Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Research Progress on the Application of Nanocellulose in Glucose Sensing

In Press, (this is not the final "Version of Record"). Available online 15 February, 2024
Author(s): Jianzhong Yuan, Caichao Wan*, Song Wei, Huayun Chai and Tao Tao*
Published on: 15 February, 2024

DOI: 10.2174/0115701794273511231212072414

Price: $95

Abstract

Background: Nanocellulose is not only a biocompatible and environmentally friendly material but also has excellent mechanical properties, biodegradability, and a large number of hydroxyl groups that have a strong affinity for water. These characteristics have attracted significant attention from researchers in the field of glucose sensing.

Objective: This review provides a brief overview of the current research status of traditional materials used in glucose sensors. The sensing performance, chemical stability, and environ-mental properties of nanocellulose-based glucose sensors are compared and summarized based on the three sensing methods: electrochemical sensing, colorimetric sensing, and fluo-rescence sensing. The article focuses on recent strategies for glucose sensing using nanocel-lulose as a matrix. The development prospects of nanocellulose-based glucose sensors are also discussed.

Conclusion: Nanocellulose has outstanding structural characteristics that contribute signifi-cantly to the sensing performance of glucose sensors in different detection modes. However, the preparation process for high-quality nanocellulose is complicated and has a low yield. Furthermore, the sensitivity and selectivity of nanocellulose-based glucose sensors require further improvement.

[1]
Tracey, C.T.; Torlopov, M.A.; Martakov, I.S.; Vdovichenko, E.A.; Zhukov, M.; Krivoshapkin, P.V.; Mikhaylov, V.I.; Krivoshapkina, E.F. Hybrid cellulose nanocrystal/magnetite glucose biosensors. J. Carbohydrate Polymers., 2020, 247, 116704-116712.
[http://dx.doi.org/10.1016/j.carbpol.2020.116704]
[2]
Fang, L.; Zhu, Q.; Cai, Y.; Liang, B.; Ye, X. 3D Porous structured polyaniline/reduced graphene oxide/copper oxide decorated elec- trode for high performance nonenzymatic glucose detectionJ. Electroanal. Chem., 2019, 841, 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.032]
[3]
Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-in- duced porous graphene based flexible and ultrasensitive electro- chemical biosensor for sweat glucose detection. Sens. Actuators B Chem., 2020, 311, 127866.
[http://dx.doi.org/10.1016/j.snb.2020.127866]
[4]
Rahsepar, M.; Foroughi, F.; Kim, H. A new enzyme-free biosen- sor based on nitrogen-doped graphene with high sensing perfor- mance for electrochemical detection of glucose at biological PH value. Sens. Actuators B Chem., 2019, 282, 322-330.
[http://dx.doi.org/10.1016/j.snb.2018.11.078]
[5]
Du, Y.; Zhang, X.; Liu, P.; Deng, G.; Ge, R. Electrospun nanofiber-based glucose sensors for glucose detection. J. Frontiers in Chemistry., 2022, 10, 944428.
[http://dx.doi.org/10.3389/fchem.2022.944428]
[6]
Ollmar, S.; Fernandez Schrunder, A.; Birgersson, U.; Kristoffersson, T.; Rusu, A.; Thorsson, E.; Hedenqvist, P.; Manell, E.; Rydén, A.; Jensen-Waern, M.; Rodriguez, S. A battery-less implantable glucose sensor based on electrical impedance spectroscopy. J. Scientific Reports., 2023, 13(1), 18122.
[http://dx.doi.org/10.1038/s41598-023-45154-8]
[7]
Alam, M.W. Al, Qahtani H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.; Naeem, S. Novel copper-zinc-manganese ternary metal oxide nanocomposite as heterogeneous catalyst for glucose sensor and antibacterial activity. J. Antioxidants., 2022, 11(6), 1064.
[http://dx.doi.org/10.3390/antiox11061064]
[8]
Steiner, M.; Duerkop, A.; Wolfbeis, O. Optical methods for sensing glucose. Chem. Soc. Rev., 2011, 40, 4805-4839.
[http://dx.doi.org/10.1039/c1cs15063d]
[9]
Wenyan, T. Structural Desigh and Performance Study of Electrode Materials for Non-enzymatic Glucose Sensors. Master Thesis, Central South University of Forestry and Technology: Changsha, June, 2022.
[10]
Pingping, Q. Application of Nanomaterials Based on Bio-derived Carbon in Non-enzymatic Glucose Sensors. PhD Thesis, Central China Normal University: Wuhan, June, 2017.
[11]
Sha, Y.; Liyun, D.; Haitao, L.; Wei, W.; Jun, H. A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film. J. Biosens. Bioelectron., 2019, 146, 111760-111767.
[http://dx.doi.org/10.1016/j.bios.2019.111760]
[12]
Jingjing, Y.; Peng, J.; Baoxiu, W.; Huaping, W.; Shiyan, C. Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing. J. Sensors & Actuators: B. Chemical., 2018, 254, 110-119.
[http://dx.doi.org/10.1016/j.snb.2017.07.071]
[13]
Ahmadi, A.; Khoshfetrat, S.M.; Kabiri, S.; Fotouhi, L.; Dorraji, P.S.; Omidfar, K. Impedimetric paper-based enzymatic biosensor using electrospun cellulose acetate nanofiber and reduced graphene oxide for detection of glucose from whole blood. J. IEEE Sensors Journal., 2021, 21(7), 9210-9217.
[http://dx.doi.org/10.1109/JSEN.2021.3053033]
[14]
Pengfei, Lv. Preparation and Sensing Properties of Bacterial Cellulose Modified by Nanocarbon. PhD Thesis, Jiang Nan University: Wuxi, June, 2019.
[15]
Yee, Y.C.; Hashim, R.; Mohd-Yahya, A.R.; Bustami, Y. Colorimetric analysis of glucose oxidase-magnetic cellulose nanocrystals (CNCs) for glucose detection. J. Sens., 2019, 19(11), 2511-2523.
[http://dx.doi.org/10.3390/s19112511]
[16]
Beitollahi, H.; Tajik, S.; di Bartolomeo, A. Application of MnO2 nanorod-ionic liquid modified carbon paste electrode for the voltammetric determination of sulfanilamide. J Micromachines., 2022, 13(4), 598-614.
[http://dx.doi.org/10.3390/mi13040598]
[17]
Tajik, S.; Afshar, A.A.; Shamsaddini, S.; Askari, M.B.; Dourandish, Z.; Nejad, F.G.; Beitollahi, H.; di Bartolomeo, A. Fe3O4@MoS2/rGO nanocomposite/ionic liquid modified carbon paste electrode for electrochemical sensing of Dasatinib in the presence of doxorubicin. J Ind Eng Chem Res., 2022, 62(11), 4473-4480.
[http://dx.doi.org/10.1021/acs.iecr.2c00370]
[18]
Alam, M.W. Electrochemical sensing of dextrose and photocatalytic activities by nickel ferrite nanoparticles synthesized by probe sonication method. J Curr Nanosci., 2021, 17, 893-903.
[http://dx.doi.org/10.2174/1573413717666210816100826]
[19]
Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J.M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. J. Carbohydr. Polym., 2013, 94(1), 154-169.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.033]
[20]
Klemn, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. J. Angew. Chem. Int. Ed., 2011, 50(24), 5438-5466.
[http://dx.doi.org/10.1002/anie.201001273]
[21]
Zhang, Y.; Sun, Y.; Yu, F.; Ma, J. Research progress on the application of bactieral cellulose and its composites in environmental field. J. Acta Materiae Compositae Sinica, 2021, 38(8), 2418-2427.
[http://dx.doi.org/10.13801/j.cnki.fhclxb.20210402.002]
[22]
Li, M.; Liu, X.; Liu, N.; Guo, Z.; Singh, P.K.; Fu, S. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. J. Colloids Surf. A Physicochem. Eng. Asp., 2018, 554, 122-128.
[http://dx.doi.org/10.1016/j.colsurfa.2018.06.031]
[23]
Yu, S.; Sun, J.; Shi, Y.; Wang, Q.; Wu, J.; Liu, J. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. J. Environmental Science and Ecotechnology., 2021, 5, 100077-100089.
[http://dx.doi.org/10.1016/j.ese.2020.100077]
[24]
Purkait, B.S.; Ray, D.; Sengupta, S.; Kar, T.; Mohanty, A.; Misra, M. Isolation of cellulose nanoparticles from sesame husk. J. Ind. Eng. Chem. Res., 2011, 50(2), 871-876.
[http://dx.doi.org/10.1021/ie101797d]
[25]
Satyamurthy, P.; Jain, P.; Balasubramanya, R.H.; Vigneshwaran, N. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. J. Carbohydrate Polymers., 2011, 83(1), 122-129.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.029]
[26]
Zhu, J.Y.; Sabo, R.; Luo, X. Integrated production of nano-fibrillated cellulose and cellu- losic biofuel (ethanol) by enzymatic fractionation of wood fibers. J. Green Chemistry., 2011, 13(5), 1339-1344.
[http://dx.doi.org/10.1039/C1GC15103G]
[27]
Deepa, B.; Abraham, E.; Cherian, B.M.; Bismarck, A.; Blaker, J.J.; Pothan, L.A.; Leao, A.L.; Souza, S.F.; Kottaisamy, M. Structure, morphology and thermal charac-teristics of banana nano fibers obtained by steam explosion. J. Bioresource Technology., 2011, 102(2), 1988-1997.
[http://dx.doi.org/10.1016/j.biortech.2010.09.030]
[28]
Kaushik, A.; Singh, M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. J. Carbohydrate Research., 2011, 346(1), 76-85.
[http://dx.doi.org/10.1016/j.carres.2010.10.020]
[29]
Kim, I.; Jeon, H.; Kim, D.; You, J.; Kim, D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. J. Nano Energy., 2018, 53, 975-981.
[http://dx.doi.org/10.1016/j.nanoen.2018.09.060]
[30]
Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, F.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. J. Current Opinion in Biotechnology., 2016, 39, 76-88.
[http://dx.doi.org/10.1016/j.copbio.2016.01.002]
[31]
Mulyadi, A.; Zhang, Z.; Dutzer, M.; Liu, W.; Deng, Y. Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution. J. Nano Energy., 2017, 32, 336-346.
[http://dx.doi.org/10.1016/j.nanoen.2016.12.057]
[32]
El-Nahrawy, A.M.; Abou-Hammad, A.B.; Khattab, T.A.; Haroun, A.; Kamel, S. Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel (III) oxide nanoparticles. React. Funct. Polym., 2020, 149, 104533-104544.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104533]
[33]
Abdelrahman, M.S.; Nassar, S.H.; Mashaly, H.; Mahmoud, S.; Maamoun, D. EI-Sakhawy, M.; Khattab, T.A.; Kamel, S. Studies of polylactic acid and metal oxide nanoparticles-based composites for multifunctional textile prints. J. Coatings., 2020, 10(1), 58-77.
[http://dx.doi.org/10.3390/coatings10010058]
[34]
Sehit, E.; Altintas, Z. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020). J. Biosens. Bioelectron., 2020, 159, 112165-112217.
[http://dx.doi.org/10.1016/j.bios.2020.112165]
[35]
Li, X.; Feng, Q.; Lu, K.; Huang, J.; Zhang, Y.; Hou, Y.; Qiao, H.; Li, D. Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor. J. Biosens. Bioelectron., 2021, 171, 112690-112697.
[http://dx.doi.org/10.1016/j.bios.2020.112690]
[36]
J-S, Yoo.; S-M, Park. An electrochemical impedance measurement technique employing Fourier transform. J. Anal. Chem., 2000, 72(9), 2035-2041.
[http://dx.doi.org/10.1021/ac9907540]
[37]
Fu, L.; Fu, Z. Plectranthus amboinicus leaf extract-assisted biosyn- thesis of zno nanoparticles and their photocatalytic activity. Ceram. Int., 2015, 41(2, Part A), 2492-2496.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.069]
[38]
Li, H.; Kuang, X.; Shen, X.; Zhu, J.; Zhang, B.; Li, H. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode. Int. J. Electrochem. Sci., 2019, 14, 7858-7870.
[http://dx.doi.org/10.20964/2019.08.47]
[39]
Hong, X-P.; Ma, J-Y. Electrochemical study of sulfadiazine on a novel phthalocyanine-containing chemically modified electrode. Chin. Chem. Lett., 2013, 24(4), 329-331.
[http://dx.doi.org/10.1016/j.cclet.2013.02.010]
[40]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of trama dol as two opioid analgesic drugs. J. Pharm. Biomed. Anal., 2020, 189, 113397.
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[41]
Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett., 2017, 9(4), 47.
[http://dx.doi.org/10.1007/s40820-017-0148-2] [PMID: 30393742]
[42]
J-S, Yoo.; S-M, Park. Reply to comments on the article ‘an electro chemical impedance measurementtechniques employing Fourier trans form. J. Anal. Chem., 2001, 73(16), 4060-4061.
[http://dx.doi.org/10.1021/ac0155052]
[43]
Paulraj, T.; Wennmalm, S.; Riazanova, A.V.; Wu, Q.; Crespo, G.A.; Svagan, A.J. Porous cellulose nanofiber-based microcapsules for biomolecular sensing. J. ACS Appl. Mater. Interfaces, 2018, 10(48), 41146-41154.
[http://dx.doi.org/10.1021/acsami.8b16058]
[44]
Jackson, E.; Correa, S.; Betancor, L. Cellulose-Based Nanosupports for Enzyme Immobilization; J. Cellulose-Based Superabsorbent Hydrogels, 2019, pp. 1235-1253.
[45]
Tang, Y.; Petropoulos, K.; Kurth, F.; Gao, H.; Migliorelli, D.; Guenat, O.; Generelli, S. Screen-printed glucose sensors modified with cellulose nanocrystals (CNCs) for cell culture monitoring. J. Biosensors., 2020, 10(9), 125-140.
[http://dx.doi.org/10.3390/bios10090125]
[46]
Zhao, Y.; Yang, J.; Shan, G.; Liu, Z.; Cui, A.; Wang, A.; Chen, Y.; Liu, Y. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. J. Sensors and Actuators B: Chemical., 2020, 305, 127420-127451.
[http://dx.doi.org/10.1016/j.snb.2019.127420]
[47]
Bandi, R.; Alle, M.; Park, C.W.; Han, S.Y.; Kwon, G.J.; Kim, J.C. Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg (II) detection and dye discoloration. J. Carbohydrate Polymers., 2020, 240, 116356-116366.
[http://dx.doi.org/10.1016/j.carbpol.2020.116356]
[48]
Bandi, R.; Alle, M.; Park, C.W.; Han, S.Y.; Kwon, G.J.; Kim, N.H.; Kim, J.C.; Lee, S.H. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. J. Sensors and Actuators B: Chemical., 2021, 330, 129330-129340.
[http://dx.doi.org/10.1016/j.snb.2020.129330]
[49]
Li, W.; Zhang, L.; Li, Q.; Wang, S.; Luo, X.; Deng, H.; Liu, S. Porous structured cellulose microsphere acts as biosensor for glucose detection with “signal‐and‐color” output. J. Carbohydr. Polym., 2019, 205, 295-301.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.084]
[50]
Franconetti, A.; Carnerero, J.M.; Prado-Gotor, R.; Cabrera-Escribano, F.; Jaime, C. Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles. J. Carbohydr. Polym., 2019, 207, 806-814.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.046]
[51]
Alle, M.; Park, S.C.; Bandi, R.; Lee, S.H.; Kim, J.C. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: recyclable nanozyme for the colorimetric glucose detection. J. Carbohydrate Polymers., 2021, 253, 117239-117251.
[http://dx.doi.org/10.1016/j.carbpol.2020.117239]
[52]
Catalán, J.; Ilves, M.; Järventaus, H.; Hannukainen, K.S.; Kontturi, E.; Vanhala, E.; Alenius, H.; Savolainen, K.M.; Norppa, H. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. J. Environ. Mol. Mutagen., 2015, 56(2), 171-182.
[http://dx.doi.org/10.1002/em.21913]
[53]
Menas, A.L.; Yanamala, N.; Farcas, M.T.; Russo, M.; Friend, S.; Fournier, P.M.; Star, A.; Iavicoli, I.; Shurin, G.V.; Vogel, U.B.; Fadeel, B.; Beezhold, D.; Kisin, E.R.; Shvedova, A.A. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation? J. Chemosphere., 2017, 171, 671-680.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.105]
[54]
Roman, M. Toxicity of cellulose nanocrystals: A review. J. Industrial Biotechnology., 2015, 11(1), 25-33.
[http://dx.doi.org/10.1089/ind.2014.0024]
[55]
Yanamala, N.; Farcas, M.T.; Hatfield, M.K.; Kisin, E.R.; Kagan, V.E.; Geraci, C.L.; Shvedova, A.A. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. J. ACS Sustain. Chem.& Eng., 2014, 2(7), 1691-1698.
[http://dx.doi.org/10.1021/sc500153k]
[56]
Cao, S-L.; Li, X-H.; Lou, W-Y.; Zong, M-H. Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 5522-5530.
[http://dx.doi.org/10.1039/c4tb00584h]
[57]
Siripongpreda, T.; Somchob, B.; Rodthongkum, N.; Hoven, V.P. Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. J. Carbohydrate Polymers., 2021, 256, 117506-117514.
[http://dx.doi.org/10.1016/j.carbpol.2020.117506]
[58]
Cho, M.J.; Park, S.Y. Carbon-dot-based ratiometric fluorescence glucose biosensor. J. Sensors and Actuators B: Chemical., 2019, 282, 719-729.
[http://dx.doi.org/10.1016/j.snb.2018.11.055]
[59]
Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent advances in bacterial cellulose. J. Cellulose., 2014, 21(1), 1-30.
[http://dx.doi.org/10.1007/s10570-013-0088-z]
[60]
Vitta, S.; Thiruvengadam, V. Multifunctional bacterial cellulose and nanoparticle-embedded composites. J. Current Science., 2012, 102(10), 1398-1405.https://www.jstor.org/stable/24107797
[61]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. J. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/C0CS00108B]
[62]
Håkansson, Karl M.O.; Fall, A.B.; Lundell, F.; Yu, S.; Krywka, C.; Roth, S.V.; Santoro, G.; Kvick, M.; Wittberg, L.P.; Wågberg, L.; Söderberg, L.D. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. J. Nat. Commun., 2014, 5(1), 4018-4028.
[http://dx.doi.org/10.1038/ncomms5018]
[63]
Torres-Rendon, J.G.; Schacher, F.H.; Ifuku, H.; Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: A critical comparison. J. Biomacromolecules., 2014, 15(7), 2709-2717.
[http://dx.doi.org/10.1021/bm500566m]
[64]
Yao, J.; Chen, S.; Chen, Y.; Wang, B.; Pei, Q.; Wang, H. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. J. ACS Appl. Mater. Interfaces, 2017, 9(24), 20330-20339.
[http://dx.doi.org/10.1021/acsami.6b14650]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy