Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Application of Graphene Oxide Nanoarchitectures in the Treatment of Cancer: Phototherapy, Immunotherapy, and the Development of Vaccines

Author(s): Sankha Bhattacharya*, Sateesh Belemkar and Bhupendra Gopalbhai Prajapati*

Volume 31, Issue 27, 2024

Published on: 15 February, 2024

Page: [4320 - 4339] Pages: 20

DOI: 10.2174/0109298673288750240117115141

Price: $65

Abstract

Nanoparticles have been crucial in redesigning tumour eradication techniques, and recent advances in cancer research have accelerated the creation and integration of multifunctional nanostructures. In the fight against treatment resistance, which has reduced the effectiveness of traditional radiation and chemotherapy, this paradigm change is of utmost importance. Graphene oxide (GO) is one of several nanoparticles made of carbon that has made a splash in the medical field. It offers potential new ways to treat cancer thanks to its nanostructures, which can precisely transfer genetic elements and therapeutic chemicals to tumour areas. Encapsulating genes, protecting them from degradation, and promoting effective genetic uptake by cancer cells are two of GO nanostructures' greatest strengths, in addition to improving drug pharmacokinetics and bioavailability by concentrating therapeutic compounds at particular tumour regions. In addition, photodynamic treatment (PDT) and photothermal therapy (PTT), which use GO nanoparticles to reduce carcinogenesis, have greatly slowed tumour growth due to GO's phototherapy capabilities. In addition to their potential medical uses, GO nanoparticles are attractive vaccine candidates due to their ability to stimulate cellular and innate immunity. These nanoparticles can be used to detect, diagnose, and eradicate cancer because they respond to certain stimuli. The numerous advantages of GO nanoparticles for tumour eradication are attributed in large part to their primary route of internalisation through endocytosis, which guarantees accurate delivery to target locations. The revolutionary potential of multifunctional nanostructures in cancer treatment is highlighted in this extensive compendium that examines current oncological breakthroughs.

[1]
Blickle, P.; Schmidt, M.E.; Steindorf, K. Post-traumatic growth in cancer survivors: What is its extent and what are important determinants? Int. J. Clin. Health Psychol., 2024, 24(1), 100418.
[http://dx.doi.org/10.1016/j.ijchp.2023.100418] [PMID: 37867603]
[2]
Cerverò-Varona, A.; Canciello, A.; Peserico, A.; Haidar Montes, A.A.; Citeroni, M.R.; Mauro, A.; Russo, V.; Moffa, S.; Pilato, S.; Di Giacomo, S.; Dufrusine, B.; Dainese, E.; Fontana, A.; Barboni, B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater. Today Bio, 2023, 22, 100758.
[http://dx.doi.org/10.1016/j.mtbio.2023.100758] [PMID: 37600353]
[3]
Rath, G.; Halder, J.; Mishra, A.; Kar, B.; Ghosh, G. Recent advances in chemical composition and transdermal delivery systems for topical bio-actives in skin cancer. Curr. Top. Med. Chem., 2023, 23(1), 31-43.
[http://dx.doi.org/10.2174/1568026622666220902104906] [PMID: 36056871]
[4]
Eftekhari, A.; Kryschi, C.; Pamies, D.; Gulec, S.; Ahmadian, E.; Janas, D.; Davaran, S.; Khalilov, R. Natural and synthetic nanovectors for cancer therapy. Nanotheranostics, 2023, 7(3), 236-257.
[http://dx.doi.org/10.7150/ntno.77564] [PMID: 37064613]
[5]
Yang, W.; Wang, S.; Tong, S.; Zhang, W.D.; Qin, J.J. Expanding the ubiquitin code in pancreatic cancer. Biochim. Biophys. Acta Mol. Basis Dis., 2024, 1870(1), 166884.
[http://dx.doi.org/10.1016/j.bbadis.2023.166884] [PMID: 37704111]
[6]
Tan, M.; He, Y.; Shi, M.; Lee, K.C.H.; Abdullah, H.R. Systematic review and meta-analysis of short-term and long-term smoking abstinence rates of intensive perioperative smoking cessation programs vs brief interventions for smoking cessation. Addict. Behav., 2024, 148, 107832.
[http://dx.doi.org/10.1016/j.addbeh.2023.107832] [PMID: 37660498]
[7]
Liu, G.; Huang, W.; Chen, L.; Tayier, N.; You, L.; Hamza, M.; Tian, X.; Wang, H.; Nie, G.; Zhu, M.; Yang, Y. Commensal bacterial hybrid nanovesicles improve immune checkpoint therapy in pancreatic cancer through immune and metabolic reprogramming. Nano Today, 2023, 52, 101993.
[http://dx.doi.org/10.1016/j.nantod.2023.101993]
[8]
Lv, T.; Hong, X.; Liu, Y.; Miao, K.; Sun, H.; Li, L.; Deng, C.; Jiang, C.; Pan, X. AI-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. Comput. Methods Programs Biomed., 2024, 243, 107857.
[http://dx.doi.org/10.1016/j.cmpb.2023.107857] [PMID: 37865058]
[9]
Xia, Y.; Gu, M.; Wang, J.; Zhang, X.; Shen, T.; Shi, X.; Yuan, W.E. Tumor microenvironment-activated, immunomodulatory nanosheets loaded with copper(II) and 5-FU for synergistic chemodynamic therapy and chemotherapy. J. Colloid Interface Sci., 2024, 653(Pt A), 137-147.
[http://dx.doi.org/10.1016/j.jcis.2023.09.042] [PMID: 37713912]
[10]
Shi, Z.; Yang, Y.; Guo, Z.; Feng, S.; Wan, Y. A cathepsin B/GSH dual-responsive fluorinated peptide for effective siRNA delivery to cancer cells. Bioorg. Chem., 2023, 135, 106485.
[http://dx.doi.org/10.1016/j.bioorg.2023.106485] [PMID: 36963370]
[11]
Sahoo, S.K.; Dilnawaz, F. Graphene oxide/reduced graphene oxide nanomaterials for targeted photothermal cancer therapy. Curr. Org. Chem., 2023, 27(10), 844-851.
[http://dx.doi.org/10.2174/1385272827666230821102638]
[12]
Uliankina, A.I.; Gorbunov, V.A.; Calatayud, M. Ab initio characterization of hybrid MOF-MXenes surfaces: The case of Cu-pyridyl on Ti2CO2. Catal. Today, 2024, 426, 114396.
[http://dx.doi.org/10.1016/j.cattod.2023.114396]
[13]
Wang, L.H.; Liu, J.Y.; Sui, L.; Zhao, P.H.; Ma, H.D.; Wei, Z.; Wang, Y.L. Folate-modified graphene oxide as the drug delivery system to load temozolomide. Curr. Pharm. Biotechnol., 2020, 21(11), 1088-1098.
[http://dx.doi.org/10.2174/1389201021666200226122742] [PMID: 32101121]
[14]
Baran, A.; Baran, M.F.; Keskin, C.; Kandemir, S.I.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus l.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/2270472]
[15]
Nasibova, A.J.A.B.E.S. Generation of nanoparticles in biological systems and their application prospects. 2023, 8(2), 140-146.
[16]
Abakumov, A.A.; Bychko, I.B.; Voitsihovska, O.O.; Rudenko, R.M.; Strizhak, P.E. Tuning the surface area of reduced graphene oxide by modulating graphene oxide concentration during hydrazine reduction. Mater. Lett., 2024, 354, 135417.
[http://dx.doi.org/10.1016/j.matlet.2023.135417]
[17]
Jawanjal, P.M.; Patil, P.B.; Patil, J.; Waghulde, M.; Naik, J.B. Development of graphene oxide-trihexyphenidyl hydrochloride nanohybrid and release behavior. Curr. Environ. Eng., 2019, 6(2), 134-140.
[http://dx.doi.org/10.2174/2212717806666190313153239]
[18]
Chen, G.; Yang, Z.; Yu, X.; Yu, C.; Sui, S.; Zhang, C.; Bao, C.; Zeng, X.; Chen, Q.; Peng, Q. Intratumor delivery of amino-modified graphene oxide as a multifunctional photothermal agent for efficient antitumor phototherapy. J. Colloid Interface Sci., 2023, 652(Pt B), 1108-1116.
[http://dx.doi.org/10.1016/j.jcis.2023.08.126] [PMID: 37657211]
[19]
Silva, F.A.L.S.; Timochenco, L.; Costa-Almeida, R.; Fernandes, J.R.; Santos, S.G.; Magalhães, F.D.; Pinto, A.M. UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy. Colloids Surf. B Biointerfaces, 2024, 233, 113594.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113594] [PMID: 37979484]
[20]
Khan, A.A.P.; Khan, A.; Asiri, A.M.; Ashraf, G.M.; Alhogbia, B.G. Graphene oxide based metallic nanoparticles and their some biological and environmental application. Curr. Drug Metab., 2018, 18(11), 1020-1029.
[http://dx.doi.org/10.2174/1389200218666171016100507] [PMID: 29034831]
[21]
Işıklan, N.; Hussien, N.A.; Türk, M. Hydroxypropyl cellulose functionalized magnetite graphene oxide nanobiocomposite for chemo/photothermal therapy. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130322.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130322]
[22]
Ren, C.; Yan, R.; Yuan, Z.; Yin, L.; Li, H.; Ding, J.; Wu, T.; Chen, R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. Environ. Int., 2023, 179, 108188.
[http://dx.doi.org/10.1016/j.envint.2023.108188] [PMID: 37690221]
[23]
Shahnaz, T.; Hayder, G.; Shah, M.A.; Ramli, M.Z.; Ismail, N.; Hua, C.K.; Zahari, N.M.; Mardi, N.H.; Selamat, F.E.; Kabilmiharbi, N.; Aziz, H.A. Graphene-based nanoarchitecture as a potent cushioning/filler in polymer composites and their applications. J. Mater. Res. Technol., 2024, 28(4), 2671-2698.
[24]
Karim, M.; Takehira, H.; Matsui, T.; Murashima, Y.; Ohtani, R.; Nakamura, M.; Hayami, S. Graphene and graphene oxide as super materials. Curr. Inorg. Chem., 2014, 4(3), 191-219.
[http://dx.doi.org/10.2174/187794410403141117161134]
[25]
Zhao, Y.; Qiu, Y.; Fang, Z.; Pu, F.; Sun, R.; Chen, K.; Tang, Y. Preparation and characterization of Sr-substituted hydroxyapatite/reduced graphene oxide 3D scaffold as drug carrier for alendronate sodium delivery. Ceram. Int., 2022, 48(24), 36601-36608.
[http://dx.doi.org/10.1016/j.ceramint.2022.08.219]
[26]
Zhou, W.; He, X.; Wang, J.; He, S.; Xie, C.; Fan, Q.; Pu, K. Semiconducting polymer nanoparticles for photoactivatable cancer immunotherapy and imaging of immunoactivation. Biomacromolecules, 2022, 23(4), 1490-1504.
[http://dx.doi.org/10.1021/acs.biomac.2c00065] [PMID: 35286085]
[27]
Kanth Kadiyala, N.; Mandal, B.K.; Kumar Reddy, L.V.; Barnes, C.H.W.; De Los Santos Valladares, L.; Maddinedi, S.B.; Sen, D. Biofabricated palladium nanoparticle-decorated reduced graphene oxide nanocomposite using the Punica granatum (pomegranate) peel extract: Investigation of potent in vivo hepatoprotective activity against acetaminophen-induced liver injury in Wistar albino rats. ACS Omega, 2023, 8(27), 24524-24543.
[http://dx.doi.org/10.1021/acsomega.3c02643] [PMID: 37457483]
[28]
Ghulam, A.N.; dos Santos, O.A.L.; Hazeem, L.; Pizzorno Backx, B.; Bououdina, M.; Bellucci, S. Graphene oxide (GO) materials-applications and toxicity on living organisms and environment. J. Funct. Biomater., 2022, 13(2), 77.
[http://dx.doi.org/10.3390/jfb13020077] [PMID: 35735932]
[29]
Zhou, A.; Yu, T.; Liang, X.; Yin, S. H2O2-free strategy derived from Hummers method for preparing graphene oxide with high oxidation degree. FlatChem, 2023, 38, 100487.
[http://dx.doi.org/10.1016/j.flatc.2023.100487]
[30]
Liu, Y.; Liu, H.; Guo, S.; Zhao, Y.; Qi, J.; Zhang, R.; Ren, J.; Cheng, H.; Zong, M.; Wu, X.; Li, B. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr. Polym., 2024, 323, 121445.
[http://dx.doi.org/10.1016/j.carbpol.2023.121445] [PMID: 37940307]
[31]
Bouazzi, D.; Chérif, I.; Mehri, A.; Touati, H.; Teresa Caccamo, M.; Magazù, S.; Ayachi, S.; Clacens, J.M.; Badraoui, B. A joint experimental and theoretical study on structural, vibrational and morphological properties of newly synthesized nanocomposites involving Hydroxyapatite-alt-Polyethylene Glycol (HAP/PEG). J. Mol. Liq., 2023, 390, 123192.
[http://dx.doi.org/10.1016/j.molliq.2023.123192]
[32]
Kaur, N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta, 2024, 267, 125114.
[http://dx.doi.org/10.1016/j.talanta.2023.125114] [PMID: 37683321]
[33]
Soni, J.; Teli, P.; Agarwal, S. Recent advances in the green reduction of graphene oxide and its potential applications. Curr. Nanosci., 2024, 20(2), 146-156.
[http://dx.doi.org/10.2174/1573413719666230329104621]
[34]
Ma, C.; Xie, Y.; Huang, X.; Zhang, L.; Julian McClements, D.; Zou, L.; Liu, W. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food Chem., 2024, 437(Pt 2), 137913.
[http://dx.doi.org/10.1016/j.foodchem.2023.137913] [PMID: 37939421]
[35]
Jha, A.; Nikam, A.N.; Kulkarni, S.; Mutalik, S.P.; Pandey, A.; Hegde, M.; Rao, B.S.S.; Mutalik, S. Biomimetic nanoarchitecturing: A disguised attack on cancer cells. J. Control. Release, 2021, 329, 413-433.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.005] [PMID: 33301837]
[36]
Kiani Shahvandi, M.; Souri, M.; Tavasoli, S.; Moradi Kashkooli, F.; Kar, S.; Soltani, M. A comparative study between conventional chemotherapy and photothermal activated nano-sized targeted drug delivery to solid tumor. Comput. Biol. Med., 2023, 166, 107574.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107574] [PMID: 37839220]
[37]
Yang, H.; Zhang, Z.; Zhou, X.; Binbr Abe Menen, N.; Rouhi, O. Achieving enhanced sensitivity and accuracy in carcinoembryonic antigen (CEA) detection as an indicator of cancer monitoring using thionine/chitosan/graphene oxide nanocomposite-modified electrochemical immunosensor. Environ. Res., 2023, 238(Pt 1), 117163.
[http://dx.doi.org/10.1016/j.envres.2023.117163] [PMID: 37722583]
[38]
Wang, X.; Mohammadzadehsaliani, S.; Vafaei, S.; Ahmadi, L.; Iqbal, A.; Alreda, B.A.; Talib Al-Naqeeb, B.Z.; Kheradjoo, H. Synthesis and electrochemical study of enzymatic graphene oxide-based nanocomposite as stable biosensor for determination of bevacizumab as a medicine in colorectal cancer in human serum and waste water fluids. Chemosphere, 2023, 336, 139012.
[http://dx.doi.org/10.1016/j.chemosphere.2023.139012] [PMID: 37224975]
[39]
Cui, X.; Li, M.; Wei, F.; Tang, X.; Xu, W.; Li, M.; Han, X. Biomimetic light-activatable graphene-based nanoarchitecture for synergistic chemophotothermal therapy. Chem. Eng. J., 2021, 420, 127710.
[http://dx.doi.org/10.1016/j.cej.2020.127710]
[40]
Jasim, L.M.M.; Homayouni Tabrizi, M.; Darabi, E.; Jaseem, M.M.M. The antioxidant, anti-angiogenic, and anticancer impact of chitosan-coated herniarin-graphene oxide nanoparticles (CHG-NPs). Heliyon, 2023, 9(9), e20042.
[http://dx.doi.org/10.1016/j.heliyon.2023.e20042] [PMID: 37809932]
[41]
Salimbahrami, S.N.; Ghorbani-HasanSaraei, A.; Tahermansouri, H.; Shahidi, S.A. Synthesis, optimization via response surface methodology, and structural properties of carboxymethylcellulose/curcumin/graphene oxide biocomposite films/coatings for the shelf-life extension of shrimp. Int. J. Biol. Macromol., 2023, 253(Pt 2), 126724.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126724] [PMID: 37673155]
[42]
Granja, A.; Lima-Sousa, R.; Alves, C.G.; de Melo-Diogo, D.; Nunes, C.; Sousa, C.T.; Correia, I.J.; Reis, S. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Advances, 2023, 151, 213443.
[http://dx.doi.org/10.1016/j.bioadv.2023.213443] [PMID: 37146526]
[43]
Hu, L.; Xu, Y.; Zhao, Y.; Mei, Z.; Xiong, C.; Xiao, J.; Zhang, J.; Tian, J. Supramolecular nanovesicles with in-situ switchable photothermal/photodynamic effects for precisely controllable cancer phototherapy. Chem. Eng. J., 2023, 476, 146829.
[http://dx.doi.org/10.1016/j.cej.2023.146829]
[44]
Ding, X.; Min, Y.; Wang, C.; Zhang, Q. Chromium doped broad-band near-infrared emission Mg4Ta2O9: Cr3+ phosphor excited by blue light for NIR-LEDs. Infrared Phys. Technol., 2023, 131, 104697.
[http://dx.doi.org/10.1016/j.infrared.2023.104697]
[45]
Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[46]
Qin, C.; Fei, J.; Cai, P.; Zhao, J.; Li, J. Biomimetic membrane-conjugated graphene nanoarchitecture for light-manipulating combined cancer treatment in vitro. J. Colloid Interface Sci., 2016, 482, 121-130.
[http://dx.doi.org/10.1016/j.jcis.2016.07.031] [PMID: 27497233]
[47]
He, Y.; Wang, X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput. Biol. Med., 2023, 167, 107591.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107591] [PMID: 37875043]
[48]
Zuchowska, A.; Jastrzebska, E.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobinski, L.; Trzaskowski, M.; Brzozka, Z. Well-defined graphene oxide as a potential component in lung cancer therapy. Curr. Cancer Drug Targets, 2020, 20(1), 47-58.
[http://dx.doi.org/10.2174/1568009619666191021113807] [PMID: 31736445]
[49]
Pakizeh, M.; Karami, M.; Kooshki, S.; Rahimnia, R. Advanced toluene/n-heptane separation by pervaporation: investigating the potential of graphene oxide (GO)/PVA mixed matrix membrane. J. Taiwan Inst. Chem. Eng., 2023, 150, 105025.
[http://dx.doi.org/10.1016/j.jtice.2023.105025]
[50]
Muthoosamy, K.; Bai, R.; Manickam, S. Graphene and graphene oxide as a docking station for modern drug delivery system. Curr. Drug Deliv., 2014, 11(6), 701-718.
[http://dx.doi.org/10.2174/1567201811666140605151600] [PMID: 24909150]
[51]
Theodosopoulos, G.V.; Bilalis, P.; Sakellariou, G. Polymer functionalized graphene oxide: A versatile nanoplatform for drug/gene delivery. Curr. Org. Chem., 2015, 19(18), 1828-1837.
[http://dx.doi.org/10.2174/1385272819666150526005714]
[52]
Le, Q.H.; Neila, F.; Smida, K.; Li, Z.; Abdelmalek, Z.; Tlili, I. pH-responsive anticancer drug delivery systems: Insights into the enhanced adsorption and release of DOX drugs using graphene oxide as a nanocarrier. Eng. Anal. Bound. Elem., 2023, 157, 157-165.
[http://dx.doi.org/10.1016/j.enganabound.2023.09.008]
[53]
Yao, C.; Zhu, J.; Xie, A.; Shen, Y.; Li, H.; Zheng, B.; Wei, Y. Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/hydroxyapatite and its application in drug delivery. Mater. Sci. Eng. C, 2017, 73, 709-715.
[http://dx.doi.org/10.1016/j.msec.2016.11.083] [PMID: 28183664]
[54]
Kafashan, A.; Joze-Majidi, H.; Babaei, A.; Shahrampour, D.; Arab-Bafrani, Z.; Arefkhani, M. Designing a nanohybrid complex based on graphene oxide for drug delivery purposes; investigating the intermediating capability of carbohydrate polymers. Mater. Today Chem., 2023, 33, 101751.
[http://dx.doi.org/10.1016/j.mtchem.2023.101751]
[55]
Tiwari, S.; Sontakke, A.D.; Baruah, K.; Purkait, M.K. Development of graphene oxide-based nano-delivery system for natural chemotherapeutic agent (caffeic acid). Mater. Today Proc., 2023, 76, 325-335.
[http://dx.doi.org/10.1016/j.matpr.2022.11.373]
[56]
Rai, V.K.; Mahata, S.; Kashyap, H.; Singh, M.; Rai, A. Bio-reduction of graphene oxide: Catalytic applications of (Reduced) GO in organic synthesis. Curr. Org. Synth., 2020, 17(3), 164-191.
[http://dx.doi.org/10.2174/1570179417666200115110403] [PMID: 32538718]
[57]
Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123.
[http://dx.doi.org/10.2174/1573411014666180319145506]
[58]
Berisha, A. Density functional theory and quantum mechanics studies of 2D carbon nanostructures (graphene and graphene oxide) for Lenalidomide anticancer drug delivery. Comput. Theor. Chem., 2023, 1230, 114371.
[http://dx.doi.org/10.1016/j.comptc.2023.114371]
[59]
Najafabadi, A.P.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Rahdar, A.; Díez-Pascual, A.M. pH-sensitive ameliorated quercetin delivery using graphene oxide nanocarriers coated with potential anticancer gelatin-polyvinylpyrrolidone nanoemulsion with bitter almond oil. J. Drug Deliv. Sci. Technol., 2023, 82, 104339.
[http://dx.doi.org/10.1016/j.jddst.2023.104339]
[60]
Dhas, N.; Kudarha, R.; Garkal, A.; Ghate, V.; Sharma, S.; Panzade, P.; Khot, S.; Chaudhari, P.; Singh, A.; Paryani, M.; Lewis, S.; Garg, N.; Singh, N.; Bangar, P.; Mehta, T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J. Control. Release, 2021, 330, 257-283.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.015] [PMID: 33345832]
[61]
Niu, X.; Liu, P.; Zhou, X.; Ou, D.; Wang, X.; Hu, C. Anti-epidermal growth factor receptor (EGFR) monoclonal antibody combined with chemoradiotherapy for induction chemotherapy resistant locally advanced nasopharyngeal carcinoma: A prospective phase II study. Transl. Oncol., 2024, 39, 101797.
[http://dx.doi.org/10.1016/j.tranon.2023.101797] [PMID: 37865048]
[62]
Deng, N.; Chen, Y.; Jiang, B.; Wu, Q.; Zhou, Y.; Zhang, X.; Liang, Z.; Zhang, L.; Zhang, Y. A robust and effective intact protein fractionation strategy by GO/PEI/Au/PEG nanocomposites for human plasma proteome analysis. Talanta, 2018, 178, 49-56.
[http://dx.doi.org/10.1016/j.talanta.2017.08.079] [PMID: 29136852]
[63]
Lebeau, J.; Saunders, J.M.; Moraes, V.W.R.; Madhavan, A.; Madrazo, N.; Anthony, M.C.; Wiseman, R.L. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute endoplasmic reticulum stress. Cell Rep., 2018, 22(11), 2827-2836.
[http://dx.doi.org/10.1016/j.celrep.2018.02.055] [PMID: 29539413]
[64]
Yang, D.; Su, L.; Li, X.; Xie, C.; Zhang, Y. Evidence that enolase-phosphatase 1 exacerbates early cerebral ischemia injury and blood–brain barrier breakdown by enhancing extracellular matrix destruction and inhibiting the interaction between ADI1 and MT1-MMP. Exp. Neurol., 2023, 365, 114410.
[http://dx.doi.org/10.1016/j.expneurol.2023.114410] [PMID: 37075968]
[65]
Ng, D.C.H.; Zhao, T.T.; Yeap, Y.Y.C.; Ngoei, K.R.; Bogoyevitch, M.A. c-Jun N-terminal kinase phosphorylation of stathmin confers protection against cellular stress. J. Biol. Chem., 2010, 285(37), 29001-29013.
[http://dx.doi.org/10.1074/jbc.M110.128454] [PMID: 20630875]
[66]
Li, B.; Feng, C.; Zhang, W.; Sun, S.; Yue, D.; Zhang, X.; Yang, X. Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNA–miRNA–mRNA regulatory networks in the cotton response to drought stress. Int. J. Biol. Macromol., 2023, 253(Pt 1), 126558.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126558] [PMID: 37659489]
[67]
Karthikeyan, L.; Vivek, R. Synergistic anti-cancer effects of NIR-light responsive nanotherapeutics for chemo-photothermal therapy and photothermal immunotherapy: A combined therapeutic approach. Adv. Cancer Biol. Metastasis, 2022, 4, 100044.
[68]
Mishra, S.K.; Dhadve, A.C.; Mal, A.; Reddy, B.P.K.; Hole, A.; Chilakapati, M.K.; Ray, P.; Srivastava, R.; De, A. Photothermal therapy (PTT) is an effective treatment measure against solid tumors which fails to respond conventional chemo/radiation therapies in clinic. Biomaterials Advances, 2022, 143, 213153.
[http://dx.doi.org/10.1016/j.bioadv.2022.213153] [PMID: 36343390]
[69]
Chen, H.; Wu, L.; Wang, T.; Zhang, F.; Song, J.; Fu, J.; Kong, X.; Shi, J. PTT/ PDT-induced microbial apoptosis and wound healing depend on immune activation and macrophage phenotype transformation. Acta Biomater., 2023, 167, 489-505.
[http://dx.doi.org/10.1016/j.actbio.2023.06.025] [PMID: 37369265]
[70]
Pan, N.L.; Liao, J.X.; Huang, M.Y.; Zhang, Y.Q.; Chen, J.X.; Zhang, Z.W.; Yang, Z.X.; Long, X.E.; Wu, X.T.; Sun, J. Lysosome-targeted ruthenium(II) complexes induce both apoptosis and autophagy in HeLa cells. J. Inorg. Biochem., 2022, 229, 111729.
[http://dx.doi.org/10.1016/j.jinorgbio.2022.111729] [PMID: 35066350]
[71]
Wu, L.L.; Meng, X.; Zhang, Q.; Han, X.; Yang, F.; Wang, Q.; Yu Hu, H.; Xing, N. Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chin. Chem. Lett., 2023, 108663.
[http://dx.doi.org/10.1016/j.cclet.2023.108663]
[72]
Wu, Q.; Chen, G.; Gong, K.; Wang, J.; Ge, X.; Liu, X.; Guo, S.; Wang, F. MnO2-Laden black phosphorus for MRI-Guided Synergistic PDT, PTT, and chemotherapy. Matter, 2019, 1(2), 496-512.
[http://dx.doi.org/10.1016/j.matt.2019.03.007]
[73]
Nagi, R.; Muthukrishnan, A.; Rakesh, N. Effectiveness of photodynamic therapy (PDT) in the management of symptomatic oral lichen planus -A systematic review. J. Oral Biol. Craniofac. Res., 2023, 13(2), 353-359.
[http://dx.doi.org/10.1016/j.jobcr.2023.03.003] [PMID: 36941903]
[74]
Hashemzadeh, H.; Khadivi-Khanghah, Z.; Allahverdi, A.; Hadipour, M.M.; Saievar-Iranizad, E.; Naderi-Manesh, H. A novel label-free graphene oxide nano-wall surface decorated with gold nano-flower biosensor for electrochemical detection of brucellosis antibodies in human serum. Talanta Open, 2023, 7, 100215.
[http://dx.doi.org/10.1016/j.talo.2023.100215]
[75]
Kim, J.Y.; Choi, W.I.; Kim, M.; Tae, G. Tumor-targeting nanogel that can function independently for both photodynamic and photothermal therapy and its synergy from the procedure of PDT followed by PTT. J. Control. Release, 2013, 171(2), 113-121.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.006] [PMID: 23860187]
[76]
Melo, B.L.; Lima-Sousa, R.; Alves, C.G.; Correia, I.J.; de Melo-Diogo, D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int. J. Pharm., 2023, 647, 123552.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123552] [PMID: 37884216]
[77]
Mensah-Darkwa, K.; Tabi, R.N.; Owusu, M.; Ingsel, T.; Kahol, P.K.; Gupta, R.K. Recent advancement in MoS2 for hydrogen evolution reactions. Curr. Graphene Sci., 2020, 3(1), 11-25.
[http://dx.doi.org/10.2174/2452273204666200303124226]
[78]
Li, X.; Wang, H.; Wu, Y.; Zou, L.; Deng, S.; Fu, X.; Huang, T.; Shen, C.; Wu, T.; Cai, W. A novel mouse model of PEDF-associated serious liver inflammation, hepatic tumorigenesis and cardiovascular injury mimics human nonalcoholic steatohepatitis. Genes Dis., 2024, 11(1), 11-14.
[http://dx.doi.org/10.1016/j.gendis.2023.01.011] [PMID: 37588234]
[79]
Zhang, H.; Gao, X.D. Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater. Sci. Eng. C, 2017, 70(Pt 2), 935-946.
[http://dx.doi.org/10.1016/j.msec.2016.03.045] [PMID: 27772724]
[80]
Zhang, Y.; Yu, X.; Bao, R.; Huang, H.; Gu, C.; Lv, Q.; Han, Q.; Du, X.; Zhao, X.Y.; Ye, Y.; Zhao, R.; Sun, J.; Zou, Q. Dietary fructose-mediated adipocyte metabolism drives antitumor CD8+ T cell responses. Cell Metab., 2023, 35(12), 2107-2118.e6.
[http://dx.doi.org/10.1016/j.cmet.2023.09.011] [PMID: 37863051]
[81]
Russ, B.E.; Barugahare, A.; Dakle, P.; Tsyganov, K.; Quon, S.; Yu, B.; Li, J.; Lee, J.K.C.; Olshansky, M.; He, Z.; Harrison, P.F.; See, M.; Nussing, S.; Morey, A.E.; Udupa, V.A.; Bennett, T.J.; Kallies, A.; Murre, C.; Collas, P.; Powell, D.; Goldrath, A.W.; Turner, S.J. Active maintenance of CD8+ T cell naivety through regulation of global genome architecture. Cell Rep., 2023, 42(10), 113301.
[http://dx.doi.org/10.1016/j.celrep.2023.113301] [PMID: 37858463]
[82]
Xu, Z.H.; Zhang, J.C.; Chen, K.; Liu, X.; Li, X.Z.; Yuan, M.; Wang, Y.; Tian, J.Y. Mechanisms of the PD-1/PD-L1 pathway in itch: From acute itch model establishment to the role in chronic itch in mouse. Eur. J. Pharmacol., 2023, 960, 176128.
[http://dx.doi.org/10.1016/j.ejphar.2023.176128] [PMID: 37866747]
[83]
Zhang, L.; Xu, L.; Wang, Y.; Liu, J.; Tan, G.; Huang, F.; He, N.; Lu, Z. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. Chin. Chem. Lett., 2022, 33(8), 4089-4095.
[http://dx.doi.org/10.1016/j.cclet.2022.01.071]
[84]
Arshad, H.; Lack, G.; Durham, S.R.; Penagos, M.; Larenas-Linneman, D.; Halken, S. Prevention is better than cure: Impact of allergen immunotherapy on the progression of airway disease. J. Allergy. Clin. Immunol. Pract., 2023, 12(1), 45-56.
[85]
Farahzadi, R.; Adibkia, K.; Ehsani, A.; Jodaei, A.; Barzegar-Jalali, M.; Fathi, E. Nanomaterials and stem cell differentiation potential: An overview of biological aspects and biomedical efficacy. Curr. Med. Chem., 2022, 29(10), 1804-1823.
[http://dx.doi.org/10.2174/0929867328666210712193113] [PMID: 34254903]
[86]
Gowda, B.H.J.; Ahmed, M.G.; Alshehri, S.A.; Wahab, S.; Vora, L.K.; Singh Thakur, R.R.; Kesharwani, P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res., 2023, 237(Pt 1), 116894.
[http://dx.doi.org/10.1016/j.envres.2023.116894] [PMID: 37586450]
[87]
Gallagher, L.B.; Dolan, E.B.; O’Sullivan, J.; Levey, R.; Cavanagh, B.L.; Kovarova, L.; Pravda, M.; Velebny, V.; Farrell, T.; O’Brien, F.J.; Duffy, G.P. Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomater., 2020, 107, 78-90.
[http://dx.doi.org/10.1016/j.actbio.2020.02.043] [PMID: 32145393]
[88]
Kodera, S.; Kimura, T.; Nishioka, T.; Kaneko, Y.K.; Yamaguchi, M.; Kaibuchi, K.; Ishikawa, T. GDP-bound Rab27a regulates clathrin disassembly through HSPA8 after insulin secretion. Arch. Biochem. Biophys., 2023, 749, 109789.
[http://dx.doi.org/10.1016/j.abb.2023.109789] [PMID: 37852426]
[89]
Yang, P.; Yang, W.; Wei, Z.; Li, Y.; Yang, Y.; Wang, J. Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed. Pharmacother., 2023, 163, 114883.
[http://dx.doi.org/10.1016/j.biopha.2023.114883] [PMID: 37196545]
[90]
Mariella Babu, A.; Varghese, A. Electrochemical deposition for metal organic frameworks: Advanced energy, catalysis, sensing and separation applications. J. Electroanal. Chem., 2023, 937, 117417.
[http://dx.doi.org/10.1016/j.jelechem.2023.117417]
[91]
Bajwa, R.A.; Farooq, U.; Ullah, S.; Salman, M.; Haider, S.; Hussain, R. Metal-organic framework (MOF) attached and their derived metal oxides (Co, Cu, Zn and Fe) as anode for lithium ion battery: A review. J. Energy Storage, 2023, 72, 108708.
[http://dx.doi.org/10.1016/j.est.2023.108708]
[92]
Pourjavadi, A.; Kashani, F.B.; Doroudian, M.; Amin, S.S. Synthesis and characterization of stimuli responsive micelles from chitosan, starch, and alginate based on graft copolymers with polylactide-poly (methacrylic acid) and polylactide-poly[2(dimethyl amino) ethyl methacrylate] side chains. Int. J. Biol. Macromol., 2023, 253(Pt 7), 127170.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127170] [PMID: 37783250]
[93]
Zan, J.; Shuai, Y.; Zhang, J.; Zhao, J.; Sun, B.; Yang, L. Hyaluronic acid encapsulated silver metal organic framework for the construction of a slow-controlled bifunctional nanostructure: Antibacterial and anti-inflammatory in intrauterine adhesion repair. Int. J. Biol. Macromol., 2023, 230, 123361.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123361] [PMID: 36693610]
[94]
Njeumen, C.A.; Ejuh, G.W.; Assatse, Y.T.; Kamsi, R.A.Y.; Tekou, C.T.T.; Zekeng, S.S.; Ndjaka, J.M.B. Application of carbon nanostructures toward acetylsalicylic acid adsorption: A comparison between fullerene ylide and graphene oxide by DFT calculations. Comput. Theor. Chem., 2023, 1227, 114221.
[http://dx.doi.org/10.1016/j.comptc.2023.114221]
[95]
Goszczak, A.J.; Cielecki, P.P. A review on anodic aluminum oxide methods for fabrication of nanostructures for organic solar cells. Curr. Nanosci., 2018, 15(1), 64-75.
[http://dx.doi.org/10.2174/1573413714666180228152018]
[96]
Rodrigues, R.O.; Baldi, G.; Doumett, S.; Garcia-Hevia, L.; Gallo, J.; Bañobre-López, M.; Dražić, G.; Calhelha, R.C.; Ferreira, I.C.F.R.; Lima, R.; Gomes, H.T.; Silva, A.M.T. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng. C, 2018, 93, 206-217.
[http://dx.doi.org/10.1016/j.msec.2018.07.060] [PMID: 30274052]
[97]
Wang, J.; Zhang, Q.; Li, Y.; Pan, X.; Shan, Y.; Zhang, J. Remodeling the tumor microenvironment by vascular normalization and GSH-depletion for augmenting tumor immunotherapy. Chin. Chem. Lett., 2023, 108746.
[98]
Nekoueiyfard, E.; Radmanesh, F.; Baharvand, H.; Mahdieh, A.; Sadeghi-Abandansari, H.; Dinarvand, R. Reduction-sensitive flower-like magnetomicelles based on PCL-ss-PEG-ss-PCL triblock copolymer as anti-cancer drug delivery system. Eur. Polym. J., 2023, 189, 111978.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.111978]
[99]
Yang, K.; Zhang, S.; He, J.; Nie, Z. Polymers and inorganic nanoparticles: A winning combination towards assembled nanostructures for cancer imaging and therapy. Nano Today, 2021, 36, 101046.
[http://dx.doi.org/10.1016/j.nantod.2020.101046]
[100]
Jarak, I.; Pereira-Silva, M.; Santos, A.C.; Veiga, F.; Cabral, H.; Figueiras, A. Multifunctional polymeric micelle-based nucleic acid delivery: Current advances and future perspectives. Appl. Mater. Today, 2021, 25, 101217.
[http://dx.doi.org/10.1016/j.apmt.2021.101217]
[101]
Abhishek, N.; Verma, A.; Singh, A.; Vandana, T.; Kumar, T. Metal-conducting polymer hybrid composites: A promising platform for electrochemical sensing. Inorg. Chem. Commun., 2023, 157, 111334.
[http://dx.doi.org/10.1016/j.inoche.2023.111334]
[102]
Raza, A.; Abid, R.; Murtaza, I.; Fan, T. Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in situ solution polymerization. Ceram. Int., 2023, 49(16), 27050-27059.
[http://dx.doi.org/10.1016/j.ceramint.2023.05.247]
[103]
Ashrafizadeh, M.; Delfi, M.; Zarrabi, A.; Bigham, A.; Sharifi, E.; Rabiee, N.; Paiva-Santos, A.C.; Kumar, A.P.; Tan, S.C.; Hushmandi, K.; Ren, J.; Zare, E.N.; Makvandi, P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J. Control. Release, 2022, 351, 50-80.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.001] [PMID: 35934254]
[104]
Shariatinia, Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J. Drug Deliv. Sci. Technol., 2021, 66, 102790.
[http://dx.doi.org/10.1016/j.jddst.2021.102790]
[105]
Umar, A.A.; Patah, M.F.A.; Abnisa, F.; Daud, W.M.A.W. Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids Surf. A Physicochem. Eng. Asp., 2021, 619, 126545.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126545]
[106]
Sadeghi, M.S.; Sangrizeh, F.H.; Jahani, N.; Abedin, M.S.; Chaleshgari, S.; Ardakan, A.K.; Baeelashaki, R.; Ranjbarpazuki, G.; Rahmanian, P.; Zandieh, M.A.; Nabavi, N.; Aref, A.R.; Salimimoghadam, S.; Rashidi, M.; Rezaee, A.; Hushmandi, K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environ. Res., 2023, 237(Pt 2), 117027.
[http://dx.doi.org/10.1016/j.envres.2023.117027] [PMID: 37659647]
[107]
Taheriazam, A.; Abad, G.G.Y.; Hajimazdarany, S.; Imani, M.H.; Ziaolhagh, S.; Zandieh, M.A.; Bayanzadeh, S.D.; Mirzaei, S.; Hamblin, M.R.; Entezari, M.; Aref, A.R.; Zarrabi, A.; Ertas, Y.N.; Ren, J.; Rajabi, R.; Paskeh, M.D.A.; Hashemi, M.; Hushmandi, K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J. Control. Release, 2023, 354, 503-522.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.028] [PMID: 36641122]
[108]
Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord. Chem. Rev., 2023, 475, 214910.
[http://dx.doi.org/10.1016/j.ccr.2022.214910]
[109]
Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.036] [PMID: 33675876]
[110]
Yadav, N.; Kumar, N.; Prasad, P.; Shirbhate, S.; Sehrawat, S.; Lochab, B. Stable dispersions of covalently tethered polymer improved graphene oxide nanoconjugates as an effective vector for siRNA delivery. ACS Appl. Mater. Interfaces, 2018, 10(17), 14577-14593.
[http://dx.doi.org/10.1021/acsami.8b03477] [PMID: 29634909]
[111]
Uehara, T.M.; Migliorini, F.L.; Facure, M.H.M.; Palma Filho, N.B.; Miranda, P.B.; Zucolotto, V.; Correa, D.S. Nanostructured scaffolds containing graphene oxide for nanomedicine applications. Polym. Adv. Technol., 2022, 33(2), 591-600.
[http://dx.doi.org/10.1002/pat.5541]
[112]
Yang, Y.; Zhang, Y.M.; Chen, Y.; Zhao, D.; Chen, J.T.; Liu, Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry, 2012, 18(14), 4208-4215.
[http://dx.doi.org/10.1002/chem.201103445] [PMID: 22374621]
[113]
Grinceviciute, N.; Snopok, B.; Snitka, V. Functional two-dimensional nanoarchitectures based on chemically converted graphene oxide and hematoporphyrin under the sulfuric acid treatment. Chem. Eng. J., 2014, 255, 577-584.
[http://dx.doi.org/10.1016/j.cej.2014.06.081]
[114]
PramaniK, A.; Jones, S.; Gao, Y.; Sweet, C.; Vangara, A.; Begum, S.; Ray, P.C. Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv. Drug Deliv. Rev., 2018, 125, 21-35.
[http://dx.doi.org/10.1016/j.addr.2018.01.004] [PMID: 29329995]
[115]
Zhao, Z.; Gao, J.; Cai, W.; Li, J.; Kong, Y.; Zhou, M. Synthesis of oxidized carboxymethyl cellulose/chitosan hydrogels doped with graphene oxide for pH- and NIR-responsive drug delivery. Eur. Polym. J., 2023, 199, 112437.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112437]
[116]
Low, L.E.; Wu, J.; Lee, J.; Tey, B.T.; Goh, B.H.; Gao, J.; Li, F.; Ling, D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J. Control. Release, 2020, 324, 69-103.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.014] [PMID: 32423874]
[117]
Agwa, M.M.; Elmotasem, H.; Elsayed, H.; Abdelsattar, A.S.; Omer, A.M.; Gebreel, D.T.; Mohy-Eldin, M.S.; Fouda, M.M.G. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int. J. Biol. Macromol., 2023, 239, 124294.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124294] [PMID: 37004933]
[118]
Liu, X.; Yu, B.; Shen, Y.; Cong, H. Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord. Chem. Rev., 2022, 468, 214609.
[http://dx.doi.org/10.1016/j.ccr.2022.214609]
[119]
Alexander, C.A.; Yang, Y.Y. Harnessing the combined potential of cancer immunotherapy and nanomedicine: A new paradigm in cancer treatment. Nanomedicine, 2022, 40, 102492.
[http://dx.doi.org/10.1016/j.nano.2021.102492] [PMID: 34775062]
[120]
Rostami, M.; Rahimi-Nasrabadi, M.; Ghaderi, A.; Hajiabdollah, A.; Banafshe, H.R.; Nasab, A.S. ZnFe2O4@L-cysteine-N/RGO as efficient nano-sonosensitizers, pH-responsive drug carriers and surface charge switchable drug delivery system for targeted chemo-sonodynamic therapy of cancer. Diamond Related Materials, 2023, 133, 109701.
[http://dx.doi.org/10.1016/j.diamond.2023.109701]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy