Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology

In Press, (this is not the final "Version of Record"). Available online 21 February, 2024
Author(s): Yonghong Tang, Daoqing Zhou, Fengping Gan, Zhicheng Yao and Yuqing Zeng*
Published on: 21 February, 2024

DOI: 10.2174/0115734099282231240214095025

Price: $95

Abstract

Background: Sanguinarine (SAN) has been reported to have antioxidant, antiinflammatory, and antimicrobial activities with potential for the treatment of osteoporosis (OP).

Objective: This work purposed to unravel the molecular mechanisms of SAN in the treatment of OP.

Methods: OP-related genes and SAN-related targets were predicted from public databases. Differential expression analysis and VennDiagram were adopted to detect SAN-related targets against OP. Protein-protein interaction (PPI) network was served for core target identification. Molecular docking and DeepPurpose algorithm were further adopted to investigate the binding ability between core targets and SAN. Gene pathway scoring of these targets was calculated utilizing gene set variation analysis (GSVA). Finally, we explored the effect of SAN on the expressions of core targets in preosteoblastic MC3T3-E1 cells.

Results: A total of 21 candidate targets of SAN against OP were acquired. Furthermore, six core targets were identified, among which CASP3, CTNNB1, and ERBB2 were remarkably differentially expressed in OP and healthy individuals. The binding energies of SAN with CASP3, CTNNB1, and ERBB2 were -6, -6.731, and -7.162 kcal/mol, respectively. Moreover, the GSVA scores of the Wnt/calcium signaling pathway were significantly lower in OP cases than in healthy individuals. In addition, the expression of CASP3 was positively associated with Wnt/calcium signaling pathway. CASP3 and ERBB2 were significantly lower expressed in SAN group than in DMSO group, whereas the expression of CTNNB1 was in contrast.

Conclusion: CASP3, CTNNB1, and ERBB2 emerge as potential targets of SAN in OP prevention and treatment.

[1]
Chandra, A.; Rajawat, J. Skeletal aging and osteoporosis: Mechanisms and therapeutics. Int. J. Mol. Sci., 2021, 22(7), 3553.
[http://dx.doi.org/10.3390/ijms22073553] [PMID: 33805567]
[2]
Zhao, Y.; Du, Y.; Gao, Y.; Xu, Z.; Zhao, D.; Yang, M.; Huang, M-H. ATF3 regulates osteogenic function by mediating osteoblast ferroptosis in type 2 diabetic osteoporosis. Dis. Markers, 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/9872243] [PMID: 36340581]
[3]
Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z.; Czuczejko, J. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/2634431] [PMID: 35082963]
[4]
Migliorini, F.; Colarossi, G.; Baroncini, A.; Eschweiler, J.; Tingart, M.; Maffulli, N. Pharmacological management of postmenopausal osteoporosis: A level I evidence based - expert opinion. Expert Rev. Clin. Pharmacol., 2021, 14(1), 105-119.
[http://dx.doi.org/10.1080/17512433.2021.1851192] [PMID: 33183112]
[5]
Sakai, T.; Honzawa, S.; Kaga, M.; Iwasaki, Y.; Masuyama, T. Osteoporosis pathology in people with severe motor and intellectual disability. Brain Dev., 2020, 42(3), 256-263.
[http://dx.doi.org/10.1016/j.braindev.2019.12.010] [PMID: 31982226]
[6]
Smith, É.M. Treatments for osteoporosis in people with a disability. PM R, 2011, 3(2), 143-152.
[http://dx.doi.org/10.1016/j.pmrj.2010.10.001] [PMID: 21333953]
[7]
Wang, R.; Liu, J.; Li, K.; Yang, G.; Chen, S.; Wu, J.; Xie, X.; Ren, H.; Pang, Y. An SETD1A/Wnt/β-catenin feedback loop promotes NSCLC development. J. Exp. Clin. Cancer Res., 2021, 40(1), 318.
[http://dx.doi.org/10.1186/s13046-021-02119-x] [PMID: 34645486]
[8]
Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623.
[http://dx.doi.org/10.3390/ijms21207623] [PMID: 33076329]
[9]
Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull., 2020, 133(1), 105-117.
[PMID: 32282039]
[10]
Zhao, J.; Zeng, L.; Wu, M.; Huang, H.; Liang, G.; Yang, W.; Pan, J.; Liu, J. Efficacy of Chinese patent medicine for primary osteoporosis: A network meta-analysis. Complement. Ther. Clin. Pract., 2021, 44, 101419.
[11]
Yang, A.; Yu, C.; You, F.; He, C.; Li, Z. Mechanisms of Zuogui Pill in treating osteoporosis: Perspective from bone marrow mesenchymal stem cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/3717391] [PMID: 30327678]
[12]
Wang, J.; Xue, J.S.; Huang, S. Recent advancements in prevention and treatment of osteoporosis with traditional chinese medicine: A long way from lab bench to bedside. Curr. Mol. Pharmacol., 2023, 16(3), 321-330.
[http://dx.doi.org/10.2174/1874467215666220414145641] [PMID: 35431007]
[13]
Lei, S.s.; Su, J.; Zhang, Y.; Huang, X.w.; Wang, X.p.; Huang, M.c.; Li, B.; Shou, D. Benefits and mechanisms of polysaccharides from Chinese medicinal herbs for anti-osteoporosis therapy: A review. Int. J. Biol. Macromol., 2021, 193(Pt B), 1996-2005.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.030]
[14]
Laster, L.L.; Lobene, R.R. New perspectives on Sanguinaria clinicals: Individual toothpaste and oral rinse testing. J. Can. Dent. Assoc., 1990, 56(7)(Suppl.), 19-30.
[PMID: 2207851]
[15]
Liang, J.; Li, X.; Bi, C.; Yu, Y.; Liu, W.; Zhang, X.; Cao, W. Sanguinarine, similar to the MICs of spectinomycin, exhibits good anti-Neisseria gonorrhoeae activity in vitro. J. Infect. Chemother., 2023, 29(9), 927-929.
[http://dx.doi.org/10.1016/j.jiac.2023.05.022] [PMID: 37295648]
[16]
Zheng, Z.; Zheng, Y.; Liang, X.; Xue, G.; Wu, H. Sanguinarine enhances the integrity of the blood–milk barrier and inhibits oxidative stress in lipopolysaccharide-stimulated mastitis. Cells, 2022, 11(22), 3658.
[http://dx.doi.org/10.3390/cells11223658] [PMID: 36429086]
[17]
Li, X.; Wu, X.; Wang, Q.; Xu, W.; Zhao, Q.; Xu, N.; Hu, X.; Ye, Z.; Yu, S.; Liu, J.; He, X.; Shi, F.; Zhang, Q.; Li, W. Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice. Phytomedicine, 2022, 104, 154321.
[http://dx.doi.org/10.1016/j.phymed.2022.154321] [PMID: 35843190]
[18]
Dong, X.Z.; Song, Y.; Lu, Y.P.; Hu, Y.; Liu, P.; Zhang, L. Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signaling pathway. J. Nat. Med., 2019, 73(4), 777-788.
[http://dx.doi.org/10.1007/s11418-019-01330-7] [PMID: 31243669]
[19]
Qin, T.T.; Li, Z.H.; Li, L.X.; Du, K.; Yang, J.G.; Zhang, Z.Q.; Wu, X.X.; Ma, J.L. Sanguinarine, identified as a natural alkaloid LSD1 inhibitor, suppresses lung cancer cell growth and migration. Iran. J. Basic Med. Sci., 2022, 25(6), 781-788.
[PMID: 35949313]
[20]
Ding, Q.; Zhu, W.; Zhu, S.; Zhou, X. Sanguinarine promotes apoptosis of hepatocellular carcinoma cells via regulating the miR-497-5p/CDK4 axis. Am. J. Transl. Res., 2022, 14(12), 8539-8551.
[PMID: 36628219]
[21]
Yu, G.; Wang, L.; Li, Y.; Ma, Z.; Li, Y. Identification of drug candidate for osteoporosis by computational bioinformatics analysis of gene expression profile. Eur. J. Med. Res., 2013, 18(1), 5.
[http://dx.doi.org/10.1186/2047-783X-18-5] [PMID: 23448234]
[22]
Ma, Y.; Chu, J.; Ma, J.; Ning, L.; Zhou, K.; Fang, X. Sanguinarine protects against ovariectomy-induced osteoporosis in mice. Mol. Med. Rep., 2017, 16(1), 288-294.
[http://dx.doi.org/10.3892/mmr.2017.6574] [PMID: 28498448]
[23]
Zhang, F.; Xie, J.; Wang, G.; Zhang, G.; Yang, H. Anti‐osteoporosis activity of Sanguinarine in preosteoblast MC3T3‐E1 cells and an ovariectomized rat model. J. Cell. Physiol., 2018, 233(6), 4626-4633.
[http://dx.doi.org/10.1002/jcp.26187] [PMID: 28926099]
[24]
Li, S.J.W.J.o.T.C.M. Network pharmacology evaluation method guidance-draft. World J. Tradit. Chin. Med., 2021, 7(1), 146-154.
[http://dx.doi.org/10.4103/wjtcm.wjtcm_11_21]
[25]
Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform., 2023, 25(1), bbad518.
[http://dx.doi.org/10.1093/bib/bbad518] [PMID: 38197310]
[26]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[27]
Yan, D.; Zheng, G.; Wang, C.; Chen, Z.; Mao, T.; Gao, J.; Yan, Y.; Chen, X.; Ji, X.; Yu, J.; Mo, S.; Wen, H.; Han, W.; Zhou, M.; Wang, Y.; Wang, J.; Tang, K.; Cao, Z. HIT 2.0: An enhanced platform for herbal ingredients’ targets. Nucleic Acids Res., 2022, 50(D1), D1238-D1243.
[http://dx.doi.org/10.1093/nar/gkab1011] [PMID: 34986599]
[28]
Daina, A.; Michielin, O.; Zoete, V. Swisstargetprediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[29]
Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.O. SuperPred 3.0: Drug classification and target prediction—a machine learning approach. Nucleic Acids Res., 2022, 50(W1), W726-W731.
[http://dx.doi.org/10.1093/nar/gkac297] [PMID: 35524552]
[30]
Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res., 2021, 49(D1), D1138-D1143.
[http://dx.doi.org/10.1093/nar/gkaa891] [PMID: 33068428]
[31]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards version 3: The human gene integrator. Database : J. Biol. Databases Curation., 2010, 2010, baq020.
[32]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[33]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[34]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[35]
Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 2011, 12(1), 35.
[http://dx.doi.org/10.1186/1471-2105-12-35] [PMID: 21269502]
[36]
Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[37]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[38]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[39]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape stringapp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[40]
Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Burley, S.K. RCSB protein data bank: Enabling biomedical research and drug discovery. Protein Sci., 2020, 29(1), 52-65.
[http://dx.doi.org/10.1002/pro.3730] [PMID: 31531901]
[41]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[42]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[43]
Feng, C.; Zhao, M.; Jiang, L.; Hu, Z.; Fan, X.; Jiang, J. Mechanism of modified danggui sini decoction for knee osteoarthritis based on network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6680637] [PMID: 33628311]
[44]
Huang, K.; Fu, T.; Glass, L.M.; Zitnik, M.; Xiao, C.; Sun, J. DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics, 2021, 36(22-23), 5545-5547.
[http://dx.doi.org/10.1093/bioinformatics/btaa1005] [PMID: 33275143]
[45]
Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Batista Neto, T.M.; Blatter, M.C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 2023, 51(D1), D523-D531.
[http://dx.doi.org/10.1093/nar/gkac1052] [PMID: 36408920]
[46]
Gai, J.; Xing, J.; Wang, Y.; Lei, J.; Zhang, C.; Zhang, J.; Tang, J. Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking. Medicine, 2022, 101(46), e31787.
[http://dx.doi.org/10.1097/MD.0000000000031787] [PMID: 36401485]
[47]
DAI, G.-M; Ren, L.; Chen, H.; Liu, W.; Chen, Y.; HE, X.-Q; Liu, W.; TU, X.-L.; Huang, W.J.B; Medicine, C. Down-regulation of osteocytic TGF-β/Smad4 inhibits the osteoblastic and osteoclastic differentiation in mouse BMSCs. Basic Clin. Med., 2017, 37(6), 786-791.
[48]
Xu, Z.S.; Wang, X.Y.; Xiao, D.M.; Hu, L.F.; Lu, M.; Wu, Z.Y.; Bian, J.S. Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage—implications for the treatment of osteoporosis. Free Radic. Biol. Med., 2011, 50(10), 1314-1323.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.016] [PMID: 21354302]
[49]
Li, H.; Zhai, Z.; Liu, G.; Tang, T.; Lin, Z.; Zheng, M.; Qin, A.; Dai, K. Sanguinarine inhibits osteoclast formation and bone resorption via suppressing RANKL-induced activation of NF-κB and ERK signaling pathways. Biochem. Biophys. Res. Commun., 2013, 430(3), 951-956.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.051] [PMID: 23261473]
[50]
Jiang, J.; Li, S.; Shan, X.; Wang, L.; Ma, J.; Huang, M.; Dong, L.; Chen, F. Preclinical safety profile of disitamab vedotin:a novel anti-HER2 antibody conjugated with MMAE. Toxicol. Lett., 2020, 324, 30-37.
[http://dx.doi.org/10.1016/j.toxlet.2019.12.027] [PMID: 31877330]
[51]
Fisher, M.C.; Clinton, G.M.; Maihle, N.J.; Dealy, C.N. Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev. Growth Differ., 2007, 49(6), 503-513.
[http://dx.doi.org/10.1111/j.1440-169X.2007.00941.x] [PMID: 17555517]
[52]
Wang, C.G.; Hu, Y.H.; Su, S.L.; Zhong, D. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp. Mol. Med., 2020, 52(8), 1310-1325.
[http://dx.doi.org/10.1038/s12276-020-0475-0] [PMID: 32778797]
[53]
Xiong, Y.; Zhang, Y.; Zhou, F.; Liu, Y.; Yi, Z.; Gong, P.; Wu, Y. FOXO1 differentially regulates bone formation in young and aged mice. Cell. Signal., 2022, 99, 110438.
[http://dx.doi.org/10.1016/j.cellsig.2022.110438] [PMID: 35981656]
[54]
Wang, Y.; Lu, L.; Niu, Y.; Zhang, Q.; Cheng, C.; Huang, H.; Huang, X.; Huang, Q. The osteoporosis risk variant rs9820407 at 3p22.1 acts as an allele-specific enhancer to regulate CTNNB1 expression by long-range chromatin loop formation. Bone, 2021, 153, 116165.
[http://dx.doi.org/10.1016/j.bone.2021.116165] [PMID: 34461284]
[55]
Liang, G.; Zhao, J.; Pan, J.; Yang, Y.; Dou, Y.; Yang, W.; Zeng, L.; Liu, J. Network pharmacology identifies fisetin as a treatment for osteoporosis that activates the Wnt/β-catenin signaling pathway in BMSCs. J. Orthop. Surg. Res., 2023, 18(1), 312.
[http://dx.doi.org/10.1186/s13018-023-03761-1] [PMID: 37087476]
[56]
Urano, T.; Inoue, S. Recent genetic discoveries in osteoporosis, sarcopenia and obesity [Review]. Endocr. J., 2015, 62(6), 475-484.
[http://dx.doi.org/10.1507/endocrj.EJ15-0154] [PMID: 25866211]
[57]
Zhang, Y.; Wang, N.; Ma, J.; Chen, X.C.; Li, Z.; Zhao, W. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(3), 433-440.
[PMID: 26914116]
[58]
Hasan, L.K.; Aljabban, J.; Rohr, M.; Mukhtar, M.; Adapa, N.; Salim, R.; Aljabban, N.; Syed, S.; Syed, S.; Panahiazar, M.; Hadley, D.; Jarjour, W. Metaanalysis reveals genetic correlates of osteoporosis pathogenesis. J. Rheumatol., 2021, 48(6), 940-945.
[http://dx.doi.org/10.3899/jrheum.200951] [PMID: 33262303]
[59]
Lee, A.M.C.; Bowen, J.M.; Su, Y.W.; Plews, E.; Chung, R.; Keefe, D.M.K.; Xian, C.J. Individual or combination treatments with lapatinib and paclitaxel cause potential bone loss and bone marrow adiposity in rats. J. Cell. Biochem., 2019, 120(3), 4180-4191.
[http://dx.doi.org/10.1002/jcb.27705] [PMID: 30260048]
[60]
Eckhart, L.; Ballaun, C.; Uthman, A.; Kittel, C.; Stichenwirth, M.; Buchberger, M.; Fischer, H.; Sipos, W.; Tschachler, E. Identification and characterization of a novel mammalian caspase with proapoptotic activity. J. Biol. Chem., 2005, 280(42), 35077-35080.
[http://dx.doi.org/10.1074/jbc.C500282200] [PMID: 16120609]
[61]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656-a008656.
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[62]
Xu, J.; Ji, L.D.; Xu, L.H. Lead-induced apoptosis in PC 12 cells: Involvement of p53, Bcl-2 family and caspase-3. Toxicol. Lett., 2006, 166(2), 160-167.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.643] [PMID: 16887300]
[63]
Zhu, Y.; Tchkonia, T.; Fuhrmann-Stroissnigg, H.; Dai, H.M.; Ling, Y.Y.; Stout, M.B.; Pirtskhalava, T.; Giorgadze, N.; Johnson, K.O.; Giles, C.B.; Wren, J.D.; Niedernhofer, L.J.; Robbins, P.D.; Kirkland, J.L. Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 2016, 15(3), 428-435.
[http://dx.doi.org/10.1111/acel.12445] [PMID: 26711051]
[64]
Srivastava, N.; Saxena, A.K. Caspase-3 activators as anticancer agents. Curr. Protein Pept. Sci., 2023, 24(10), 783-804.
[http://dx.doi.org/10.2174/1389203724666230227115305] [PMID: 36843371]
[65]
Weerasinghe, P.; Hallock, S.; Tang, S.C.; Liepins, A. Role of Bcl-2 family proteins and caspase-3 in sanguinarine-induced bimodal cell death. Cell Biol. Toxicol., 2001, 17(6), 371-381.
[http://dx.doi.org/10.1023/A:1013796432521] [PMID: 11787859]
[66]
Choi, W.Y.; Jin, C.Y.; Han, M.H.; Kim, G.Y.; Kim, N.D.; Lee, W.H.; Kim, S.K.; Choi, Y.H. Sanguinarine sensitizes human gastric adenocarcinoma AGS cells to TRAIL-mediated apoptosis via down-regulation of AKT and activation of caspase-3. Anticancer Res., 2009, 29(11), 4457-4465.
[PMID: 20032392]
[67]
Aibara, D.; Takahashi, S.; Yagai, T.; Kim, D.; Brocker, C.N.; Levi, M.; Matsusue, K.; Gonzalez, F.J. Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. iScience, 2022, 25(5), 104196.
[http://dx.doi.org/10.1016/j.isci.2022.104196] [PMID: 35479397]
[68]
Akhtar, S.; Achkar, I.W.; Siveen, K.S.; Kuttikrishnan, S.; Prabhu, K.S.; Khan, A.Q.; Ahmed, E.I.; Sahir, F.; Jerobin, J.; Raza, A.; Merhi, M.; Elsabah, H.M.; Taha, R.; Omri, H.E.; Zayed, H.; Dermime, S.; Steinhoff, M.; Uddin, S. Sanguinarine induces apoptosis pathway in multiple myeloma cell lines via inhibition of the JaK2/STAT3 signaling. Front. Oncol., 2019, 9, 285.
[http://dx.doi.org/10.3389/fonc.2019.00285] [PMID: 31058086]
[69]
Liu, H.; Wang, Y.W.; Chen, W.D.; Dong, H.H.; Xu, Y.J. Iron accumulation regulates osteoblast apoptosis through LNCRNA XIST / MIR ‐758‐3p/caspase 3 axis leading to osteoporosis. IUBMB Life, 2021, 73(2), 432-443.
[http://dx.doi.org/10.1002/iub.2440] [PMID: 33336851]
[70]
Gao, Y.; Chen, N.; Fu, Z.; Zhang, Q. Progress of Wnt signaling pathway in osteoporosis. Biomolecules, 2023, 13(3), 483.
[http://dx.doi.org/10.3390/biom13030483] [PMID: 36979418]
[71]
Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; Zerbini, C.A.F.; Milmont, C.E.; Chen, L.; Maddox, J.; Meisner, P.D.; Libanati, C.; Grauer, A. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med., 2016, 375(16), 1532-1543.
[http://dx.doi.org/10.1056/NEJMoa1607948] [PMID: 27641143]
[72]
Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther., 2022, 7(1), 3.
[http://dx.doi.org/10.1038/s41392-021-00762-6] [PMID: 34980884]
[73]
Rong, X.; Kou, Y.; Zhang, Y.; Yang, P.; Tang, R.; Liu, H.; Li, M. ED-71 prevents glucocorticoid-induced osteoporosis by regulating osteoblast differentiation via notch and Wnt/β-catenin pathways. Drug Des. Devel. Ther., 2022, 16, 3929-3946.
[http://dx.doi.org/10.2147/DDDT.S377001] [PMID: 36411860]
[74]
Wu, Z.; Zhu, J.; Wen, Y.; Lei, P.; Xie, J.; Shi, H.; Wu, R.; Lou, X.; Hu, Y. Hmga1‐overexpressing lentivirus protects against osteoporosis by activating the Wnt/β‐catenin pathway in the osteogenic differentiation of BMSCS. FASEB J., 2023, 37(9), e22987.
[http://dx.doi.org/10.1096/fj.202300488R] [PMID: 37555233]
[75]
Yang, Z.; Liu, J.; Fu, J.; Li, S.; Chai, Z.; Sun, Y. Associations between WNT signaling pathway-related gene polymorphisms and risks of osteoporosis development in Chinese postmenopausal women: A case–control study. Climacteric : The journal of the International Menopause Society, 2021, 25(3), 257-263.
[76]
De, A. Wnt/Ca<sup>2+</sup> signaling pathway: A brief overview. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(10), 745-756.
[http://dx.doi.org/10.1093/abbs/gmr079] [PMID: 21903638]
[77]
Huelsken, J.; Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev., 2001, 11(5), 547-553.
[http://dx.doi.org/10.1016/S0959-437X(00)00231-8] [PMID: 11532397]
[78]
Kuncewitch, M.; Yang, W.L.; Jacob, A.; Khader, A.; Giangola, M.; Nicastro, J.; Coppa, G.F.; Wang, P. Stimulation of Wnt/β-catenin signaling pathway with Wnt agonist reduces organ injury after hemorrhagic shock. J. Trauma Acute Care Surg., 2015, 78(4), 793-800.
[http://dx.doi.org/10.1097/TA.0000000000000566] [PMID: 25742253]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy