Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Construction of an Oxidative Stress Risk Model to Analyze the Correlation Between Liver Cancer and Tumor Immunity

In Press, (this is not the final "Version of Record"). Available online 19 February, 2024
Author(s): Ying Liu, Yufeng Li, Li Chen, Weina Zha, Jing Zhang, Kun Wang, Chunhai Hao and Jianhe Gan*
Published on: 19 February, 2024

DOI: 10.2174/0115680096284532231220061048

Abstract

Background: Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally. Despite advancements in immunotherapy, the prognosis for patients with HCC continues to be poor. As oxidative stress plays a significant role in the onset and progression of various diseases, including metabolism-related HCC, comprehending its mechanism in HCC is critical for effective diagnosis and treatment.

Methods: This study utilized the TCGA dataset and a collection of oxidative stress genes to determine the expression of oxidative stress-related genes in HCC and their association with overall survival using diverse bioinformatics methods. A novel prognostic risk model was developed, and the TCGA cohort was divided into high-risk and low-risk groups based on each tumor sample's risk score. Levels of immune cell infiltration and the expression of immune checkpoint-related genes in different risk subgroups were analyzed to investigate the potential link between tumor immunity and oxidative stress-related features. The expression of model genes in actual samples was validated through immunohistochemistry, and their mRNA and protein expression levels were measured in cell cultures.

Results: Four oxidative stress-related genes (EZH2, ANKZF1, G6PD, and HMOX1) were identified and utilized to create a predictive risk model for HCC patient overall survival, which was subsequently validated in an independent cohort. A significant correlation was found between the expression of these prognostic genes and the infiltration of tumor immune cells. Elevated expression of EZH2, ANKZF1, G6PD, and HMOX1 was observed in both HCC tissues and cell lines.

Conclusion: The combined assessment of EZH2, ANKZF1, G6PD, and HMOX1 gene expression can serve as a model to evaluate the risk of oxidative stress in HCC. Furthermore, there is a notable correlation between the expression of these risk model genes and tumor immunity.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology, 2021, 73(S1)(Suppl. 1), 4-13.
[http://dx.doi.org/10.1002/hep.31288] [PMID: 32319693]
[3]
Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2021, 7(1), 6.
[http://dx.doi.org/10.1038/s41572-020-00240-3] [PMID: 33479224]
[4]
Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol., 2020, 18(12), 2650-2666.
[http://dx.doi.org/10.1016/j.cgh.2019.07.060] [PMID: 31401364]
[5]
Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 215-229.
[http://dx.doi.org/10.1016/j.jhep.2019.08.017] [PMID: 31954487]
[6]
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[7]
Filomeni, G.; De Zio, D.; Cecconi, F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ., 2015, 22(3), 377-388.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[8]
Liu, Y.; Hao, C.; Li, L.; Zhang, H.; Zha, W.; Ma, L.; Chen, L.; Gan, J. The role of oxidative stress in the development and therapeutic intervention of hepatocellular carcinoma. Curr. Cancer Drug Targets, 2023, 23(10), 792-804.
[http://dx.doi.org/10.2174/1568009623666230418121130] [PMID: 37073651]
[9]
Cheng, Y.T.; Yang, C.C.; Shyur, L.F. Phytomedicine-modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol. Res., 2016, 114, 128-143.
[http://dx.doi.org/10.1016/j.phrs.2016.10.022] [PMID: 27794498]
[10]
Sher, N.M.; Nazli, R.; Zafar, H.; Fatima, S. Effects of lipid based Multiple Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical trial. Pak. J. Med. Sci., 2021, 38(1), 219-226.
[http://dx.doi.org/10.12669/pjms.38.1.4396] [PMID: 35035429]
[11]
Amin, A.; Lotfy, M.; Mahmoud-Ghoneim, D.; Adeghate, E.; Al-Akhras, M.A.; Al-Saadi, M.; Al-Rahmoun, S.; Hameed, R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: Insights into the mechanism. J. Diabetes Mellitus, 2011, 1(3), 36-45.
[http://dx.doi.org/10.4236/jdm.2011.13006]
[12]
Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; Li, X. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv., 2021, 28(1), 2187-2197.
[http://dx.doi.org/10.1080/10717544.2021.1977422] [PMID: 34662244]
[13]
Bouabdallah, S.; Al-Maktoum, A.; Amin, A. Steroidal Saponins: Naturally occurring compounds as inhibitors of the hallmarks of cancer. Cancers, 2023, 15(15), 3900.
[http://dx.doi.org/10.3390/cancers15153900] [PMID: 37568716]
[14]
Narayanankutty, A.; Nambiattil, S.; Mannarakkal, S. Phytochemicals and nanoparticles in the modulation of PI3K/Akt/mTOR kinases and its implications in the development and progression of gastrointestinal cancers: A review of preclinical and clinical evidence. Recent Patents Anticancer Drug Discov., 2023, 18(3), 307-324.
[http://dx.doi.org/10.2174/1574892817666220606104712] [PMID: 35670354]
[15]
Lozon, L.; Saleh, E.; Menon, V.; Ramadan, W.S.; Amin, A.; El-Awady, R. Effect of safranal on the response of cancer cells to topoisomerase I inhibitors: Does sequence matter? Front. Pharmacol., 2022, 13, 938471.
[http://dx.doi.org/10.3389/fphar.2022.938471] [PMID: 36120345]
[16]
Castro, L.; Freeman, B.A. Reactive oxygen species in human health and disease. Nutrition, 2001, 17(2), 161-165, 163-165.
[http://dx.doi.org/10.1016/S0899-9007(00)00570-0] [PMID: 11240347]
[17]
Jaganjac, M.; Milkovic, L.; Zarkovic, N.; Zarkovic, K. Oxidative stress and regeneration. Free Radic. Biol. Med., 2022, 181, 154-165.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.004] [PMID: 35149216]
[18]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 2019, 11(9), 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[19]
van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail., 2019, 21(4), 425-435.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[20]
Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 271-281.
[http://dx.doi.org/10.1007/s12264-013-1423-y] [PMID: 24664866]
[21]
Kimball, J.S.; Johnson, J.P.; Carlson, D.A. Oxidative stress and osteoporosis. J. Bone Joint Surg. Am., 2021, 103(15), 1451-1461.
[http://dx.doi.org/10.2106/JBJS.20.00989] [PMID: 34014853]
[22]
Vitale, G.; Salvioli, S.; Franceschi, C. Oxidative stress and the ageing endocrine system. Nat. Rev. Endocrinol., 2013, 9(4), 228-240.
[http://dx.doi.org/10.1038/nrendo.2013.29] [PMID: 23438835]
[23]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[24]
Luo, Y.; Ma, J.; Lu, W. The significance of mitochondrial dysfunction in cancer. Int. J. Mol. Sci., 2020, 21(16), 5598.
[http://dx.doi.org/10.3390/ijms21165598] [PMID: 32764295]
[25]
Zeng, W.; Long, X.; Liu, P.S.; Xie, X. The interplay of oncogenic signaling, oxidative stress and ferroptosis in cancer. Int. J. Cancer, 2023, 153(5), 918-931.
[http://dx.doi.org/10.1002/ijc.34486] [PMID: 36843262]
[26]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[27]
Othman, E.M.; Habib, H.A.; Zahran, M.E.; Amin, A.; Heeba, G.H. Mechanistic protective effect of Cilostazol in Cisplatin-induced testicular damage via regulation of oxidative stress and TNF-α/NF-κB/Caspase-3 pathways. Int. J. Mol. Sci., 2023, 24(16), 12651.
[http://dx.doi.org/10.3390/ijms241612651] [PMID: 37628836]
[28]
Hamza, A.A.; Heeba, G.H.; Hassanin, S.O.; Elwy, H.M.; Bekhit, A.A.; Amin, A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed. Pharmacother., 2023, 165, 115148.
[http://dx.doi.org/10.1016/j.biopha.2023.115148] [PMID: 37450997]
[29]
Murali, C.; Mudgil, P.; Gan, C.Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep., 2021, 11(1), 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[30]
Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 2013, 12(12), 931-947.
[http://dx.doi.org/10.1038/nrd4002] [PMID: 24287781]
[31]
Mormone, E.; George, J.; Nieto, N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact., 2011, 193(3), 225-231.
[http://dx.doi.org/10.1016/j.cbi.2011.07.001] [PMID: 21803030]
[32]
Nelson, D.R.; Hrout, A.A.; Alzahmi, A.S.; Chaiboonchoe, A.; Amin, A.; Salehi-Ashtiani, K. Molecular mechanisms behind Safranal’s Toxicity to HepG2 cells from dual omics. Antioxidants, 2022, 11(6), 1125.
[http://dx.doi.org/10.3390/antiox11061125] [PMID: 35740022]
[33]
Abdel-latif, R.; Heeba, G.H.; Hassanin, S.O.; Waz, S.; Amin, A. TLRs-JNK/ NF-κB pathway underlies the protective effect of the sulfide salt against liver toxicity. Front. Pharmacol., 2022, 13, 850066.
[http://dx.doi.org/10.3389/fphar.2022.850066] [PMID: 35517830]
[34]
Abdu, S.; Juaid, N.; Amin, A. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches. , 2022.
[http://dx.doi.org/10.3390/molecules27228082]
[35]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[36]
Awad, B.; Hamza, A.A.; Al-Maktoum, A.; Al-Salam, S.; Amin, A. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma. Cancers, 2023, 15(16), 4063.
[http://dx.doi.org/10.3390/cancers15164063] [PMID: 37627094]
[37]
Abdu, S.; Juaid, N.; Amin, A.; Moulay, M.; Miled, N. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In vivo & in vitro insights. Antioxidants, 2022, 11(9), 1645.
[http://dx.doi.org/10.3390/antiox11091645] [PMID: 36139719]
[38]
Gabbia, D.; Cannella, L.; De Martin, S. The role of oxidative stress in NAFLD–NASH–HCC transition-focus on NADPH oxidases. Biomedicines, 2021, 9(6), 687.
[http://dx.doi.org/10.3390/biomedicines9060687] [PMID: 34204571]
[39]
Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid. Med. Cell. Longev., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/7891574] [PMID: 27957239]
[40]
Wu, J.; Li, L.; Zhang, H.; Zhao, Y.; Zhang, H.; Wu, S.; Xu, B. A risk model developed based on tumor microenvironment predicts overall survival and associates with tumor immunity of patients with lung adenocarcinoma. Oncogene, 2021, 40(26), 4413-4424.
[http://dx.doi.org/10.1038/s41388-021-01853-y] [PMID: 34108619]
[41]
Xu, D.; Wang, Y.; Wu, J.; Lin, S.; Chen, Y.; Zheng, J. Identification and clinical validation of EMT-associated prognostic features based on hepatocellular carcinoma. Cancer Cell Int., 2021, 21(1), 621.
[http://dx.doi.org/10.1186/s12935-021-02326-8] [PMID: 34819088]
[42]
Zhou, X.; Shang, Y.N.; Lu, R.; Fan, C.W.; Mo, X.M. High ANKZF1 expression is associated with poor overall survival and recurrence-free survival in colon cancer. Future Oncol., 2019, 15(18), 2093-2106.
[http://dx.doi.org/10.2217/fon-2018-0920] [PMID: 31257922]
[43]
Sajadi, M.; Fazilti, M.; Nazem, H.; Mahdevar, M.; Ghaedi, K. The expression changes of transcription factors including ANKZF1, LEF1, CASZ1, and ATOH1 as a predictor of survival rate in colorectal cancer: A large-scale analysis. Cancer Cell Int., 2022, 22(1), 339.
[http://dx.doi.org/10.1186/s12935-022-02751-3] [PMID: 36344988]
[44]
Liu, Z.; Liu, Z.; Zhou, X.; Lu, Y.; Yao, Y.; Wang, W.; Lu, S.; Wang, B.; Li, F.; Fu, W. A glycolysis-related two-gene risk model that can effectively predict the prognosis of patients with rectal cancer. Hum. Genomics, 2022, 16(1), 5.
[http://dx.doi.org/10.1186/s40246-022-00377-0] [PMID: 35109912]
[45]
Chen, S.; Cao, G.; Wu, W.; Lu, Y.; He, X.; Yang, L.; Chen, K.; Chen, B.; Xiong, M. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci. Rep., 2020, 40(8), BSR20201427.
[http://dx.doi.org/10.1042/BSR20201427] [PMID: 32744303]
[46]
Kong, J.; Yu, G.; Si, W.; Li, G.; Chai, J.; Liu, Y.; Liu, J. Identification of a glycolysis-related gene signature for predicting prognosis in patients with hepatocellular carcinoma. BMC Cancer, 2022, 22(1), 142.
[http://dx.doi.org/10.1186/s12885-022-09209-9] [PMID: 35123420]
[47]
Xiao, G.; Jin, L.L.; Liu, C.Q.; Wang, Y.C.; Meng, Y.M.; Zhou, Z.G.; Chen, J.; Yu, X.J.; Zhang, Y.J.; Xu, J.; Zheng, L. EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. J. Immunother. Cancer, 2019, 7(1), 300.
[http://dx.doi.org/10.1186/s40425-019-0784-9] [PMID: 31727135]
[48]
Zhang, L.; Li, H.T.; Shereda, R.; Lu, Q.; Weisenberger, D.J.; O’Connell, C.; Machida, K.; An, W.; Lenz, H.J.; El-Khoueiry, A.; Jones, P.A.; Liu, M.; Liang, G. DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Lett., 2022, 548, 215899.
[http://dx.doi.org/10.1016/j.canlet.2022.215899] [PMID: 36087682]
[49]
Wang, B.; Liu, Y.; Liao, Z.; Wu, H.; Zhang, B.; Zhang, L. EZH2 in hepatocellular carcinoma: Progression, immunity, and potential targeting therapies. Exp. Hematol. Oncol., 2023, 12(1), 52.
[http://dx.doi.org/10.1186/s40164-023-00405-2] [PMID: 37268997]
[50]
Guo, B.; Tan, X.; Cen, H. EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. PLoS One, 2020, 15(11), e0242191.
[http://dx.doi.org/10.1371/journal.pone.0242191] [PMID: 33180829]
[51]
Bugide, S.; Green, M.R.; Wajapeyee, N. Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3509-E3518.
[http://dx.doi.org/10.1073/pnas.1802691115] [PMID: 29581297]
[52]
Bachmann, I.M.; Halvorsen, O.J.; Collett, K.; Stefansson, I.M.; Straume, O.; Haukaas, S.A.; Salvesen, H.B.; Otte, A.P.; Akslen, L.A. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol., 2006, 24(2), 268-273.
[http://dx.doi.org/10.1200/JCO.2005.01.5180] [PMID: 16330673]
[53]
Gan, L.; Xu, M.; Hua, R.; Tan, C.; Zhang, J.; Gong, Y.; Wu, Z.; Weng, W.; Sheng, W.; Guo, W. The polycomb group protein EZH2 induces epithelial–mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J. Hematol. Oncol., 2018, 11(1), 9.
[http://dx.doi.org/10.1186/s13045-017-0547-3] [PMID: 29335012]
[54]
Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol., 2020, 13(1), 104.
[http://dx.doi.org/10.1186/s13045-020-00937-8] [PMID: 32723346]
[55]
Rao, X.; Duan, X.; Mao, W.; Li, X.; Li, Z.; Li, Q.; Zheng, Z.; Xu, H.; Chen, M.; Wang, P.G.; Wang, Y.; Shen, B.; Yi, W. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat. Commun., 2015, 6(1), 8468.
[http://dx.doi.org/10.1038/ncomms9468] [PMID: 26399441]
[56]
Liu, B.; Fu, X.; Du, Y.; Feng, Z.; Chen, R.; Liu, X.; Yu, F.; Zhou, G.; Ba, Y. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis, 2023, 44(6), 525-534.
[http://dx.doi.org/10.1093/carcin/bgad043] [PMID: 37335542]
[57]
Deng, P.; Li, K.; Gu, F.; Zhang, T.; Zhao, W.; Sun, M.; Hou, B. LINC00242/miR-1-3p/G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis. Mol. Med., 2021, 27(1), 9.
[http://dx.doi.org/10.1186/s10020-020-00259-y] [PMID: 33514309]
[58]
Meng, Q.; Zhang, Y.; Hao, S.; Sun, H.; Liu, B.; Zhou, H.; Wang, Y.; Xu, Z.X. Recent findings in the regulation of G6PD and its role in diseases. Front. Pharmacol., 2022, 13, 932154.
[http://dx.doi.org/10.3389/fphar.2022.932154] [PMID: 36091812]
[59]
Yang, H.C.; Stern, A.; Chiu, D.T.Y. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed. J., 2021, 44(3), 285-292.
[http://dx.doi.org/10.1016/j.bj.2020.08.001] [PMID: 33097441]
[60]
Zhang, Y.; Xu, Y.; Lu, W.; Li, J.; Yu, S.; Brown, E.J.; Stanger, B.Z.; Rabinowitz, J.D.; Yang, X. G6PD-mediated increase in de novo NADP + biosynthesis promotes antioxidant defense and tumor metastasis. Sci. Adv., 2022, 8(29), eabo0404.
[http://dx.doi.org/10.1126/sciadv.abo0404] [PMID: 35857842]
[61]
Lu, M.; Lu, L.; Dong, Q.; Yu, G.; Chen, J.; Qin, L.; Wang, L.; Zhu, W.; Jia, H. Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim. Biophys. Sin., 2018, 50(4), 370-380.
[http://dx.doi.org/10.1093/abbs/gmy009] [PMID: 29471502]
[62]
Du, D.; Liu, C.; Qin, M.; Zhang, X.; Xi, T.; Yuan, S.; Hao, H.; Xiong, J. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B, 2022, 12(2), 558-580.
[http://dx.doi.org/10.1016/j.apsb.2021.09.019] [PMID: 35256934]
[63]
Cao, F.; Luo, A.; Yang, C. G6PD inhibits ferroptosis in hepatocellular carcinoma by targeting cytochrome P450 oxidoreductase. Cell. Signal., 2021, 87, 110098.
[http://dx.doi.org/10.1016/j.cellsig.2021.110098] [PMID: 34325001]
[64]
Zhang, X.; Gao, F.; Ai, H.; Wang, S.; Song, Z.; Zheng, L.; Wang, G.; Sun, Y.; Bao, Y. TSP50 promotes hepatocyte proliferation and tumour formation by activating glucose-6-phosphate dehydrogenase (G6PD). Cell Prolif., 2021, 54(4), e13015.
[http://dx.doi.org/10.1111/cpr.13015] [PMID: 33630390]
[65]
Jiang, H.Y.; Ning, G.; Wang, Y.S.; Lv, W.B. Ahypoxia-related signature enhances the prediction of the prognosis in hepatocellular carcinoma patients and correlates with sorafenib treatment response. Am. J. Transl. Res., 2020, 12(12), 7762-7781.
[PMID: 33437359]
[66]
Chiang, S.K.; Chen, S.E.; Chang, L.C. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells, 2021, 10(9), 2401.
[http://dx.doi.org/10.3390/cells10092401] [PMID: 34572050]
[67]
Consonni, F.M.; Bleve, A.; Totaro, M.G.; Storto, M.; Kunderfranco, P.; Termanini, A.; Pasqualini, F.; Alì, C.; Pandolfo, C.; Sgambelluri, F.; Grazia, G.; Santinami, M.; Maurichi, A.; Milione, M.; Erreni, M.; Doni, A.; Fabbri, M.; Gribaldo, L.; Rulli, E.; Soares, M.P.; Torri, V.; Mortarini, R.; Anichini, A.; Sica, A. Heme catabolism by tumor-associated macrophages controls metastasis formation. Nat. Immunol., 2021, 22(5), 595-606.
[http://dx.doi.org/10.1038/s41590-021-00921-5] [PMID: 33903766]
[68]
Lin, H.; Chen, X.; Zhang, C.; Yang, T.; Deng, Z.; Song, Y.; Huang, L.; Li, F.; Li, Q.; Lin, S.; Jin, D. EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed. Pharmacother., 2021, 136, 111202.
[http://dx.doi.org/10.1016/j.biopha.2020.111202] [PMID: 33453607]
[69]
Chang, L.C.; Chiang, S.K.; Chen, S.E.; Yu, Y.L.; Chou, R.H.; Chang, W.C. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett., 2018, 416, 124-137.
[http://dx.doi.org/10.1016/j.canlet.2017.12.025] [PMID: 29274359]
[70]
Sung, P.S. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin. Mol. Hepatol., 2022, 28(3), 333-350.
[http://dx.doi.org/10.3350/cmh.2021.0308] [PMID: 34665953]
[71]
Huang, H.; Jiang, J.; Chen, R.; Lin, Y.; Chen, H.; Ling, Q. The role of macrophage TAM receptor family in the acute-to-chronic progression of liver disease: From friend to foe? Liver Int., 2022, 42(12), 2620-2631.
[http://dx.doi.org/10.1111/liv.15380] [PMID: 35900248]
[72]
Hedrich, V.; Breitenecker, K.; Djerlek, L.; Ortmayr, G.; Mikulits, W. Intrinsic and extrinsic control of hepatocellular carcinoma by TAM receptors. Cancers, 2021, 13(21), 5448.
[http://dx.doi.org/10.3390/cancers13215448] [PMID: 34771611]
[73]
Cinier, J.; Hubert, M.; Besson, L.; Di Roio, A.; Rodriguez, C.; Lombardi, V.; Caux, C.; Ménétrier-Caux, C. Recruitment and expansion of tregs cells in the tumor environment-how to target them? Cancers, 2021, 13(8), 1850.
[http://dx.doi.org/10.3390/cancers13081850] [PMID: 33924428]
[74]
Huang, Y.; Jia, A.; Wang, Y.; Liu, G. CD8+ T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology, 2023, 168(1), 30-48.
[http://dx.doi.org/10.1111/imm.13588] [PMID: 36190809]
[75]
Zander, R.; Schauder, D.; Xin, G.; Nguyen, C.; Wu, X.; Zajac, A.; Cui, W. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity, 2019, 51(6), 1028-1042.e4.
[http://dx.doi.org/10.1016/j.immuni.2019.10.009] [PMID: 31810883]
[76]
Zheng, Y.; Wang, X.; Huang, M. Metabolic regulation of CD8+T cells: From mechanism to therapy. Antioxid. Redox Signal., 2022, 37(16-18), 1234-1253.
[http://dx.doi.org/10.1089/ars.2022.0040] [PMID: 35345890]
[77]
Xia, M.; Wang, B.; Wang, Z.; Zhang, X.; Wang, X. Epigenetic regulation of NK cell-mediated antitumor immunity. Front. Immunol., 2021, 12, 672328.
[http://dx.doi.org/10.3389/fimmu.2021.672328] [PMID: 34017344]
[78]
Yan, S.; Zhang, Y.; Sun, B. The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy. Sci. China Life Sci., 2019, 62(2), 179-186.
[http://dx.doi.org/10.1007/s11427-018-9428-9] [PMID: 30610537]

© 2025 Bentham Science Publishers | Privacy Policy