immunohistochemical quantification of partial-EMT in oral cavity squamous cell carcinoma primary tumors is associated with nodal metastasis. Oral Oncol., 2019, 99, 104458.
[http://dx.doi.org/10.1016/j.oraloncology.2019.104458] [PMID: 31704557]
[21]
Lauritano, D.; Sbordone, L.; Nardone, M.; Iapichino, A.; Scapoli, L.; Carinci, F. Focus on periodontal disease and colorectal carcinoma. Oral Implantol., 2017, 10(3), 229-233.
[http://dx.doi.org/10.11138/orl/2017.10.3.229] [PMID: 29285324]
[22]
Galvão-Moreira, L.V.; da Cruz, M.C.F.N. Oral microbiome, periodontitis and risk of head and neck cancer. Oral Oncol., 2016, 53, 17-19.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.013] [PMID: 26684542]
[23]
Karpiński, T. Role of oral microbiota in cancer development. Microorganisms, 2019, 7(1), 20.
[http://dx.doi.org/10.3390/microorganisms7010020] [PMID: 30642137]
[24]
Perera, M.; Al-hebshi, N.N.; Speicher, D.J.; Perera, I.; Johnson, N.W. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria. J. Oral Microbiol., 2016, 8(1), 32762.
[http://dx.doi.org/10.3402/jom.v8.32762] [PMID: 27677454]
[25]
Chattopadhyay, I.; Verma, M.; Panda, M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol. Cancer Res. Treat., 2019, 18
[http://dx.doi.org/10.1177/1533033819867354] [PMID: 31370775]
[26]
Sasahira, T.; Kirita, T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int. J. Mol. Sci., 2018, 19(8), 2413.
[http://dx.doi.org/10.3390/ijms19082413] [PMID: 30115834]
[27]
Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol., 2019, 17(3), 156-166.
[http://dx.doi.org/10.1038/s41579-018-0129-6] [PMID: 30546113]
[28]
Ahn, J.; Chen, C.Y.; Hayes, R.B. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control, 2012, 23(3), 399-404.
[http://dx.doi.org/10.1007/s10552-011-9892-7] [PMID: 22271008]
[29]
Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis, 2009, 30(7), 1073-1081.
[http://dx.doi.org/10.1093/carcin/bgp127] [PMID: 19468060]
[30]
Feller, L.; Altini, M.; Lemmer, J. Inflammation in the context of oral cancer. Oral Oncol., 2013, 49(9), 887-892.
[http://dx.doi.org/10.1016/j.oraloncology.2013.07.003] [PMID: 23910564]
[31]
Liu, Y.; Messadi, D.V.; Wu, H.; Hu, S. Oral lichen planus is a unique disease model for studying chronic inflammation and oral cancer. Med. Hypotheses, 2010, 75(6), 492-494.
[http://dx.doi.org/10.1016/j.mehy.2010.07.002] [PMID: 20674185]
[32]
Song, W.; Anselmo, A.C.; Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol., 2019, 14(12), 1093-1103.
[http://dx.doi.org/10.1038/s41565-019-0589-5] [PMID: 31802032]
[33]
Khajuria, N.; Metgud, R. Role of bacteria in oral carcinogenesis. Indian J. Dent., 2015, 6(1), 37-43.
[http://dx.doi.org/10.4103/0975-962X.151709] [PMID: 25767359]
[34]
Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11884-11894.
[PMID: 26617944]
[35]
Gao, S.; Li, S.; Ma, Z.; Liang, S.; Shan, T.; Zhang, M.; Zhu, X.; Zhang, P.; Liu, G.; Zhou, F.; Yuan, X.; Jia, R.; Potempa, J.; Scott, D.A.; Lamont, R.J.; Wang, H.; Feng, X. Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent. Cancer, 2016, 11(1), 3.
[http://dx.doi.org/10.1186/s13027-016-0049-x] [PMID: 26788120]
[36]
Gao, S.; Brown, J.; Wang, H.; Feng, X. The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer. Arch. Immunol. Ther. Exp. (Warsz.), 2014, 62(2), 131-144.
[http://dx.doi.org/10.1007/s00005-013-0263-9] [PMID: 24276788]
[37]
Di Domenico, M.; Giovane, G.; Kouidhi, S.; Iorio, R.; Romano, M.; De Francesco, F.; Feola, A.; Siciliano, C.; Califano, L.; Giordano, A. HPV epigenetic mechanisms related to Oropharyngeal and Cervix cancers. Cancer Biol. Ther., 2018, 19(10), 850-857.
[http://dx.doi.org/10.1080/15384047.2017.1310349] [PMID: 28362190]
[38]
Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut, 2018, 67(8), 1454-1463.
[http://dx.doi.org/10.1136/gutjnl-2017-314814] [PMID: 28988196]
[39]
Koliarakis, I.; Messaritakis, I.; Nikolouzakis, T.K.; Hamilos, G.; Souglakos, J.; Tsiaoussis, J. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int. J. Mol. Sci., 2019, 20(17), 4146.
[http://dx.doi.org/10.3390/ijms20174146] [PMID: 31450675]
[40]
Al-Hebshi, N.N.; Borgnakke, W.S.; Johnson, N.W. The microbiome of oral squamous cell carcinomas: A functional perspective. Curr. Oral Health Rep., 2019, 6(2), 145-160.
[http://dx.doi.org/10.1007/s40496-019-0215-5]
[41]
Jia, G.; Zhi, A.; Lai, P.F.H.; Wang, G.; Xia, Y.; Xiong, Z.; Zhang, H.; Che, N.; Ai, L. The oral microbiota – A mechanistic role for systemic diseases. Br. Dent. J., 2018, 224(6), 447-455.
[http://dx.doi.org/10.1038/sj.bdj.2018.217] [PMID: 29569607]
[42]
Klimesova, K.; Jiraskova Zakostelska, Z.; Tlaskalova-Hogenova, H. Oral bacterial and fungal microbiome impacts colorectal carcinogenesis. Front. Microbiol., 2018, 9, 774.
[http://dx.doi.org/10.3389/fmicb.2018.00774] [PMID: 29731748]
[43]
Flemer, B.; Lynch, D.B.; Brown, J.M.; Jeffery, I.B.; Ryan, F.J.; Claesson, M.J.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 2016, 55(4), 633-643.
[PMID: 26992426]
[44]
Dejea, C.M.; Wick, E.C.; Hechenbleikner, E.M.; White, J.R.; Mark Welch, J.L.; Rossetti, B.J.; Peterson, S.N.; Snesrud, E.C.; Borisy, G.G.; Lazarev, M.; Stein, E.; Vadivelu, J.; Roslani, A.C.; Malik, A.A.; Wanyiri, J.W.; Goh, K.L.; Thevambiga, I.; Fu, K.; Wan, F.; Llosa, N.; Housseau, F.; Romans, K.; Wu, X.; McAllister, F.M.; Wu, S.; Vogelstein, B.; Kinzler, K.W.; Pardoll, D.M.; Sears, C.L. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA, 2014, 111(51), 18321-18326.
[http://dx.doi.org/10.1073/pnas.1406199111] [PMID: 25489084]
[45]
Li, S.; Konstantinov, S.R.; Smits, R.; Peppelenbosch, M.P. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol. Med., 2017, 23(1), 18-30.
[http://dx.doi.org/10.1016/j.molmed.2016.11.004] [PMID: 27986421]
[46]
Johnson, C.H.; Dejea, C.M.; Edler, D.; Hoang, L.T.; Santidrian, A.F.; Felding, B.H.; Ivanisevic, J.; Cho, K.; Wick, E.C.; Hechenbleikner, E.M.; Uritboonthai, W.; Goetz, L.; Casero, R.A., Jr; Pardoll, D.M.; White, J.R.; Patti, G.J.; Sears, C.L.; Siuzdak, G. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab., 2015, 21(6), 891-897.
[http://dx.doi.org/10.1016/j.cmet.2015.04.011] [PMID: 25959674]
[47]
Zhang, Y.; Wang, X.; Li, H.; Ni, C.; Du, Z.; Yan, F. Human oral microbiota and its modulation for oral health. Biomed. Pharmacother., 2018, 99, 883-893.
[http://dx.doi.org/10.1016/j.biopha.2018.01.146] [PMID: 29710488]
[48]
Szkaradkiewicz, A.K.; Karpinski, T. Microbiology of chronic periodontitis. J. Biol. Earth Sci., 2013, 3, 14-20.
[49]
Konopka, Ł.; Brzezińska-Błaszczyk, E. Cytokines in gingival crevicular fluid as potential diagnostic and prognostic markers of periodontitis. Dent. Med. Probl., 2010, 47, 206-213.
[50]
Carmi, Y.; Dotan, S.; Rider, P.; Kaplanov, I.; White, M.R.; Baron, R.; Abutbul, S.; Huszar, M.; Dinarello, C.A.; Apte, R.N.; Voronov, E. The role of IL-1β in the early tumor cell-induced angiogenic response. J. Immunol., 2013, 190(7), 3500-3509.
[http://dx.doi.org/10.4049/jimmunol.1202769] [PMID: 23475218]
[51]
Voronov, E.; Shouval, D.S.; Krelin, Y.; Cagnano, E.; Benharroch, D.; Iwakura, Y.; Dinarello, C.A.; Apte, R.N. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2645-2650.
[http://dx.doi.org/10.1073/pnas.0437939100] [PMID: 12598651]
[52]
Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol., 2018, 121, 11-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.010] [PMID: 29279096]
[53]
Wang, F.; Liu, H.; Liu, S.; Tang, S.; Yang, L.; Feng, G. SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1? in vivo and in vitro. Breast Cancer Res. Treat., 2005, 89(1), 5-14.
[http://dx.doi.org/10.1007/s10549-004-1002-z] [PMID: 15666191]
[54]
Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol., 2005, 2(6), 315-324.
[http://dx.doi.org/10.1038/ncponc0195] [PMID: 16264989]
[55]
Kossakowska, A.E.; Edwards, D.R.; Prusinkiewicz, C.; Zhang, M.C.; Guo, D.; Urbanski, S.J.; Grogan, T.; Marquez, L.A.; Janowska-Wieczorek, A. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood, 1999, 94(6), 2080-2089.
[http://dx.doi.org/10.1182/blood.V94.6.2080] [PMID: 10477738]
[56]
Leber, T.M.; Balkwill, F.R. Regulation of monocyte MMP-9 production by TNF-α and a tumour-derived soluble factor (MMPSF). Br. J. Cancer, 1998, 78(6), 724-732.
[http://dx.doi.org/10.1038/bjc.1998.568] [PMID: 9743290]
[57]
Yoshida, S.; Ono, M.; Shono, T.; Izumi, H.; Ishibashi, T.; Suzuki, H.; Kuwano, M. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol. Cell. Biol., 1997, 17(7), 4015-4023.
[http://dx.doi.org/10.1128/MCB.17.7.4015] [PMID: 9199336]
[58]
Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res., 2014, 2014
[http://dx.doi.org/10.1155/2014/149185]
[59]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[60]
Abranches, J.; Zeng, L.; Kajfasz, J.K.; Palmer, S.; Chakraborty, B.; Wen, Z.; Richards, V.P.; Brady, L.J.; Lemos, J.A. Biology of Oral Streptococci; Gram-Positive Pathogens, 2019, pp. 426-434.
[61]
Koczorowski, R.; Karpiński, M. Halitosis–problem społeczny. Nowiny lek, 2001, 70, 657-664.
[62]
Milella, L. The negative effects of volatile sulphur compounds. J. Vet. Dent., 2015, 32(2), 99-102.
[http://dx.doi.org/10.1177/089875641503200203] [PMID: 26415386]
[63]
Attene-Ramos, M.S.; Wagner, E.D.; Plewa, M.J.; Gaskins, H.R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res., 2006, 4(1), 9-14.
[http://dx.doi.org/10.1158/1541-7786.MCR-05-0126] [PMID: 16446402]
[64]
Hellmich, M.R.; Szabo, C. Hydrogen sulfide and cancer. In: Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide; Springer, 2015; pp. 233-241.
[http://dx.doi.org/10.1007/978-3-319-18144-8_12]
[65]
Pavlova, S.I.; Jin, L.; Gasparovich, S.R.; Tao, L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. Microbiology, 2013, 159(Pt_7), 1437-1446.
[http://dx.doi.org/10.1099/mic.0.066258-0] [PMID: 23637459]
[66]
Meurman, J.H.; Uittamo, J. Oral micro-organisms in the etiology of cancer. Acta Odontol. Scand., 2008, 66(6), 321-326.
[http://dx.doi.org/10.1080/00016350802446527] [PMID: 18821087]
[67]
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378), 480-489.
[http://dx.doi.org/10.1038/nature10673] [PMID: 22193102]
[68]
Badgett, M.R.; Auer, A.; Carmichael, L.E.; Parrish, C.R.; Bull, J.J. Evolutionary dynamics of viral attenuation. J. Virol., 2002, 76(20), 10524-10529.
[http://dx.doi.org/10.1128/JVI.76.20.10524-10529.2002] [PMID: 12239331]
[69]
Ansiaux, R.; Gallez, B. Use of botulinum toxins in cancer therapy. Expert Opin. Investig. Drugs, 2007, 16(2), 209-218.
[http://dx.doi.org/10.1517/13543784.16.2.209] [PMID: 17243940]
[70]
Zhao, C.-M.; Hayakawa, Y.; Kodama, Y.; Muthupalani, S.; Westphalen, C.B.; Andersen, G.T.; Flatberg, A.; Johannessen, H.; Friedman, R.A.; Renz, B.W. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med., 2014, 6, 250ra115.
[http://dx.doi.org/10.1126/scitranslmed.3009569]
[71]
Salanti, A.; Clausen, T.M.; Agerbæk, M.Ø.; Al Nakouzi, N.; Dahlbäck, M.; Oo, H.Z.; Lee, S.; Gustavsson, T.; Rich, J.R.; Hedberg, B.J.; Mao, Y.; Barington, L.; Pereira, M.A.; LoBello, J.; Endo, M.; Fazli, L.; Soden, J.; Wang, C.K.; Sander, A.F.; Dagil, R.; Thrane, S.; Holst, P.J.; Meng, L.; Favero, F.; Weiss, G.J.; Nielsen, M.A.; Freeth, J.; Nielsen, T.O.; Zaia, J.; Tran, N.L.; Trent, J.; Babcook, J.S.; Theander, T.G.; Sorensen, P.H.; Daugaard, M. Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell, 2015, 28(4), 500-514.
[http://dx.doi.org/10.1016/j.ccell.2015.09.003] [PMID: 26461094]
[72]
Staedtke, V.; Bai, R.Y.; Sun, W.; Huang, J.; Kibler, K.K.; Tyler, B.M.; Gallia, G.L.; Kinzler, K.; Vogelstein, B.; Zhou, S.; Riggins, G.J. Clostridium novyi -NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget, 2015, 6(8), 5536-5546.
[http://dx.doi.org/10.18632/oncotarget.3627] [PMID: 25849940]
[73]
Felgner, S.; Kocijancic, D.; Frahm, M.; Weiss, S. Bacteria in cancer therapy: Renaissance of an old concept. Available from: https://www.hindawi.com/journals/ijmicro/2016/8451728/
[74]
Felfoul, O.; Mohammadi, M.; Taherkhani, S.; de Lanauze, D.; Zhong Xu, Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D.; Martel, S. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol., 2016, 11(11), 941-947.
[http://dx.doi.org/10.1038/nnano.2016.137] [PMID: 27525475]
[75]
Wang, Y.; Guo, W.; Wu, X.; Zhang, Y.; Mannion, C.; Brouchkov, A.; Man, Y.G.; Chen, T. Oncolytic bacteria and their potential role in bacterium-mediated tumour therapy: A conceptual analysis. J. Cancer, 2019, 10(19), 4442-4454.
[http://dx.doi.org/10.7150/jca.35648] [PMID: 31528208]
[76]
Liang, K.; Liu, Q.; Li, P.; Luo, H.; Wang, H.; Kong, Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett., 2019, 448, 168-181.
[http://dx.doi.org/10.1016/j.canlet.2019.01.037] [PMID: 30753837]
[77]
Olivieri, C.; Nanni, L.; De Gaetano, A.M.; Manganaro, L.; Pintus, C. Complete resolution of retroperitoneal lymphangioma with a single trial of OK-432 in an infant. Pediatr. Neonatol., 2016, 57(3), 240-243.
[http://dx.doi.org/10.1016/j.pedneo.2013.06.011] [PMID: 24140312]
[78]
Droller, M.J. Intracavitary bacillus calmette-guérin for superficial bladder tumors. J. Urol., 2017, 197(2S), S146-S147.
[http://dx.doi.org/10.1016/j.juro.2016.10.083] [PMID: 28010983]
[79]
Staedtke, V.; Roberts, N.J.; Bai, R.Y.; Zhou, S. Clostridium novyi-NT in cancer therapy. Genes Dis., 2016, 3(2), 144-152.
[http://dx.doi.org/10.1016/j.gendis.2016.01.003] [PMID: 30258882]
[80]
Bazylinski, D.A.; Williams, T.J.; Lefèvre, C.T.; Berg, R.J.; Zhang, C.L.; Bowser, S.S.; Dean, A.J.; Beveridge, T.J. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol., 2013, 63(Pt_3), 801-808.
[http://dx.doi.org/10.1099/ijs.0.038927-0] [PMID: 22581902]
[81]
Dimitriadis, E. The use of malaria glycosaminoglycan to block cancers—lessons from the human placenta. Transl. Cancer Res., 2016, 5(S6), S1085-S1087.
[http://dx.doi.org/10.21037/tcr.2016.11.38]
[82]
Pyo, K.H.; Jung, B.K.; Xin, C.F.; Lee, Y.W.; Chai, J.Y.; Shin, E.H. Prominent IL-12 production and tumor reduction in athymic nude mice after Toxoplasma gondii lysate antigen treatment. Korean J. Parasitol., 2014, 52(6), 605-612.
[http://dx.doi.org/10.3347/kjp.2014.52.6.605] [PMID: 25548411]
[83]
Bereta, M.; Hayhurst, A.; Gajda, M.; Chorobik, P.; Targosz, M.; Marcinkiewicz, J.; Kaufman, H.L. Improving tumor targeting and therapeutic potential of Salmonella VNP20009 by displaying cell surface CEA-specific antibodies. Vaccine, 2007, 25(21), 4183-4192.
[http://dx.doi.org/10.1016/j.vaccine.2007.03.008] [PMID: 17399861]
[84]
Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol., 2006, 100(6), 1171-1185.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02963.x] [PMID: 16696665]
[85]
Agarwal, K.; Alarcon-Segovia, D.; Bourges, H.; Crane, J.; Branca, F.; Garcia-Aranda, A.; Guarner, F.; Krueger, J.; Martin, F.; Moreno-Espinosa, S. Fermented foods and healthy digestive functions. 2001.
[86]
Lee, J.W.; Shin, J.G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.G.; Woo, H.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci., 2004, 5(1), 41-48.
[http://dx.doi.org/10.4142/jvs.2004.5.1.41] [PMID: 15028884]
[87]
Murch, S.H. Toll of allergy reduced by probiotics. Lancet, 2001, 357(9262), 1057-1059.
[http://dx.doi.org/10.1016/S0140-6736(00)04305-1] [PMID: 11297952]
[88]
Isolauri, E. Dietary modification of atopic disease: Use of probiotics in the prevention of atopic dermatitis. Curr. Allergy Asthma Rep., 2004, 4(4), 270-275.
[http://dx.doi.org/10.1007/s11882-004-0070-9] [PMID: 15175140]
[89]
Saikali, J.; Picard, C.; Freitas, M.; Holt, P. Fermented milks, probiotic cultures, and colon cancer. Nutr. Cancer, 2004, 49(1), 14-24.
[http://dx.doi.org/10.1207/s15327914nc4901_3] [PMID: 15456631]
[90]
Goldin, B.R.; Gualtieri, L.J.; Moore, R.P. The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr. Cancer, 1996, 25(2), 197-204.
[http://dx.doi.org/10.1080/01635589609514442] [PMID: 8710689]
[91]
Orrhage, K.; Brismar, B.; Nord, C.E. Effect of supplements with bifidobacterium longum and lactobacillus acidophilus on the intestinal microbiota during administration of clindamycin. Microb. Ecol. Health Dis., 1994, 7, 17-25.
[92]
Aso, Y.; Akazan, H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol. Int., 1992, 49(3), 125-129.
[http://dx.doi.org/10.1159/000282409] [PMID: 1466089]
[93]
Hibberd, A.A.; Lyra, A.; Ouwehand, A.C.; Rolny, P.; Lindegren, H.; Cedgård, L.; Wettergren, Y. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol., 2017, 4(1), e000145.
[http://dx.doi.org/10.1136/bmjgast-2017-000145] [PMID: 28944067]
[94]
Yang, Y.; Xia, Y.; Chen, H.; Hong, L.; Feng, J.; Yang, J.; Yang, Z.; Shi, C.; Wu, W.; Gao, R.; Wei, Q.; Qin, H.; Ma, Y. The effect of perioperative probiotics treatment for colorectal cancer: Short-term outcomes of a randomized controlled trial. Oncotarget, 2016, 7(7), 8432-8440.
[http://dx.doi.org/10.18632/oncotarget.7045] [PMID: 26824990]
[95]
Panebianco, C.; Andriulli, A.; Pazienza, V. Pharmacomicrobiomics: Exploiting the drug-microbiota interactions in anticancer therapies. Microbiome, 2018, 6(1), 92.
[http://dx.doi.org/10.1186/s40168-018-0483-7] [PMID: 29789015]
[96]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[97]
Panebianco, C.; Adamberg, K.; Adamberg, S.; Saracino, C.; Jaagura, M.; Kolk, K.; Di Chio, A.; Graziano, P.; Vilu, R.; Pazienza, V. Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models. Nutrients, 2017, 9(4), 331.
[http://dx.doi.org/10.3390/nu9040331] [PMID: 28346394]
[98]
Funk, M.A.; Baker, D.H. Effect of fiber, protein source and time of feeding on methotrexate toxicity in rats. J. Nutr., 1991, 121(10), 1673-1683.
[http://dx.doi.org/10.1093/jn/121.10.1673] [PMID: 1662714]
[99]
Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med., 2019, 25(3), 377-388.
[http://dx.doi.org/10.1038/s41591-019-0377-7] [PMID: 30842679]
[100]
Picardo, S.L.; Coburn, B.; Hansen, A.R. The microbiome and cancer for clinicians. Crit. Rev. Oncol. Hematol., 2019, 141, 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2019.06.004] [PMID: 31202124]

© 2025 Bentham Science Publishers | Privacy Policy