Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Recent Advances in Organocatalytic Synthesis and Catalytic Activity of Substituted Pyrrolidines

Author(s): Aeyaz Ahmad Bhat*

Volume 13, Issue 1, 2024

Published on: 21 February, 2024

Page: [2 - 24] Pages: 23

DOI: 10.2174/0122115447285170240206115917

Abstract

The emergence of enantioselective organocatalysis as a potent synthetic chemistry strategy that supports metal-catalyzed transformations has resulted in the creation of novel procedures for the synthesis of various chiral molecules. Organocatalysis is a desirable method for creating complex molecular structures due to its many benefits, including its ease of use, wide availability of catalysts and low toxicity. Chemists are actively exploring synthetic methodologies and looking into the applications of pyrrolidine-based organocatalysts. The application of organocatalysts spans a wide range of reaction types, highlighting their ability to participate in a variety of catalytic processes. The current study offers a succinct summary of the principal strategic methods for producing pyrrolidine-based organocatalysts and demonstrating their usefulness in organic transformations.

Graphical Abstract

[1]
Sheng, P.Z.; Ni, Z.B.; Li, L.L.; Wei, K.; Zhang, H.; Yang, Y.R. Enantioselective total syntheses of the cephalotaxus alkaloids (−)-fortuneicyclidins A and B and (−)-cephalotine B. Org. Lett., 2023, 25(41), 7464-7469.
[http://dx.doi.org/10.1021/acs.orglett.3c02739] [PMID: 37800465]
[2]
Drioli, E.; Giorno, L. Eds.; Encyclopedia of membranes; Springer: Berlin, Heidelberg, 2016.
[http://dx.doi.org/10.1007/978-3-662-44324-8]
[3]
Bhat, A.A.; Wani, A.K.; Mir, T.U.G.; Akther, N. Introduction to ivermectin. In: Chemistry and Biological Activities of Ivermectin; Wiley, 2023; pp. 1-21.
[4]
Foote, C.S. Catalytic asymmetric synthesis special issue. Acc. Chem. Res., 2000, 33(6), 323-440.
[http://dx.doi.org/10.1021/ar0000455] [PMID: 10891048]
[5]
Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
[6]
Dalko, P.I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed., 2001, 40(20), 3726-3748.
[http://dx.doi.org/10.1002/1521-3773(20011015)40:20<3726:AID-ANIE3726>3.0.CO;2-D] [PMID: 11668532]
[7]
List, B. Organocatalysis: A complementary catalysis strategy advances organic synthesis. Adv. Synth. Catal., 2004, 346(9-10), 1021.
[http://dx.doi.org/10.1002/adsc.200404163]
[8]
Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem., 2005, 3(5), 719-724.
[http://dx.doi.org/10.1039/b415217b] [PMID: 15731852]
[9]
Hajos, Z.G.; Parrish, D.R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem., 1974, 39(12), 1615-1621.
[http://dx.doi.org/10.1021/jo00925a003]
[10]
Li Petri, G.; Raimondi, M.V.; Spanò, V.; Holl, R.; Barraja, P.; Montalbano, A. Pyrrolidine in drug discovery: A versatile scaffold for novel biologically active compounds. Top. Curr. Chem., 2021, 379(5), 34.
[http://dx.doi.org/10.1007/s41061-021-00347-5] [PMID: 34373963]
[11]
Stocker, B.L.; Dangerfield, E.M.; Win-Mason, A.L.; Haslett, G.W.; Timmer, M.S.M. Recent developments in the synthesis of pyrrolidine‐containing iminosugars. Eur. J. Org. Chem., 2010, 2010(9), 1615-1637.
[http://dx.doi.org/10.1002/ejoc.200901320]
[12]
Martineau, D.; Beley, M.; Gros, P.C. Pyrrolidine-containing polypyridines: new ligands for improved visible light absorption by ruthenium complexes. J. Org. Chem., 2006, 71(2), 566-571.
[http://dx.doi.org/10.1021/jo051994k] [PMID: 16408966]
[13]
Zhou, M.; El-Sayed, E.S.M.; Ju, Z.; Wang, W.; Yuan, D. The synthesis and applications of chiral pyrrolidine functionalized metal-organic frameworks and covalent-organic frameworks. Inorg. Chem. Front., 2020, 7(6), 1319-1333.
[http://dx.doi.org/10.1039/C9QI01103J]
[14]
Vega-Peñaloza, A.; Paria, S.; Bonchio, M.; Dell’Amico, L.; Companyó, X. Profiling the privileges of pyrrolidine-based catalysts in asymmetric synthesis: From polar to light-driven radical chemistry. ACS Catal., 2019, 9(7), 6058-6072.
[http://dx.doi.org/10.1021/acscatal.9b01556]
[15]
Bhat, A.A.; Shakeel, A.; Rafiq, S.; Farooq, I.; Malik, A.Q.; Alghuthami, M.E.; Alharthi, S.; Qanash, H.; Alharthy, S.A. Juglans regia Linn.: A Natural Repository of Vital Phytochemical and Pharmacological Compounds. Life, 2023, 13(2), 380.
[http://dx.doi.org/10.3390/life13020380] [PMID: 36836737]
[16]
Liu, J.; Wang, L. Recent advances in asymmetric reactions catalyzed by proline and its derivatives. Synthesis, 2017, 49, 960-972.
[17]
Thorat, B.R.; Mali, S.N.; Wavhal, S.S.; Bhagat, D.S.; Borade, R.M.; Chapolikar, A.; Gandhi, A.; Shinde, P. L-proline: A versatile organo-catalyst in organic chemistry. Comb. Chem. High Throughput Screen., 2023, 26(6), 1108-1140.
[http://dx.doi.org/10.2174/1386207325666220720105845] [PMID: 35864793]
[18]
Cozzi, P.G.; Gualandi, A.; Mengozzi, L.; Wilson, C.M. Imidazolidinones as asymmetric organocatalysts. In: Sustainable Catalysis: Without Metals or Other Endangered Elements, Part 2; North, M., Ed.; Royal Society of Chemistry: London, UK, 2015; pp. 164-195.
[http://dx.doi.org/10.1039/9781782626435-00164]
[19]
Jensen, K.L.; Dickmeiss, G.; Jiang, H.; Albrecht, Ł.; Jørgensen, K.A. The diarylprolinol silyl ether system: A general organocatalyst. Acc. Chem. Res., 2012, 45(2), 248-264.
[http://dx.doi.org/10.1021/ar200149w] [PMID: 21848275]
[20]
Gotoh, H.; Hayashi, Y. Diarylprolinol silyl ethers: Development and application as organocatalysts. In: Sustainable Catalysis: Challenges and Practices for the Pharmaceutical and Fine Chemical Industries; Dunn, P.J.; Hii, K.K.; Krische, M.J.; Williams, M.T., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 287-316.
[http://dx.doi.org/10.1002/9781118354520.ch13]
[21]
Moyano, A. Activation modes in asymmetric organocatalysis. In: Stereoselective Organocatalysis; Torres, R.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013.
[http://dx.doi.org/10.1002/9781118604755.ch02]
[22]
Chen, Z.; Yang, Q.Q.; Du, W.; Chen, Y.C. Asymmetric organocatalysis involving double activation. Tetrahedron Chem, 2022, 2, 100017.
[http://dx.doi.org/10.1016/j.tchem.2022.100017]
[23]
Han, M.Y.; Jia, J.Y.; Wang, W. Recent advances in organocatalytic asymmetric synthesis of polysubstituted pyrrolidines. Tetrahedron Lett., 2014, 55(4), 784-794.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.048]
[24]
Pandey, G.; Banerjee, P.; Gadre, S.R. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem. Rev., 2006, 106(11), 4484-4517.
[http://dx.doi.org/10.1021/cr050011g] [PMID: 17091927]
[25]
Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.L. Assembly of diverse spirocyclic pyrrolidines via transient directing group enabled ortho-C (sp2)-H alkylation of benzaldehydes. Org. Lett., 2018, 20(1), 146-149.
[http://dx.doi.org/10.1021/acs.orglett.7b03502] [PMID: 29256251]
[26]
Philip, R.M.; Treesa, G.S.S.; Saranya, S.; Anilkumar, G. Applications of aryl-sulfinamides in the synthesis of N-heterocycles. RSC Advances, 2021, 11(33), 20591-20600.
[http://dx.doi.org/10.1039/D1RA04099E] [PMID: 35479913]
[27]
Smolobochkin, A.V.; Gazizov, A.S.; Turmanov, R.A.; Abdullaeva, D.S.; Burilov, A.R.; Pudovik, M.A. N-phosphorylated pyrrolidines: An overview of synthetic approaches. Synthesis, 2020, 52(15), 2162-2170.
[http://dx.doi.org/10.1055/s-0039-1690889]
[28]
Li, J.; Ye, Y.; Zhang, Y. Cycloaddition/annulation strategies for the construction of multisubstituted pyrrolidines and their applications in natural product synthesis. Org. Chem. Front., 2018, 5(5), 864-892.
[http://dx.doi.org/10.1039/C7QO01077J]
[29]
Wolfe, J.; Schultz, D. Recent developments in palladium-catalyzed alkene aminoarylation reactions for the synthesis of nitrogen heterocycles. Synthesis, 2012, 44(3), 351-361.
[http://dx.doi.org/10.1055/s-0031-1289668] [PMID: 23243321]
[30]
Clemons, P.A.; Wilson, J.A.; Dančík, V.; Muller, S.; Carrinski, H.A.; Wagner, B.K.; Koehler, A.N.; Schreiber, S.L. Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc. Natl. Acad. Sci., 2011, 108(17), 6817-6822.
[http://dx.doi.org/10.1073/pnas.1015024108] [PMID: 21482810]
[31]
Henary, M.; Kananda, C.; Rotolo, L. Applications of tert-butanesulfinamide in the synthesis of N-heterocycles via sulfinimines. RSC Advances, 2020, 10, 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[32]
Li Petri, G.; Spanò, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem., 2020, 208, 112783.
[http://dx.doi.org/10.1016/j.ejmech.2020.112783]
[33]
Cascioferro, S.; Raimondi, M.; Cusimano, M.; Raffa, D.; Maggio, B.; Daidone, G.; Schillaci, D. Pharmaceutical potential of synthetic and natural pyrrolomycins. Molecules, 2015, 20(12), 21658-21671.
[http://dx.doi.org/10.3390/molecules201219797] [PMID: 26690095]
[34]
Raimondi, M.V.; Schillaci, D.; Petruso, S. Synthesis and anti-staphylococcal activity of new halogenated pyrroles related to Pyrrolomycins F, Heterocycl. Chem, 2007, 44, 1407-1411.
[35]
Adrio, J.; Carretero, J.C. Stereochemical diversity in pyrrolidine synthesis by catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem. Commun., 2019, 55(80), 11979-11991.
[http://dx.doi.org/10.1039/C9CC05238K] [PMID: 31552927]
[36]
Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as anti‐diabetic agents: Current status and future prospects. ChemistrySelect, 2022, 7(6), e202103757.
[http://dx.doi.org/10.1002/slct.202103757]
[37]
Bhat, A. An outlook of the Structure Activity Relationship (SAR) of naphthalimide derivatives as anticancer agents. Anticancer. Agents Med. Chem., 2023.
[PMID: 37974443]
[38]
Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine derivatives as antibacterial agents, current status and future prospects: A patent review. Pharm. Pat. Anal., 2022, 11(6), 187-198.
[http://dx.doi.org/10.4155/ppa-2022-0015] [PMID: 36366974]
[39]
Dinér, P.; Kjærsgaard, A.; Lie, M.A.; Jørgensen, K.A. On the origin of the stereoselectivity in organocatalysed reactions with trimethylsilyl-protected diarylprolinol. Chemistry, 2008, 14(1), 122-127.
[http://dx.doi.org/10.1002/chem.200701244] [PMID: 17918758]
[40]
Shinisha, C.B.; Sunoj, R.B. Unraveling high precision stereocontrol in a triple cascade organocatalytic reaction. Org. Biomol. Chem., 2008, 6(21), 3921-3929.
[http://dx.doi.org/10.1039/b810901j] [PMID: 18931798]
[41]
Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182]
[42]
Pihko, P.M. Activation of carbonyl compounds by double hydrogen bonding: An emerging tool in asymmetric catalysis. Angew. Chem. Int. Ed., 2004, 43(16), 2062-2064.
[http://dx.doi.org/10.1002/anie.200301732] [PMID: 15083451]
[43]
Dessole, G.; Herrera, R.P.; Ricci, A. H-bonding organocatalysed Friedel-Crafts alkylation of aromatic and heteroaromatic systems with nitroolefins. Synlett, 2004, 13, 2374-2378.
[44]
Clemente, F.R.; Houk, K.N. Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew. Chem. Int. Ed., 2004, 43(43), 5766-5768.
[http://dx.doi.org/10.1002/anie.200460916] [PMID: 15484203]
[45]
Cheong, Paul Ha-Yeon Houk, K. N. Origins of selectivities in proline-catalyzed α-aminoxylations. J. Am. Chem. Soci., 2004, 126(43), 13912-13913.
[http://dx.doi.org/10.1021/ja0464746]
[46]
Cobb, A.J.A.; Shaw, D.M.; Longbottom, D.A.; Gold, J.B.; Ley, S.V. Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem., 2005, 3(1), 84-96.
[http://dx.doi.org/10.1039/b414742a] [PMID: 15602602]
[47]
Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew. Chem. Int. Ed., 2005, 44(27), 4212-4215.
[http://dx.doi.org/10.1002/anie.200500599] [PMID: 15929151]
[48]
George, N.; Singh, G.; Singh, R.; Singh, G.; Devi, A.; Singh, H.; Kaur, G.; Singh, J. Microwave accelerated green approach for tailored 1,2,3-triazoles via CuAAC. Sustain. Chem. Pharm., 2022, 30, 100824.
[http://dx.doi.org/10.1016/j.scp.2022.100824]
[49]
Hayashi, Y.; Itoh, T.; Aratake, S.; Ishikawa, H. A diarylprolinol in an asymmetric, catalytic, and direct crossed-aldol reaction of acetaldehyde. Angew. Chem. Int. Ed., 2008, 47(11), 2082-2084.
[http://dx.doi.org/10.1002/anie.200704870] [PMID: 18264959]
[50]
Hayashi, Y.; Itoh, T.; Ohkubo, M.; Ishikawa, H. Asymmetric Michael reaction of acetaldehyde catalyzed by diphenylprolinol silyl ether. In: Angewandte Chemie, International Edition; Wiley, 2008.
[51]
Hayashi, Y.; Aratake, S.; Imai, Y.; Hibino, K.; Chen, Q.Y.; Yamaguchi, J.; Uchimaru, T. Direct asymmetric alpha-amination of cyclic ketones catalyzed by siloxyproline. Chem. Asian J., 2008, 3(2), 225-232.
[http://dx.doi.org/10.1002/asia.200700307] [PMID: 18165948]
[52]
Castán, A.; Badorrey, R.; Gálvez, J.A.; López-Ram-de-Víu, P.; Díaz-de-Villegas, M.D. Michael addition of carbonyl compounds to nitroolefins under the catalysis of new pyrrolidine-based bifunctional organocatalysts. Org. Biomol. Chem., 2018, 16(6), 924-935.
[http://dx.doi.org/10.1039/C7OB02798B] [PMID: 29335699]
[53]
Nakashima, K.; Hirashima, S.; Kawada, M.; Koseki, Y.; Tada, N.; Itoh, A.; Miura, T. Pyrrolidine-diaminomethylenemalononitrile organocatalyst for Michael additions of carbonyl compounds to nitroalkenes under solvent-free conditions. Tetrahedron Lett., 2014, 55(16), 2703-2706.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.042]
[54]
Mahato, C.K.; Mukherjee, S.; Kundu, M.; Pramanik, A. Pyrrolidine-oxadiazolone conjugates as organocatalysts in asymmetric michael reaction. J. Org. Chem., 2019, 84(2), 1053-1063.
[http://dx.doi.org/10.1021/acs.joc.8b02393] [PMID: 30577689]
[55]
Gorde, A.B.; Ramapanicker, R.D. -Prolyl-2-(trifluoromethylsulfonamidopropyl)pyrrolidine: An organocatalyst for asymmetric michael addition of aldehydes to β-nitroalkenes at ambient conditions. J. Org. Chem., 2019, 84(3), 1523-1533.
[http://dx.doi.org/10.1021/acs.joc.8b02945] [PMID: 30609351]
[56]
Kaplaneris, N.; Koutoulogenis, G.; Raftopoulou, M.; Kokotos, C.G. 4-Fluoro and 4-hydroxy pyrrolidine-thioxotetrahydropyrimidinones: Organocatalysts for green asymmetric transformations in brine. J. Org. Chem., 2015, 80(11), 5464-5473.
[http://dx.doi.org/10.1021/acs.joc.5b00283] [PMID: 25942500]
[57]
Yeo, H.M.; Kang, S.; Kim, T.H. Isothiouronium salt based chiral proline amide as efficient bifunctional organocatalyst for direct asymmetric aldol reactions in aqueous medium. Tetrahedron Lett., 2021, 80, 153324.
[http://dx.doi.org/10.1016/j.tetlet.2021.153324]
[58]
Kumar, T.P.; Radhika, L.; Haribabu, K.; Kumar, V.N. Pyrrolidine-oxyimides: New chiral catalysts for enantioselective Michael addition of ketones to nitroolefins in water. Tetrahedron Asymmetry, 2014, 25(23), 1555-1560.
[http://dx.doi.org/10.1016/j.tetasy.2014.10.014]
[59]
Xu, D.; Wang, J.; Yan, L.; Yuan, M.; Xie, X.; Wang, Y. Novel bifunctional l-prolinamide derivatives as highly efficient organocatalysts for asymmetric nitro-Michael reactions. Tetrahedron Asymmetry, 2016, 27(22-23), 1121-1132.
[http://dx.doi.org/10.1016/j.tetasy.2016.08.019]
[60]
Yadav, G.D.; Singh, S. N-Arylprolinamide as an organocatalyst for the direct asymmetric aldol reaction of acetone with isatin. Tetrahedron Asymmetry, 2016, 27(2-3), 123-129.
[http://dx.doi.org/10.1016/j.tetasy.2015.12.005]
[61]
Bhowmick, S.; Kunte, S.S.; Bhowmick, K.C. A new organocatalyst derived from abietic acid and 4-hydroxy-l-proline for direct asymmetric aldol reactions in aqueous media. Tetrahedron Asymmetry, 2014, 25(18-19), 1292-1297.
[http://dx.doi.org/10.1016/j.tetasy.2014.07.012]
[62]
Kumar, T.P.; Shekhar, R.C.; Sunder, K.S.; Vadaparthi, R. Myrtanyl-prolinamide: A new chiral organocatalyst for stereoselective aldol reactions. Tetrahedron Asymmetry, 2015, 26(10-11), 543-547.
[http://dx.doi.org/10.1016/j.tetasy.2015.03.009]
[63]
Reyes-Rangel, G.; Vargas-Caporali, J.; Juaristi, E. Asymmetric Michael addition reaction organocatalyzed by stereoisomeric pyrrolidine sulfinamides under neat conditions. A brief study of self-disproportionation of enantiomers. Tetrahedron, 2017, 73(32), 4707-4718.
[http://dx.doi.org/10.1016/j.tet.2017.05.016]
[64]
Kaur, A.; Singh, K.N.; Sharma, E. Shilpy; Rani, P.; Sharma, S.K. Pyrrolidine-carbamate based new and efficient chiral organocatalyst for asymmetric Michael addition of ketones to nitroolefins. Tetrahedron, 2018, 74(42), 6137-6143.
[http://dx.doi.org/10.1016/j.tet.2018.09.002]
[65]
Ormandyová, K.; Bilka, S.; Mečiarová, M.; Šebesta, R. Bifunctional thio/squaramide catalyzed stereoselective michael additions of aldehydes to nitroalkenes towards synthesis of chiral pyrrolidines. ChemistrySelect, 2019, 4(30), 8870-8875.
[http://dx.doi.org/10.1002/slct.201902652]
[66]
Poláčková, V.; Krištofíková, D.; Némethová, B.; Górová, R.; Mečiarová, M.; Šebesta, R. N -Sulfinylpyrrolidine-containing ureas and thioureas as bifunctional organocatalysts. Beilstein J. Org. Chem., 2021, 17, 2629-2641.
[http://dx.doi.org/10.3762/bjoc.17.176] [PMID: 34795800]
[67]
Kupai, J.; Dargó, G.; Nagy, S.; Kis, D.; Bagi, P.; Mátravölgyi, B.; Tóth, B.; Huszthy, P.; Drahos, L. Application of proline-derived (Thio)squaramide organocatalysts in asymmetric diels-alder and conjugate addition reactions. Synthesis, 2022, 54(17), 3823-3830.
[http://dx.doi.org/10.1055/s-0040-1719886]
[68]
Moriyama, K.; Oka, Y. Enantioselective cascade michael/hemiaminal formation of α,β-unsaturated iminoindoles with aldehydes using a chiral aminomethylpyrrolidine catalyst bearing a SO2C6F5 group as a strongly electron withdrawing arylsulfonyl group. ACS Catal., 2022, 12(12), 7436-7442.
[http://dx.doi.org/10.1021/acscatal.2c01182]
[69]
Jiang, H.; Rodríguez-Escrich, C.; Johansen, T.K.; Davis, R.L.; Jørgensen, K.A. Organocatalytic activation of polycyclic aromatic compounds for asymmetric Diels-Alder reactions. Angew. Chem. Int. Ed., 2012, 51(41), 10271-10274.
[http://dx.doi.org/10.1002/anie.201205836] [PMID: 22976506]
[70]
Bazila, F.; Ankush, M. A comparative study of deep learning and traditional methods for environmental remote sensing. ITM Web Conf., 2023, 56, 03002
[71]
Moriyama, K.; Oka, Y.; Kaiho, T. A chiral N-Tetrafluoroiodobenzyl-N-sulfonyl aminomethylpyrrolidine catalyst for the enantioselective michael/hemiaminal formation cascade reaction of α,β-unsaturated iminoindoles with aldehydes. Synlett, 2022, 33(17), 1763-1769.
[http://dx.doi.org/10.1055/a-1893-7329]
[72]
Silvi, M.; Verrier, C.; Rey, Y.P.; Buzzetti, L.; Melchiorre, P. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals. Nat. Chem., 2017, 9(9), 868-873.
[http://dx.doi.org/10.1038/nchem.2748] [PMID: 28837165]
[73]
Berger, M.; Carboni, D.; Melchiorre, P. Photochemical organocatalytic regio‐ and enantioselective conjugate addition of allyl groups to enals. Angew. Chem. Int. Ed., 2021, 60(50), 26373-26377.
[http://dx.doi.org/10.1002/anie.202111648] [PMID: 34695283]
[74]
Wong, T.H.F.; Ma, D.; Di Sanza, R.; Melchiorre, P. Photoredox organocatalysis for the enantioselective synthesis of 1,7-dicarbonyl compounds. Org. Lett., 2022, 24(8), 1695-1699.
[http://dx.doi.org/10.1021/acs.orglett.2c00326] [PMID: 35199526]
[75]
Rodríguez, R.I.; Sicignano, M.; Alemán, J. Fluorinated sulfinates as source of alkyl radicals in the photo‐enantiocontrolled β‐functionalization of enals. Angew. Chem. Int. Ed., 2022, 61(9), e202112632.
[http://dx.doi.org/10.1002/anie.202112632] [PMID: 34982505]
[76]
Brinner, K.M.; Ellman, J.A. A rapid and general method for the asymmetric synthesis of 2-substituted pyrrolidines using tert-butanesulfinamide. Org. Biomol. Chem., 2005, 3(11), 2109-2113.
[http://dx.doi.org/10.1039/b502080h] [PMID: 15917897]
[77]
Yadav, G.D.; Chaudhary, P.; Pani, B.; Singh, S. Pyrrolidine-based C1-symmetric chiral transition metal complexes as catalysts in the asymmetric organic transformations. Tetrahedron Lett., 2023, 154835.
[78]
Glickert, E.P. Synthesis of Organic Compounds in the Removal of Ruthenium and the Development of a Novel Ruthenium Catalyzed Synthesis of Z-1, 3-disubstituted dienes by Uphill Photocatalysis. A thesis submitted to the faculty of the Graduate School of the University at Buffalo, The State University of New York in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry., 2023.
[79]
Shan, C.; Xu, J.; Cao, L.; Liang, C.; Cheng, R.; Yao, X.; Sun, M.; Ye, J. Rapid synthesis of α-chiral piperidines via a highly diastereoselective continuous flow protocol. Org. Lett., 2022, 24(17), 3205-3210.
[http://dx.doi.org/10.1021/acs.orglett.2c00975] [PMID: 35451304]
[80]
Quintavalla, A.; Carboni, D.; Lombardo, M. Recent advances in asymmetric synthesis of pyrrolidine-based organocatalysts and their application: A 15-Year update. Molecules, 2023, 28(5), 2234.
[http://dx.doi.org/10.3390/molecules28052234] [PMID: 36903480]
[81]
Reddy, A.A.; Prasad, K.R. Addition of the lithium anion of diphenylmethanol methyl/methoxymethyl ether to nonracemic sulfinimines: Two-step asymmetric synthesis of diphenylprolinol methyl ether and chiral (diphenylmethoxymethyl)amines. J. Org. Chem., 2018, 83(18), 10776-10785.
[http://dx.doi.org/10.1021/acs.joc.8b01381] [PMID: 30129765]
[82]
Li, J.; Zhang, X.; Shen, H.; Liu, Q.; Pan, J.; Hu, W.; Xiong, Y.; Chen, C. Boron trifluoride⋅diethyl ether‐catalyzed etherification of alcohols: A metal‐free pathway to diphenylmethyl ethers. Adv. Synth. Catal., 2015, 357(14-15), 3115-3120.
[http://dx.doi.org/10.1002/adsc.201500663]
[83]
Murphy, J.J.; Silvi, M.; Melchiorre, P. Enamine‐mediated catalysis (n?→? π*). In: Lewis Base Catalysis in Organic Synthesis; Wiley, 2016; pp. 857-902.
[84]
Ho, C.Y.; Chen, Y.C.; Wong, M.K.; Yang, D. Fluorinated chiral secondary amines as catalysts for epoxidation of olefins with oxone. J. Org. Chem., 2005, 70(3), 898-906.
[http://dx.doi.org/10.1021/jo048378t] [PMID: 15675847]
[85]
Yuan, Y.H.; Han, X.; Zhu, F.P.; Tian, J.M.; Zhang, F.M.; Zhang, X.M.; Tu, Y.Q.; Wang, S.H.; Guo, X. Development of bifunctional organocatalysts and application to asymmetric total synthesis of naucleofficine I and II. Nat. Commun., 2019, 10(1), 3394.
[http://dx.doi.org/10.1038/s41467-019-11382-8] [PMID: 31358765]

© 2025 Bentham Science Publishers | Privacy Policy