Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Protective Effects of Murraya koenigii: Focus on Antihyperlipidemic Property

In Press, (this is not the final "Version of Record"). Available online 15 February, 2024
Author(s): Pearl Pinto and Louis Cojandaraj*
Published on: 15 February, 2024

DOI: 10.2174/0115748855278592240131105512

Price: $95

Abstract

In the current scenario, discovery of natural bioactive components can be considered as a major development in treating common ailments. One of the medicinally important herbs is Murraya koenigii. The biological functions are promoted by the leaves, fruits, roots, and bark of this beautiful plant. It is the carbazole alkaloids that promote most of the medicinal properties and contribute to the anti-oxidative properties as well. Terpenoids, Flavonoids, Saponins and Phenols isolated from different parts of the plant have unique hypocholestrolemic and antidiabetic activities. Among commonly used alternative therapies, plant sterols present in M. koenigii may help to reduce cholesterol and triglyceride levels, in turn managing heart diseases. Experimental animal studies are proving the hypolipidemic ability of M. koenigii. Possible mechanisms involved in exhibiting such an amazing hypolipidemic ability can be attributed to the phytochemicals, some of which can reduce the absorption of cholesterol in the intestines or accelerate the catabolism of fats. In contrast, others can inhibit the enzyme HMG CoA reductase. M. koenigii can inhibit pancreatic lipase. Such a response could be due to the presence of carbazole alkaloids like Mahanimbin, Isomahanine, Murrayacinine, Koenimbine, Mahanimboline, Murrayazolinine, Girinimbine etc. These enzymes can be selected for the pharmaceutical mediation of hypocholesterolemia agents. A triumph over the production of lipids in the hepatic cells is achieved upon feeding M. koenigii, thereby bringing about a drastic fall in triglyceride levels. The present review provides a better understanding of the major components of M. koenigii against dyslipidemia that could serve as an herbal alternative while treating other pathological conditions. Although various extracts of M. koenigii have numerous medical applications, an extensive investigation of their toxicity, along with more clinical trials and standardization of protocols, is required to produce modern drugs from these leaf extracts.

[1]
Reynaldi MI, Santoso S, Tjahjono K. The effect of stratified doses of curry leaf extract (murraya koenigii) on total cholesterol and triglycerides in male sprague-dawley rats induced by high fat feed. Dipone Med J 2021; 10(1): 9-15.
[http://dx.doi.org/10.14710/dmj.v10i1.29256]
[2]
Jenkins DJA, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA 2003; 290(4): 502-10.
[http://dx.doi.org/10.1001/jama.290.4.502] [PMID: 12876093]
[3]
Kant Upadhyay R. Antihyperlipidemic and cardioprotective effects of plant natural products: A review. Int J Green Pharm 2021; 15(1): 11.
[4]
Ferdowsian HR, Barnard ND, Barnard ND. Effects of plant-based diets on plasma lipids. Am J Cardiol 2009; 104(7): 947-56.
[http://dx.doi.org/10.1016/j.amjcard.2009.05.032] [PMID: 19766762]
[5]
Mhaskar KS, Blatter E, Caius JF. Kirtikar and Basu’s Illustrated Indian Medicinal Plants: Their Usage in Ayurveda and Unani Medicines. Sri Satguru Publications 2000; 10.
[6]
Chaudhary A. A review on the culinary uses and therapeutic properties of murraya koenigii. J Adv Pharmacogn 2020; 1(1)
[7]
Igara C, Omoboyowa D, Ahuchaogu A, Orji N, Ndukwe M. Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf CE Igara, DA Omoboyowa, AA Ahuchaogu, NU Orji and MK Ndukwe. J Pharmacogn Phytochem 2016; 5(5): 4-7.
[8]
Tembhurne S V, Sakarkar D M. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L) leaves in high fatty diet rats. Asian Pacific J Trop Dis 2012; 2(S1): S166-8.
[http://dx.doi.org/10.1016/S2222-1808(12)60145-5]
[9]
Prakash PN and Natarajan CP. Studies on curry leaf (Murraya koenigii L). J Food Sci Technol 1974.
[10]
Vinuthan MK, Kumar VG, Ravindra JP, Gupta PSP, Arun SJ. Changes in the blood lipid profile after administration of Murraya koenigii Spreng (curry leaf) extracts in the normal Sprague Dawley rats. Indian J Anim Res 2007; 41(3): 223-5.
[11]
Xie JT, Chang WT, Wang CZ, et al. Curry leaf (Murraya koenigii Spreng.) reduces blood cholesterol and glucose levels in ob/ob mice. Am J Chin Med 2006; 34(2): 279-84.
[http://dx.doi.org/10.1142/S0192415X06003825] [PMID: 16552838]
[12]
Phatak RS, Khanwelkar CC, Matule SM, Datkhile KD, Hendre AS. Antihyperlipidemic activity of Murraya koenigii leaves methanolic and aqueous extracts on serum lipid profile of high fat-fructose fed rats. Pharmacogn J 2019; 11(4): 836-41.
[http://dx.doi.org/10.5530/pj.2019.11.134]
[13]
Birari R, Javia V, Bhutani KK. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia 2010; 81(8): 1129-33.
[http://dx.doi.org/10.1016/j.fitote.2010.07.013] [PMID: 20655993]
[14]
Kesari AN, Kesari S, Singh SK, Gupta RK, Watal G. Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. J Ethnopharmacol 2007; 112(2): 305-11.
[http://dx.doi.org/10.1016/j.jep.2007.03.023] [PMID: 17467937]
[15]
Molly J. Effect of Murraya koenigii (curry leaves) powder on the liver and renal functions in women with hyperlipidemia. Int J Health Sci Res 2017; 7(1): 188-92.
[16]
Khan BP, Abraham A, Leelamma S. Biochemical response in rats to the addition of curry leaf (Murraya koenigii) and mustard seeds (Brassica juncea) to the diet. Plant Foods Hum Nutr 1996; 49(4): 295-9.
[17]
Iyer UM, Mani UV. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients. Plant Foods Hum Nutr 1990; 40(4): 275-82.
[http://dx.doi.org/10.1007/BF02193851] [PMID: 2174154]
[18]
Liu JC, Chan P, Hsu FL, et al. The in vitro inhibitory effects of crude extracts of traditional Chinese herbs on 3-hydroxy-3-methylglutaryl-coenzyme A reductase on Vero cells. Am J Chin Med 2002; 30(4): 629-36.
[http://dx.doi.org/10.1142/S0192415X02000454] [PMID: 12568290]
[19]
Chakrabarti R. Pharmacotherapy of obesity: Emerging drugs and targets. Expert Opin Ther Targets 2009; 13(2): 195-207.
[http://dx.doi.org/10.1517/14728220802637063] [PMID: 19236237]
[20]
Kim GN, Shin MR, Shin SH, et al. Study of antiobesity effect through inhibition of pancreatic lipase activity of diospyros kaki fruit and citrus unshiu peel. BioMed Res Int 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/1723042] [PMID: 27529064]
[21]
Abdul Rahman H, Saari N, Abas F, Ismail A, Mumtaz MW, Abdul Hamid A. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. Int J Food Prop 2017; 20(11): 2616-29.
[http://dx.doi.org/10.1080/10942912.2016.1247098]
[22]
Henry WL. Perspectives in diabetes. J Natl Med Assoc 1962; 54(4): 476-8.
[PMID: 13906557]
[23]
Rani A, Kumar S, Khar RK. In vitro antidiabetic and hypolipidemic activity of selected medicinal plants. Int J Pharm Biol Sci 2019; 9(1): 664-8.
[http://dx.doi.org/10.21276/ijpbs.2019.9.1.85]
[24]
Bello M, Basilio-Antonio L, Fragoso-Vázquez J, Avalos-Soriano A, Correa-Basurto J. Molecular recognition between pancreatic lipase and natural and synthetic inhibitors. Int J Biol Macromol 2017; 98: 855-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.150] [PMID: 28212930]
[25]
Isolated P. NPC. Nat Prod Commun 2010; 1(4): 9-12.
[26]
Gaur P, Shanker K, Plants A. In vitro Screening of alcoholic and hydroalcoholic extracts of Ayurvedic medicinal plants for the management of hyperlipidemia. Proceedings of the 5th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland. 2019.1-30 Nov;
[http://dx.doi.org/10.3390/ECMC2019-06409]
[27]
Handral H. Pharmacophore 2010; (April): 2016.
[28]
Zheleva-Dimitrova D. Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: A biochemical, histological and electrophysiological study. Pharmacogn Mag 2010; 149(22): 74-8.
[http://dx.doi.org/10.4103/0973-1296.62889] [PMID: 20668569]
[29]
Tanaka CUY. NII-electronic library service. Chem Pharm Bull 1994; 17(11): 1460-2.
[30]
Mukherjee M, Mukherjee S, Shaw AK, Ganguly SN. Mukonicine, a carbazole alkaloid from leaves of murraya koenigii. Phytochemistry 1983; 22(10): 2328-9.
[http://dx.doi.org/10.1016/S0031-9422(00)80178-8]
[31]
Kureel SP, Kapil RS, Popli SP. Terpenoid alkaloids from Murraya koenigii Spreng. II. The constitution of cyclomahanimbine, bicyclomahanibine, and mahanimbidine. Tetrahedron Lett 1969; 10(44): 3857-62.
[http://dx.doi.org/10.1016/S0040-4039(01)88531-2] [PMID: 5348311]
[32]
PATRICK S. ChemInform Abstract: THE DI-PI-methane rearrangement, stereochemistry. Chem Informat 1974; 5(11)
[33]
Reisch J. Alkaloids from seeds of murraya koeivzgzz. 1992; 31(8): 2877-9.
[34]
Mandal S, Nayak A, Kar M, et al. Antidiarrhoeal activity of carbazole alkaloids from Murraya koenigii Spreng (Rutaceae) seeds. Fitoterapia 2010; 81(1): 72-4.
[http://dx.doi.org/10.1016/j.fitote.2009.08.016] [PMID: 19695314]
[35]
Adebajo AC, Ayoola OF, Iwalewa EO, et al. Anti-trichomonal, biochemical and toxicological activities of methanolic extract and some carbazole alkaloids isolated from the leaves of Murraya koenigii growing in Nigeria. Phytomedicine 2006; 13(4): 246-54.
[http://dx.doi.org/10.1016/j.phymed.2004.12.002] [PMID: 16492527]
[36]
Boccellino M, Angelo S D. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int J Mol Sci 2020; 21(61): 5642.
[37]
Villa-Ruano N, Zurita-Vásquez GG, Pacheco-Hernández Y, Betancourt-Jiménez MG, Cruz-Durán R, Duque-Bautista H. Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México. Biol Res 2013; 46(2): 153-60.
[http://dx.doi.org/10.4067/S0716-97602013000200006] [PMID: 23959013]
[38]
Gajaria TK, Patel DK, Devkar RV, Ramachandran AV. Flavonoid rich extract of Murraya Koenigii alleviates in-vitro LDL oxidation and oxidized LDL induced apoptosis in raw 264.7 Murine macrophage cells. J Food Sci Technol 2014; 52(6): 3367-75.
[http://dx.doi.org/10.1007/s13197-014-1399-2] [PMID: 26028717]
[39]
Liu PK, Weng ZM, Ge GB, et al. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int J Biol Macromol 2018; 118(Pt B): 2216-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.085] [PMID: 30009906]
[40]
Gupta S, Paarakh PM, Gavani U. Antioxidant activity of murraya koenigii linn leaves. Pharmacologyonline 2009; 478: 474-8.
[41]
Han LK, Sumiyoshi M, Zheng YN, Okuda H, Kimura Y. Anti‐obesity action of Salix matsudana leaves (Part 2). Isolation of anti‐obesity effectors from polyphenol fractions of Salix matsudana. Phytother Res 2003; 17(10): 1195-8.
[http://dx.doi.org/10.1002/ptr.1405] [PMID: 14669255]
[42]
Kuppusamy UR, Das NP. Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochem Pharmacol 1992; 44(7): 1307-15.
[http://dx.doi.org/10.1016/0006-2952(92)90531-M] [PMID: 1384499]
[43]
Ningappa MB, Dinesha R, Srinivas L. Antioxidant and free radical scavenging activities of polyphenol-enriched curry leaf (Murraya koenigii L.) extracts. Food Chem 2008; 106(2): 720-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.057]
[44]
Chatuphonprasert W, Sangkawat T, Nemoto N, Jarukamjorn K. Suppression of beta-naphthoflavone induced CYP1A expression and lipid-peroxidation by berberine. Fitoterapia 2011; 82(6): 889-95.
[http://dx.doi.org/10.1016/j.fitote.2011.05.002] [PMID: 21624442]
[45]
Shabir S, Yousuf S, Singh SK, Vamanu E, Singh MP. Ethnopharmacological effects of urtica dioica, matricaria chamomilla, and murraya koenigii on rotenone-exposed D. melanogaster: An attenuation of cellular, biochemical, and organismal markers. Antioxidants 2022; 11(8): 1623.
[http://dx.doi.org/10.3390/antiox11081623] [PMID: 36009342]
[46]
Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. J Med Food 2005; 8(3): 281-90.
[http://dx.doi.org/10.1089/jmf.2005.8.281] [PMID: 16176136]
[47]
Ashokkumar K, Selvaraj K, Devi S. Reverse phase-high performance liquid chromatography-diode array detector (RP-HPLC-DAD) analysis of flavonoids profile from curry leaf (Murraya koenigii. L). J Med Plants Res 2013; 7(47): 3393-99.
[48]
Saad B, Ghareeb B, Kmail A. Metabolic and epigenetics action mechanisms of antiobesity medicinal plants and phytochemicals. Evid-Based Complemen Altern Med 2021; 2021: 19.
[49]
Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct 2019; 10(2): 514-28.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[50]
Bajes HR, Almasri I, Bustanji Y. Plant products and their inhibitory activity against pancreatic lipase. Rev Bras Farmacogn 2020; 30(3): 321-30.
[http://dx.doi.org/10.1007/s43450-020-00055-z]
[51]
Chen G, Li H, Zhao Y, et al. Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice. Food Chem Toxicol 2017; 106(Pt A): 393-403.
[http://dx.doi.org/10.1016/j.fct.2017.06.012] [PMID: 28599882]
[52]
Prabhachandh SR, Babychan N. Phytochemical Analysis of Murraya koenigii in Urban and Coastal Area. 2017. Available from:www.jetir.org
[53]
Elekofehinti OO. The effect of saponin from solanum anguivilam. Fruit on serum lipid and oxidative stress in hepatocyte of diabetic rats. Brazillian conference of medicinal plants. Bentos Goncalves, Brazil. 2014; pp. 3-5.
[54]
Tomar RS, Banerjee S, Kaushik S. Assessment of antioxidant activity of leaves of Murraya koenigii extracts and it’s comparative efficacy analysis in different solvents. J Pharm Sci Res 2017; 9(3): 288-91.
[55]
He HF. Recognition of gallotannins and the physiological activities: From chemical view. Front Nutr 2022; 9(June): 888892.
[http://dx.doi.org/10.3389/fnut.2022.888892] [PMID: 35719149]
[56]
Torres-León C, Ventura-Sobrevilla J, Serna-Cock L, Ascacio-Valdés JA, Contreras-Esquivel J, Aguilar CN. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J Funct Foods 2017; 37: 176-89.
[http://dx.doi.org/10.1016/j.jff.2017.07.045]
[57]
Vinarova L, Vinarov Z, Atanasov V, et al. Lowering of cholesterol bioaccessibility and serum concentrations by saponins: In vitro and in vivo studies. Food Funct 2015; 6(2): 501-12.
[http://dx.doi.org/10.1039/C4FO00785A] [PMID: 25479247]
[58]
Sieniawska E. Activities of tannins-From in vitro studies to clinical trials. Nat Prod Commun 2015; 10(11): 1934578X1501001.
[http://dx.doi.org/10.1177/1934578X1501001118] [PMID: 26749816]
[59]
Serrano J, Puupponen-Pimiä R, Dauer A, Aura A M, Saura-Calixto F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53(S2): S310-29.
[http://dx.doi.org/10.1002/mnfr.200900039]
[60]
Li Y, Kim J, Li J, et al. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun 2005; 336(2): 430-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.103] [PMID: 16137651]
[61]
Liu X, Malki A, Cao Y, et al. Glucose- and triglyceride-lowering dietary penta-O-galloyl-α-D-glucose reduces expression of PPARγ and C/EBPα, induces p21-Mediated G1 phase cell cycle arrest, and inhibits adipogenesis in 3T3-L1 preadipocytes. Exp Clin Endocrinol Diabetes 2015; 123(5): 308-16.
[http://dx.doi.org/10.1055/s-0035-1548789] [PMID: 25988880]
[62]
Kejariwal M. Antioxidant potential of Murraya koenigii‘s ( L .) Sprenge polysaccharide. Bull Env Pharmacol Life Sci 2021; 10(1): 98-105.
[63]
Kalita P, Ahmed AB, Sen S, Chakraborty R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int J Biol Macromol 2022; 206: 681-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.189] [PMID: 35247430]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy