Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Protective Effects of Curcumin against Renal Toxicity

Author(s): Jianan Zhai, Zhengguo Chen, Qi Zhu, Zhifang Guo, Ningning Wang, Cong Zhang, Haoyuan Deng, Shaopeng Wang* and Guang Yang*

Volume 31, Issue 35, 2024

Published on: 16 February, 2024

Page: [5661 - 5669] Pages: 9

DOI: 10.2174/0109298673271161231121061148

Price: $65

Abstract

Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.

Next »
[1]
Yaribeygi, H.; Maleki, M.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Renoprotective roles of curcumin. Adv. Exp. Med. Biol., 2021, 1328, 531-544.
[http://dx.doi.org/10.1007/978-3-030-73234-9_38] [PMID: 34981504]
[2]
Rahman, M.A.; Akter, S.; Dorotea, D.; Mazumder, A.; Uddin, M.N.; Hannan, M.A.; Hossen, M.J.; Ahmed, M.S.; Kim, W.; Kim, B.; Uddin, M.J. Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction. Front. Pharmacol., 2022, 13, 925993.
[http://dx.doi.org/10.3389/fphar.2022.925993] [PMID: 35910356]
[3]
Marx, D.; Metzger, J.; Pejchinovski, M.; Gil, R.B.; Frantzi, M.; Latosinska, A.; Belczacka, I.; Heinzmann, S.S.; Husi, H.; Zoidakis, J.; Klingele, M.; Herget-Rosenthal, S. Proteomics and metabolomics for AKI diagnosis. Semin. Nephrol., 2018, 38(1), 63-87.
[http://dx.doi.org/10.1016/j.semnephrol.2017.09.007] [PMID: 29291763]
[4]
Chen, H.; Busse, L.W. Novel therapies for acute kidney injury. Kidney Int. Rep., 2017, 2(5), 785-799.
[http://dx.doi.org/10.1016/j.ekir.2017.06.020] [PMID: 29270486]
[5]
Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int., 2018, 93(1), 27-40.
[http://dx.doi.org/10.1016/j.kint.2017.07.030] [PMID: 29291820]
[6]
Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; Gu, L.; Lu, R.; Ni, Z. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol., 2019, 26, 101254.
[http://dx.doi.org/10.1016/j.redox.2019.101254] [PMID: 31229841]
[7]
Peerapornratana, S.; Manrique-Caballero, C.L.; Gómez, H.; Kellum, J.A. Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int., 2019, 96(5), 1083-1099.
[http://dx.doi.org/10.1016/j.kint.2019.05.026] [PMID: 31443997]
[8]
Yu, H.; Jin, F.; Liu, D.; Shu, G.; Wang, X.; Qi, J.; Sun, M.; Yang, P.; Jiang, S.; Ying, X.; Du, Y. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics, 2020, 10(5), 2342-2357.
[http://dx.doi.org/10.7150/thno.40395] [PMID: 32104507]
[9]
Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int., 2012, 81(5), 442-448.
[http://dx.doi.org/10.1038/ki.2011.379] [PMID: 22113526]
[10]
Castañeda, R.; Cáceres, A.; Cruz, S.M.; Aceituno, J.A.; Marroquín, E.S.; Barrios Sosa, A.C.; Strangman, W.K.; Williamson, R.T. Nephroprotective plant species used in traditional Mayan medicine for renal-associated diseases. J. Ethnopharmacol., 2023, 301, 115755.
[http://dx.doi.org/10.1016/j.jep.2022.115755] [PMID: 36181985]
[11]
Ranasinghe, R.; Mathai, M.; Zulli, A. Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci., 2023, 318, 121466.
[http://dx.doi.org/10.1016/j.lfs.2023.121466] [PMID: 36773693]
[12]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[13]
Dao, T.T.; Sehgal, P.; Tung, T.T.; Møller, J.V.; Nielsen, J.; Palmgren, M.; Christensen, S.B.; Fuglsang, A.T. Demethoxycurcumin is a potent inhibitor of p-type ATPases from diverse kingdoms of life. PLoS One, 2016, 11(9), e0163260.
[http://dx.doi.org/10.1371/journal.pone.0163260] [PMID: 27644036]
[14]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[15]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[16]
Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the active substance of turmeric its effects on health and ways to improve its bioavailability. J. Sci. Food Agric., 2021, 101(14), 5747-5762.
[http://dx.doi.org/10.1002/jsfa.11372] [PMID: 34143894]
[17]
Wang, M.E.; Chen, Y.C.; Chen, I.S.; Hsieh, S.C.; Chen, S.S.; Chiu, C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 2012, 23(10), 1352-1366.
[http://dx.doi.org/10.1016/j.jnutbio.2011.08.004] [PMID: 22221674]
[18]
Murillo, B.O.; Fuentes, P.A.R.; Ramírez, E.J.; Martínez, G.S.; Ramos, R.E.; de Alba, M.L.A. Recovery of bone and muscle mass in patients with chronic kidney disease and iron overload on hemodialysis and taking combined supplementation with curcumin and resveratrol. Clin. Interv. Aging, 2019, 14, 2055-2062.
[http://dx.doi.org/10.2147/CIA.S223805] [PMID: 31819387]
[19]
Pivari, F.; Mingione, A.; Piazzini, G.; Ceccarani, C.; Ottaviano, E.; Brasacchio, C.; Dei Cas, M.; Vischi, M.; Cozzolino, M.G.; Fogagnolo, P.; Riva, A.; Petrangolini, G.; Barrea, L.; Di Renzo, L.; Borghi, E.; Signorelli, P.; Paroni, R.; Soldati, L. Curcumin supplementation (Meriva®) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients, 2022, 14(1), 231.
[http://dx.doi.org/10.3390/nu14010231] [PMID: 35011106]
[20]
Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456.
[http://dx.doi.org/10.1016/j.redox.2013.09.003] [PMID: 24191240]
[21]
Zhang, F.; Wu, R.; Liu, Y.; Dai, S.; Xue, X.; Li, Y.; Gong, X. Nephroprotective and nephrotoxic effects of Rhubarb and their molecular mechanisms. Biomed. Pharmacother., 2023, 160, 114297.
[http://dx.doi.org/10.1016/j.biopha.2023.114297] [PMID: 36716659]
[22]
Kimura, T.; Isaka, Y.; Yoshimori, T. Autophagy and kidney inflammation. Autophagy, 2017, 13(6), 997-1003.
[http://dx.doi.org/10.1080/15548627.2017.1309485] [PMID: 28441075]
[23]
Xu, G.; Gu, Y.; Yan, N.; Li, Y.; Sun, L.; Li, B. Curcumin functions as an anti-inflammatory and antioxidant agent on arsenic-induced hepatic and kidney injury by inhibiting MAPKs/NF-κB and activating Nrf2 pathways. Environ. Toxicol., 2021, 36(11), 2161-2173.
[http://dx.doi.org/10.1002/tox.23330] [PMID: 34272803]
[24]
Hashmp, S.F.; Sattar, M.Z.A.; Rathore, H.A.; Ahmadi, A.; Johns, E.J. A critical review on pharmacological significance of hydrogen sulfide (H2S) on NF-κB concentration and ICAM-1 expression in renal ischemia reperfusion injury. Acta Pol. Pharm., 2017, 74(3), 747-752.
[PMID: 29513943]
[25]
Peng, J.; Ren, X.; Lan, T.; Chen, Y.; Shao, Z.; Yang, C. Renoprotective effects of ursolic acid on ischemia/reperfusion-induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF-κB activities. Mol. Med. Rep., 2016, 14(4), 3397-3402.
[http://dx.doi.org/10.3892/mmr.2016.5654] [PMID: 27573738]
[26]
Zhang, J.; Tang, L.; Li, G.S.; Wang, J. The anti-inflammatory effects of curcumin on renal ischemia-reperfusion injury in rats. Ren. Fail., 2018, 40(1), 680-686.
[http://dx.doi.org/10.1080/0886022X.2018.1544565] [PMID: 30741618]
[27]
Bonavia, A.; Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatr. Nephrol., 2018, 33(10), 1629-1639.
[http://dx.doi.org/10.1007/s00467-017-3774-5] [PMID: 28801723]
[28]
Tan, R.Z.; Liu, J.; Zhang, Y.Y.; Wang, H.L.; Li, J.C.; Liu, Y.H.; Zhong, X.; Zhang, Y.W.; Yan, Y.; Lan, H.Y.; Wang, L. Curcumin relieved cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. Phytomedicine, 2019, 52, 284-294.
[http://dx.doi.org/10.1016/j.phymed.2018.09.210] [PMID: 30599909]
[29]
Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; Praga, M.; Ortiz, A.; Egido, J.; Sanz, A.B.; Moreno, J.A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J., 2019, 33(8), 8961-8975.
[http://dx.doi.org/10.1096/fj.201900077R] [PMID: 31034781]
[30]
Ugur, S.; Ulu, R.; Dogukan, A.; Gurel, A.; Yigit, I.P.; Gozel, N.; Aygen, B.; Ilhan, N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren. Fail., 2015, 37(2), 332-336.
[http://dx.doi.org/10.3109/0886022X.2014.986005] [PMID: 25594614]
[31]
Shen, S.; Li, J.; You, H.; Wu, Z.; Wu, Y.; Zhao, Y.; Zhu, Y.; Guo, Q.; Li, X.; Li, R.; Ma, P.; Yang, X.; Chen, M. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem. Toxicol., 2017, 99, 60-69.
[http://dx.doi.org/10.1016/j.fct.2016.11.016] [PMID: 27871981]
[32]
Liang, F.; Xi, J.; Chen, X.; Huang, J.; Jin, D.; Zhu, X. Curcumin decreases dibutyl phthalate-induced renal dysfunction in Kunming mice via inhibiting oxidative stress and apoptosis. Hum. Exp. Toxicol., 2021, 40(9), 1528-1536.
[http://dx.doi.org/10.1177/09603271211001124] [PMID: 33729022]
[33]
Hashemzaei, M.; Tabrizian, K.; Alizadeh, Z.; Pasandideh, S.; Rezaee, R.; Mamoulakis, C.; Tsatsakis, A.; Skaperda, Z.; Kouretas, D.; Shahraki, J. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicol. Rep., 2020, 7, 1571-1577.
[http://dx.doi.org/10.1016/j.toxrep.2020.11.008] [PMID: 33304826]
[34]
Wu, J.; Pan, X.; Fu, H.; Zheng, Y.; Dai, Y.; Yin, Y.; Chen, Q.; Hao, Q.; Bao, D.; Hou, D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci. Rep., 2017, 7(1), 10114.
[http://dx.doi.org/10.1038/s41598-017-10693-4] [PMID: 28860665]
[35]
Oraby, M.A.; El-Yamany, M.F.; Safar, M.M.; Assaf, N.; Ghoneim, H.A. Amelioration of early markers of diabetic nephropathy by linagliptin in fructose-streptozotocin-induced type 2 diabetic rats. Nephron J., 2019, 141(4), 273-286.
[http://dx.doi.org/10.1159/000495517] [PMID: 30699409]
[36]
Wang, D.; Wang, T.; Wang, R.; Zhang, X.; Wang, L.; Xiang, Z.; Zhuang, L.; Shen, S.; Wang, H.; Gao, Q.; Wang, Y. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J. Transl. Med., 2020, 18(1), 84.
[http://dx.doi.org/10.1186/s12967-020-02249-4] [PMID: 32066482]
[37]
ALTamimi, J.Z.; AlFaris, N.A.; AL-Farga, A.M.; Alshammari, G.M.; BinMowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J. Nutr. Biochem., 2021, 87, 108515.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108515] [PMID: 33017608]
[38]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[39]
Soetikno, V.; Sari, S.; Ul Maknun, L.; Sumbung, N.; Rahmi, D.; Pandhita, B.; Louisa, M.; Estuningtyas, A. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res., 2019, 69(2), 75-82.
[http://dx.doi.org/10.1055/a-0641-5148] [PMID: 29945277]
[40]
Eldutar, E.; Kandemir, F.M.; Kucukler, S.; Caglayan, C. Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J. Biochem. Mol. Toxicol., 2017, 31(11), e21960.
[http://dx.doi.org/10.1002/jbt.21960] [PMID: 28682524]
[41]
Hassan, M.H.; Ghobara, M.; Abd-Allah, G.M. Modulator effects of meloxicam against doxorubicin-induced nephrotoxicity in mice. J. Biochem. Mol. Toxicol., 2014, 28(8), 337-346.
[http://dx.doi.org/10.1002/jbt.21570] [PMID: 24799355]
[42]
Topal, A.; Alak, G.; Ozkaraca, M.; Yeltekin, A.C.; Comaklı, S.; Acıl, G.; Kokturk, M.; Atamanalp, M. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 2017, 175, 186-191.
[http://dx.doi.org/10.1016/j.chemosphere.2017.02.047] [PMID: 28219821]
[43]
Benzer, F.; Kandemir, F.M.; Kucukler, S.; Comaklı, S.; Caglayan, C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: By modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch. Physiol. Biochem., 2018, 124(5), 448-457.
[http://dx.doi.org/10.1080/13813455.2017.1422766] [PMID: 29302997]
[44]
Kim, W.Y.; Nam, S.A.; Song, H.C.; Ko, J.S.; Park, S.H.; Kim, H.L.; Choi, E.J.; Kim, Y.S.; Kim, J.; Kim, Y.K. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology, 2012, 17(2), 148-159.
[http://dx.doi.org/10.1111/j.1440-1797.2011.01541.x] [PMID: 22085202]
[45]
Lu, M.; Li, H.; Liu, W.; Zhang, X.; Li, L.; Zhou, H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin. Pharmacol. Toxicol., 2021, 128(4), 594-604.
[http://dx.doi.org/10.1111/bcpt.13550] [PMID: 33354908]
[46]
Chuang, S.T.; Kuo, Y.H.; Su, M.J. KS370G, a caffeamide derivative, attenuates unilateral ureteral obstruction-induced renal fibrosis by the reduction of inflammation and oxidative stress in mice. Eur. J. Pharmacol., 2015, 750, 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2015.01.020] [PMID: 25620133]
[47]
Wang, F.M.; Yang, Y.; Ma, L.; Tian, X.; He, Y. Berberine ameliorates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats. Nephrology, 2014, 19(9), 542-551.
[http://dx.doi.org/10.1111/nep.12271] [PMID: 24754438]
[48]
Meng, X.; Zhang, Y.; Huang, X.R.; Ren, G.; Li, J.; Lan, H.Y. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget, 2015, 6(35), 36984-36997.
[http://dx.doi.org/10.18632/oncotarget.6100] [PMID: 26474462]
[49]
Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425(6958), 577-584.
[http://dx.doi.org/10.1038/nature02006] [PMID: 14534577]
[50]
Farahpour, M.R.; Dilmaghanian, A.; Faridy, M.; Karashi, E. Topical Moltkia coerulea hydroethanolic extract accelerates the repair of excision wound in a rat model. Chin. J. Traumatol., 2016, 19(2), 97-103.
[http://dx.doi.org/10.1016/j.cjtee.2015.08.005] [PMID: 27140217]
[51]
Loeffler, I.; Wolf, G. Transforming growth factor- and the progression of renal disease. Nephrol. Dial. Transplant., 2014, 29(S1), i37-i45.
[http://dx.doi.org/10.1093/ndt/gft267] [PMID: 24030832]
[52]
Chen, F.; Xie, Y.; Lv, Q.; Zou, W.; Xiong, L. Curcumin mediates repulsive guidance molecule B (RGMb) in the treatment mechanism of renal fibrosis induced by unilateral ureteral obstruction. Ren. Fail., 2021, 43(1), 1496-1505.
[http://dx.doi.org/10.1080/0886022X.2021.1997764] [PMID: 34751624]
[53]
Zhu, F.; Chen, M.; Zhu, M.; Zhao, R.; Qiu, W.; Xu, X.; Liu, H.; Zhao, H.; Yu, R.; Wu, X.; Zhang, K.; Huang, H. Curcumin suppresses epithelial–mesenchymal transition of renal tubular epithelial cells through the inhibition of Akt/mTOR pathway. Biol. Pharm. Bull., 2017, 40(1), 17-24.
[http://dx.doi.org/10.1248/bpb.b16-00364] [PMID: 27829579]
[54]
Border, W.A.; Noble, N.A. TGF-β in kidney fibrosis: A target for gene therapy. Kidney Int., 1997, 51(5), 1388-1396.
[http://dx.doi.org/10.1038/ki.1997.190] [PMID: 9150449]
[55]
Zhang, L.; Lin, W.; Chen, X.; Wei, G.; Zhu, H.; Xing, S. Tanshinone IIA reverses EGF- and TGF-β1-mediated epithelial-mesenchymal transition in HepG2 cells via the PI3K/Akt/ERK signaling pathway. Oncol. Lett., 2019, 18(6), 6554-6562.
[http://dx.doi.org/10.3892/ol.2019.11032] [PMID: 31807174]
[56]
Holdsworth, S.R.; Summers, S.A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol., 2008, 19(12), 2254-2261.
[http://dx.doi.org/10.1681/ASN.2008010015] [PMID: 18776124]
[57]
Li, R.; Guo, Y.; Zhang, Y.; Zhang, X.; Zhu, L.; Yan, T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int. J. Mol. Sci., 2019, 20(5), 1103.
[http://dx.doi.org/10.3390/ijms20051103]
[58]
Artlett, C.M.; Thacker, J.D. Molecular activation of the NLRP3 Inflammasome in fibrosis: Common threads linking divergent fibrogenic diseases. Antioxid. Redox Signal., 2015, 22(13), 1162-1175.
[http://dx.doi.org/10.1089/ars.2014.6148] [PMID: 25329971]
[59]
Ye, B.; Jiang, L-L.; Xu, H-T.; Zhou, D-W.; Li, Z-S. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int. J. Immunopathol. Pharmacol., 2012, 25(3), 627-636.
[http://dx.doi.org/10.1177/039463201202500309] [PMID: 23058013]
[60]
Zhu, J.F.; Huang, W.; Yi, H.M.; Xiao, T.; Li, J.Y.; Feng, J.; Yi, H.; Lu, S.S.; Li, X.H.; Lu, R.H.; He, Q.Y.; Xiao, Z.Q. Annexin A1-suppressed autophagy promotes nasopharyngeal carcinoma cell invasion and metastasis by PI3K/AKT signaling activation. Cell Death Dis., 2018, 9(12), 1154.
[http://dx.doi.org/10.1038/s41419-018-1204-7] [PMID: 30459351]
[61]
Liang, F.; Ren, C.; Wang, J.; Wang, S.; Yang, L.; Han, X.; Chen, Y.; Tong, G.; Yang, G. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis, 2019, 8(10), 59.
[http://dx.doi.org/10.1038/s41389-019-0165-8] [PMID: 31597912]
[62]
Wang, Z.; Chen, Z.; Li, B.; Zhang, B.; Du, Y.; Liu, Y.; He, Y.; Chen, X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm. Biol., 2020, 58(1), 828-837.
[http://dx.doi.org/10.1080/13880209.2020.1809462] [PMID: 32866059]
[63]
Guo, J.; Guan, Q.; Liu, X.; Wang, H.; Gleave, M.E.; Nguan, C.Y.C.; Du, C. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol., 2016, 17(1), 133.
[http://dx.doi.org/10.1186/s12882-016-0348-x] [PMID: 27649757]
[64]
Christou, G.A.; Kiortsis, D.N. The role of adiponectin in renal physiology and development of albuminuria. J. Endocrinol., 2014, 221(2), R49-R61.
[http://dx.doi.org/10.1530/JOE-13-0578] [PMID: 24464020]
[65]
Hongtao, C.; Youling, F.; Fang, H.; Huihua, P.; Jiying, Z.; Jun, Z. Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway. J. Cell. Physiol., 2018, 233(11), 8588-8596.
[http://dx.doi.org/10.1002/jcp.26536] [PMID: 29741772]
[66]
Cai, Y.; Huang, C.; Zhou, M.; Xu, S.; Xie, Y.; Gao, S.; Yang, Y.; Deng, Z.; Zhang, L.; Shu, J.; Yan, T.; Wan, C.C. Role of curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine, 2022, 104, 154306.
[http://dx.doi.org/10.1016/j.phymed.2022.154306] [PMID: 35809376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy