Abstract
Background: Nanocellulose is not only a biocompatible and environmentally friendly material but also has excellent mechanical properties, biodegradability, and a large number of hydroxyl groups that have a strong affinity for water. These characteristics have attracted significant attention from researchers in the field of glucose sensing.
Objective: This review provides a brief overview of the current research status of traditional materials used in glucose sensors. The sensing performance, chemical stability, and environ-mental properties of nanocellulose-based glucose sensors are compared and summarized based on the three sensing methods: electrochemical sensing, colorimetric sensing, and fluo-rescence sensing. The article focuses on recent strategies for glucose sensing using nanocel-lulose as a matrix. The development prospects of nanocellulose-based glucose sensors are also discussed.
Conclusion: Nanocellulose has outstanding structural characteristics that contribute signifi-cantly to the sensing performance of glucose sensors in different detection modes. However, the preparation process for high-quality nanocellulose is complicated and has a low yield. Furthermore, the sensitivity and selectivity of nanocellulose-based glucose sensors require further improvement.
[http://dx.doi.org/10.1016/j.carbpol.2020.116704]
[http://dx.doi.org/10.1016/j.jelechem.2019.04.032]
[http://dx.doi.org/10.1016/j.snb.2020.127866]
[http://dx.doi.org/10.1016/j.snb.2018.11.078]
[http://dx.doi.org/10.3389/fchem.2022.944428]
[http://dx.doi.org/10.1038/s41598-023-45154-8]
[http://dx.doi.org/10.3390/antiox11061064]
[http://dx.doi.org/10.1039/c1cs15063d]
[http://dx.doi.org/10.1016/j.bios.2019.111760]
[http://dx.doi.org/10.1016/j.snb.2017.07.071]
[http://dx.doi.org/10.1109/JSEN.2021.3053033]
[http://dx.doi.org/10.3390/s19112511]
[http://dx.doi.org/10.3390/mi13040598]
[http://dx.doi.org/10.1021/acs.iecr.2c00370]
[http://dx.doi.org/10.2174/1573413717666210816100826]
[http://dx.doi.org/10.1016/j.carbpol.2013.01.033]
[http://dx.doi.org/10.1002/anie.201001273]
[http://dx.doi.org/10.13801/j.cnki.fhclxb.20210402.002]
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.031]
[http://dx.doi.org/10.1016/j.ese.2020.100077]
[http://dx.doi.org/10.1021/ie101797d]
[http://dx.doi.org/10.1016/j.carbpol.2010.07.029]
[http://dx.doi.org/10.1039/C1GC15103G]
[http://dx.doi.org/10.1016/j.biortech.2010.09.030]
[http://dx.doi.org/10.1016/j.carres.2010.10.020]
[http://dx.doi.org/10.1016/j.nanoen.2018.09.060]
[http://dx.doi.org/10.1016/j.copbio.2016.01.002]
[http://dx.doi.org/10.1016/j.nanoen.2016.12.057]
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104533]
[http://dx.doi.org/10.3390/coatings10010058]
[http://dx.doi.org/10.1016/j.bios.2020.112165]
[http://dx.doi.org/10.1016/j.bios.2020.112690]
[http://dx.doi.org/10.1021/ac9907540]
[http://dx.doi.org/10.1016/j.ceramint.2014.10.069]
[http://dx.doi.org/10.20964/2019.08.47]
[http://dx.doi.org/10.1016/j.cclet.2013.02.010]
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[http://dx.doi.org/10.1007/s40820-017-0148-2] [PMID: 30393742]
[http://dx.doi.org/10.1021/ac0155052]
[http://dx.doi.org/10.1021/acsami.8b16058]
[http://dx.doi.org/10.3390/bios10090125]
[http://dx.doi.org/10.1016/j.snb.2019.127420]
[http://dx.doi.org/10.1016/j.carbpol.2020.116356]
[http://dx.doi.org/10.1016/j.snb.2020.129330]
[http://dx.doi.org/10.1016/j.carbpol.2018.10.084]
[http://dx.doi.org/10.1016/j.carbpol.2018.12.046]
[http://dx.doi.org/10.1016/j.carbpol.2020.117239]
[http://dx.doi.org/10.1002/em.21913]
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.105]
[http://dx.doi.org/10.1089/ind.2014.0024]
[http://dx.doi.org/10.1021/sc500153k]
[http://dx.doi.org/10.1039/c4tb00584h]
[http://dx.doi.org/10.1016/j.carbpol.2020.117506]
[http://dx.doi.org/10.1016/j.snb.2018.11.055]
[http://dx.doi.org/10.1007/s10570-013-0088-z]
[http://dx.doi.org/10.1039/C0CS00108B]
[http://dx.doi.org/10.1038/ncomms5018]
[http://dx.doi.org/10.1021/bm500566m]
[http://dx.doi.org/10.1021/acsami.6b14650]