Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Bioinformatics-based Identification of Ferroptosis-related Genes and their Diagnostic Value in Gestational Diabetes Mellitus

Author(s): Xiaomei Lv and Yujun An*

Volume 24, Issue 14, 2024

Published on: 12 February, 2024

Page: [1611 - 1621] Pages: 11

DOI: 10.2174/0118715303275367240103102801

Price: $65

Abstract

Background: Gestational diabetes mellitus (GDM) is considered a risk factor for heart metabolic disorder in future mothers and offspring. Ferroptosis is a new type of programmed cell death, which may participate in the occurrence and development of GDM.

Objective: This study aims to identify ferroptosis-related genes in GDM by bioinformatics methods and to explore their clinical diagnostic value.

Methods: The dataset GSE103552 was analyzed using the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes (DEGs) in GDM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and proteinprotein interaction (PPI) network were performed. Gene sets for ferroptosis were retrieved in MSigDB and GSVA gene set analysis was performed on the database. Finally, logistic regression was performed to differentiate between GDM patients and controls to screen for diagnostic markers.

Results: A total of 179 DEGs were identified in the expression profile of GDM. GO and KEGG enrichment analysis revealed significant enrichment in the TGF-β, p53 signaling pathway, platelet activation, glutathione metabolism, sensory perception of taste, and leukocyte and vascular endothelial cell migration regulation. DEGs (n = 107) associated with the ferroptosis gene set were screened by GSVA analysis. The screened DEGs for disease and DEGs for ferroptosis scores were intersected and 35 intersected genes were identified. PPI identified two key genes associated with GDM as CCNB2 and CDK1. Wilcox-test showed low expression of CCNB2 and CDK1 in GDM. The area under the ROC curve (AUC) of the CCNB2 and CDK1 prognostic model was 0.822.

Conclusion: The genes associated with ferroptosis in GDM were CCNB2 and CDK1, which can be used as valid indicators for the diagnosis of GDM.

[1]
Moon, J.H.; Jang, H.C. Gestational diabetes mellitus: Diagnostic approaches and maternal-offspring complications. Diabetes Metab. J., 2022, 46(1), 3-14.
[http://dx.doi.org/10.4093/dmj.2021.0335] [PMID: 35135076]
[2]
Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A clinical update on gestational diabetes mellitus. Endocr. Rev., 2022, 43(5), 763-793.
[http://dx.doi.org/10.1210/endrev/bnac003] [PMID: 35041752]
[3]
Meyrueix, L.P.; Gharaibeh, R.; Xue, J.; Brouwer, C.; Jones, C.; Adair, L.; Norris, S.A.; Ideraabdullah, F. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes. Epigenetics, 2022, 17(13), 2157-2177.
[http://dx.doi.org/10.1080/15592294.2022.2111751] [PMID: 35993304]
[4]
Kouhkan, A.; Najafi, L.; Malek, M.; Reza Baradaran, H.; Hosseini, R.; Khajavi, A.; Ebrahim Khamseh, M. Gestational diabetes mellitus: Major risk factors and pregnancy-related outcomes: A cohort study. Int. J. Reprod. Biomed., 2021, 19(9), 827-836.
[http://dx.doi.org/10.18502/ijrm.v19i9.9715] [PMID: 34723062]
[5]
Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med., 2020, 10(4), 174-188.
[http://dx.doi.org/10.4103/ajm.ajm_53_20] [PMID: 33437689]
[6]
Plows, J.; Stanley, J.; Baker, P.; Reynolds, C.; Vickers, M. The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci., 2018, 19(11), 3342.
[http://dx.doi.org/10.3390/ijms19113342] [PMID: 30373146]
[7]
Blum, A.K. Insulin use in pregnancy: An update. Diabetes Spectr., 2016, 29(2), 92-97.
[http://dx.doi.org/10.2337/diaspect.29.2.92] [PMID: 27182178]
[8]
Kühl, C. Serum proinsulin in normal and gestational diabetic pregnancy. Diabetologia, 1976, 12(4), 295-300.
[http://dx.doi.org/10.1007/BF00420971] [PMID: 964507]
[9]
Retnakaran, R.; Hanley, A.J.G.; Sermer, M.; Zinman, B. The impact of insulin resistance on proinsulin secretion in pregnancy: hyperproinsulinemia is not a feature of gestational diabetes. Diabetes Care, 2005, 28(11), 2710-2715.
[http://dx.doi.org/10.2337/diacare.28.11.2710] [PMID: 16249544]
[10]
Nadal, A.; Alonso-Magdalena, P.; Soriano, S.; Ropero, A.B.; Quesada, I. The role of oestrogens in the adaptation of islets to insulin resistance. J. Physiol., 2009, 587(21), 5031-5037.
[http://dx.doi.org/10.1113/jphysiol.2009.177188] [PMID: 19687125]
[11]
Qi, X.; Gong, B.; Yu, J.; Shen, L.; Jin, W.; Wu, Z.; Wang, J.; Wang, J.; Li, Z. Decreased cord blood estradiol levels in related to mothers with gestational diabetes. Medicine, 2017, 96(21), e6962.
[http://dx.doi.org/10.1097/MD.0000000000006962] [PMID: 28538390]
[12]
Joseph, J.J.; Golden, S.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci., 2017, 1391(1), 20-34.
[http://dx.doi.org/10.1111/nyas.13217] [PMID: 27750377]
[13]
Whitticar, N.B.; Nunemaker, C.S. Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis. Front. Endocrinol., 2020, 11, 378.
[http://dx.doi.org/10.3389/fendo.2020.00378]
[14]
Bonnet, F.; Ducluzeau, P.H.; Gastaldelli, A.; Laville, M.; Anderwald, C.H.; Konrad, T.; Mari, A.; Balkau, B. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women. Diabetes, 2011, 60(6), 1660-1667.
[http://dx.doi.org/10.2337/db10-1806] [PMID: 21521874]
[15]
Chen, X.; Shi, C.; Wang, Y.; Yu, H.; Zhang, Y.; Zhang, J.; Li, P.; Gao, J. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes. Front. Physiol., 2022, 13, 952445.
[http://dx.doi.org/10.3389/fphys.2022.952445]
[16]
Shen, J.; San, W.; Zheng, Y.; Zhang, S.; Cao, D.; Chen, Y.; Meng, G. Different types of cell death in diabetic endothelial dysfunction. Biomed. Pharmacother., 2023, 168, 115802.
[17]
Han, C.; Liu, Y.; Dai, R.; Ismail, N.; Su, W.; Li, B. Ferroptosis and its potential role in human diseases. Front. Pharmacol., 2020, 11, 239.
[http://dx.doi.org/10.3389/fphar.2020.00239] [PMID: 32256352]
[18]
Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell, 2022, 82(12), 2215-2227.
[http://dx.doi.org/10.1016/j.molcel.2022.03.022] [PMID: 35390277]
[19]
Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; Xiong, Y. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov., 2021, 7(1), 193.
[http://dx.doi.org/10.1038/s41420-021-00579-w] [PMID: 34312370]
[20]
Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; van Goor, H.; Hillebrands, J.L. Oxidative stress in placental pathology. Placenta, 2018, 69, 153-161.
[http://dx.doi.org/10.1016/j.placenta.2018.03.003] [PMID: 29622278]
[21]
Shen, X.; Obore, N.; Wang, Y.; Yu, T.; Yu, H. The role of ferroptosis in placental-related diseases. Reprod. Sci., 2023, 30(7), 2079-2086.
[http://dx.doi.org/10.1007/s43032-023-01193-0] [PMID: 36930425]
[22]
Zhang, D.; Zhao, Y.; Wang, S.; Wang, X.; Sun, Y. A prognostic model of angiogenesis and neutrophil extracellular traps related genes manipulating tumor microenvironment in colon cancer. J. Cancer, 2023, 14(11), 2109-2127.
[http://dx.doi.org/10.7150/jca.85778] [PMID: 37497410]
[23]
Orgah, J.O.; He, S.; Wang, Y.; Jiang, M.; Wang, Y.; Orgah, E.A.; Duan, Y.; Zhao, B.; Zhang, B.; Han, J.; Zhu, Y. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol. Res., 2020, 153, 104654.
[http://dx.doi.org/10.1016/j.phrs.2020.104654] [PMID: 31945473]
[24]
Ying, X.; Che, X.; Wang, J.; Zou, G.; Yu, Q.; Zhang, X. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer. J. Cancer, 2021, 12(8), 2206-2215.
[http://dx.doi.org/10.7150/jca.51139] [PMID: 33758599]
[25]
Jadhav, A.; Khaire, A.; Joshi, S. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus. Growth Factors, 2020, 38(3-4), 226-234.
[http://dx.doi.org/10.1080/08977194.2021.1895143] [PMID: 33703982]
[26]
Liu, M.; Wu, K.; Wu, Y.J.B. The emerging role of ferroptosis in female reproductive disorders. Biomed. Pharmacother., 2023, 166, 115415.
[27]
van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform., 2018, 19(4), 575-592.
[PMID: 28077403]
[28]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[29]
Li, M.; He, F.; Zhang, Z.; Xiang, Z.; Hu, D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J. Int. Med. Res., 2020, 48(2)
[http://dx.doi.org/10.1177/0300060519897508] [PMID: 32020821]
[30]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[31]
Leal, C.; Costa, L.; Ferreira, G.; Ferreira, A.; Reis, F.; Simões, E. Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens., 2022, 28, 15-20.
[32]
Elhag, D.; Al Khodor, S.J.J.o.t.m. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J. Transl. Med., 2023, 21(1), 392.
[http://dx.doi.org/10.1186/s12967-023-04269-2]
[33]
West, R.C.; Bouma, G.J.; Winger, Q.A. Shifting perspectives from “oncogenic” to oncofetal proteins; how these factors drive placental development. Reprod. Biol. Endocrinol., 2018, 16(1), 101.
[http://dx.doi.org/10.1186/s12958-018-0421-3] [PMID: 30340501]
[34]
Fang, L.; Yan, Y.; Gao, Y.; Wu, Z.; Wang, Z.; Yang, S.; Cheng, J.C.; Sun, Y.P. TGF-β1 inhibits human trophoblast cell invasion by upregulating kisspeptin expression through ERK1/2 but not SMAD signaling pathway. Reprod. Biol. Endocrinol., 2022, 20(1), 22.
[http://dx.doi.org/10.1186/s12958-022-00902-9] [PMID: 35101033]
[35]
Sharp, A.N.; Heazell, A.E.P.; Baczyk, D.; Dunk, C.E.; Lacey, H.A.; Jones, C.J.P.; Perkins, J.E.; Kingdom, J.C.P.; Baker, P.N.; Crocker, I.P. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS One, 2014, 9(1), e87621.
[http://dx.doi.org/10.1371/journal.pone.0087621] [PMID: 24498154]
[36]
Moser, G.; Guettler, J.; Forstner, D.; Gauster, M. Maternal platelets-friend or foe of the human placenta? Int. J. Mol. Sci., 2019, 20(22), 5639.
[http://dx.doi.org/10.3390/ijms20225639] [PMID: 31718032]
[37]
Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med., 2018, 243(6), 525-533.
[http://dx.doi.org/10.1177/1535370218758275] [PMID: 29466875]
[38]
Toboła-Wróbel, K.; Pietryga, M.; Dydowicz, P.; Napierała, M.; Brązert, J.; Florek, E. Association of oxidative stress on pregnancy. Oxid. Med. Cell. Longev., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/6398520] [PMID: 33014274]
[39]
Guilloux, G.; Gibeaux, R. Mechanisms of spindle assembly and size control. Biol. Cell, 2020, 112(12), 369-382.
[http://dx.doi.org/10.1111/boc.202000065] [PMID: 32762076]
[40]
Wang, Q.; Moley, K.H. Maternal diabetes and oocyte quality. Mitochondrion, 2010, 10(5), 403-410.
[http://dx.doi.org/10.1016/j.mito.2010.03.002] [PMID: 20226883]
[41]
Zhao, X.; Li, W.J.M.g. Gene coexpression network analysis identified potential biomarkers in gestational diabetes mellitus progression. Mol. Genet. Genomic Med., 2019, 7(1), e00515.
[42]
Zou, Y.; Ruan, S.; Jin, L.; Chen, Z.; Han, H.; Zhang, Y.; Jian, Z.; Lin, Y.; Shi, N.; Jin, H. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Med. Sci. Monit., 2020, 26, e925289.
[http://dx.doi.org/10.12659/MSM.925289] [PMID: 32863381]
[43]
Nagy, T.; Fisi, V.; Frank, D.; Kátai, E.; Nagy, Z.; Miseta, A. Hyperglycemia-induced aberrant cell proliferation; a metabolic challenge mediated by protein O-GlcNAc modification. Cells, 2019, 8(9), 999.
[44]
Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ, 2022, 377, e067946.
[http://dx.doi.org/10.1136/bmj-2021-067946] [PMID: 35613728]
[45]
Deng, B.; Song, A.; Zhang, C. Cell-cycle dysregulation in the pathogenesis of diabetic kidney disease: An update. Int. J. Mol. Sci., 2023, 24(3), 2133.
[http://dx.doi.org/10.3390/ijms24032133] [PMID: 36768457]
[46]
Liu, Y.; Wang, Y.; Wang, Y.; Lv, Y.; Zhang, Y.; Wang, H.J.G. Gene expression changes in arterial and venous endothelial cells exposed to gestational diabetes mellitus. Gynecol. Endocrinol., 2020, 36(9), 791-795.
[http://dx.doi.org/10.1080/09513590.2020.1712696]
[47]
Zheng, L.; Yang, X.; Fan, Q.; Liu, B.; Hu, W.; Cui, Y. Transcriptomic profiling identifies differentially expressed genes and related pathways associated with wound healing and cuproptosis-related genes in Ganxi goats. Front. Vet. Sci., 2023, 10, 1149333.
[http://dx.doi.org/10.3389/fvets.2023.1149333] [PMID: 37313229]
[48]
Zhao, Y.; Gao, Q.; Li, B.; Wang, Y.; Wang, Y.J.F.i.e. Ferroptosis and its potential role in gestational diabetes mellitus: Updated evidence from pathogenesis to therapy. Front. Endocrinol., 2023, 14, 1177547.
[http://dx.doi.org/10.3389/fendo.2023.1177547]
[49]
Wang, Y.; Zhang, H.; Wang, M.; He, J.; Guo, H.; Li, L.; Wang, J. CCNB2/SASP/Cathepsin B & PGE2 axis induce cell senescence mediated malignant transformation. Int. J. Biol. Sci., 2021, 17(13), 3538-3553.
[http://dx.doi.org/10.7150/ijbs.63430] [PMID: 34512164]
[50]
Xiao, Y.; Ma, J.; Guo, C.; Liu, D.; Pan, J.; Huang, X. Cyclin B2 overexpression promotes tumour growth by regulating jagged 1 in hepatocellular carcinoma. Aging, 2022, 14(6), 2855-2867.
[http://dx.doi.org/10.18632/aging.203979] [PMID: 35349480]
[51]
Wang, D.; Sun, H.; Li, X.; Wang, G.; Yan, G.; Ren, H.; Hou, B. CCNB2 is a novel prognostic factor and a potential therapeutic target in low-grade glioma. Biosci. Rep., 2022, 42(1), BSR20211939.
[http://dx.doi.org/10.1042/BSR20211939] [PMID: 34908101]
[52]
Qian, D.; Zheng, W.; Chen, C.; Jing, G.; Huang, J. Roles of CCNB2 and NKX3-1 in nasopharyngeal carcinoma. Cancer Biother. Radiopharm., 2020, 35(3), 208-213.
[http://dx.doi.org/10.1089/cbr.2019.3016] [PMID: 32202926]
[53]
Diril, M.K.; Ratnacaram, C.K.; Padmakumar, V.C.; Du, T.; Wasser, M.; Coppola, V.; Tessarollo, L.; Kaldis, P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci., 2012, 109(10), 3826-3831.
[http://dx.doi.org/10.1073/pnas.1115201109] [PMID: 22355113]
[54]
Xie, B.; Wang, S.; Jiang, N.; Li, J.J. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett., 2019, 443, 56-66.
[http://dx.doi.org/10.1016/j.canlet.2018.11.019] [PMID: 30481564]
[55]
Sunada, S.; Saito, H.; Zhang, D.; Xu, Z.; Miki, Y. CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochem. Biophys. Res. Commun., 2021, 550, 56-61.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.117] [PMID: 33684621]
[56]
Chen, S.; Wu, W.; Li, Q.; Xie, B.; Shen, F.; Du, Y.; Zong, Z.; Wang, L.; Wei, X.; Zhao, Y. Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov., 2021, 7(1), 22.
[http://dx.doi.org/10.1038/s41420-020-00381-0] [PMID: 33483472]
[57]
Asfaha, J.B.; Örd, M.; Carlson, C.R.; Faustova, I.; Loog, M.; Morgan, D.O. Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription. Curr. Biol., 2022, 32(1), 256-263.e4.
[http://dx.doi.org/10.1016/j.cub.2021.11.001] [PMID: 34818519]
[58]
Yi, Y.C.; Liang, R.; Chen, X.Y.; Fan, H.N.; Chen, M.; Zhang, J.; Zhu, J.S. Dihydroartemisinin suppresses the tumorigenesis and cycle progression of colorectal cancer by targeting CDK1/CCNB1/PLK1 signaling. Front. Oncol., 2021, 11, 768879.
[http://dx.doi.org/10.3389/fonc.2021.768879] [PMID: 34796115]
[59]
Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[60]
Zhou, K.; Xiao, J.; Wang, H.; Ni, B.; Huang, J.; Long, X.J.H. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway. Heliyon, 2023, 9(3), e14305.
[61]
Armistead, B.; Johnson, E.; VanderKamp, R.; Kula-Eversole, E.; Kadam, L.; Drewlo, S.; Kohan-Ghadr, H.R. Placental regulation of energy homeostasis during human pregnancy. Endocrinology, 2020, 161(7), bqaa076.
[http://dx.doi.org/10.1210/endocr/bqaa076] [PMID: 32417921]
[62]
O’Neill, B.T.; Bhardwaj, G.; Penniman, C.M.; Krumpoch, M.T.; Suarez Beltran, P.A.; Klaus, K.; Poro, K.; Li, M.; Pan, H.; Dreyfuss, J.M.; Nair, K.S.; Kahn, C.R.; Fox, O. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes, 2019, 68(3), 556-570.
[http://dx.doi.org/10.2337/db18-0416] [PMID: 30523026]
[63]
Ding, Y.; Wu, Q. 1,25D/VDR inhibits pancreatic β cell ferroptosis by downregulating FOXO1 expression in diabetes mellitus. Cell. Signal., 2023, 105(105), 110564.
[http://dx.doi.org/10.1016/j.cellsig.2022.110564] [PMID: 36581217]
[64]
Yu, G.; Luo, H.; Zhang, N.; Wang, Y.; Li, Y.; Huang, H.; Liu, Y.; Hu, Y.; Liu, H.; Zhang, J.; Tang, Y.; Huang, Y. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation. Int. J. Mol. Sci., 2019, 20(24), 6268.
[http://dx.doi.org/10.3390/ijms20246268] [PMID: 31842349]
[65]
Wang, C.Y.; Chao, C.H. p53-mediated indirect regulation on cellular metabolism: From the mechanism of pathogenesis to the development of cancer therapeutics. Front. Oncol., 2022, 12, 895112.
[http://dx.doi.org/10.3389/fonc.2022.895112] [PMID: 35707366]
[66]
Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol., 2021, 14(1), 157.
[http://dx.doi.org/10.1186/s13045-021-01169-0] [PMID: 34583722]
[67]
Liu, J.; Zhang, C.; Wang, J.; Hu, W.; Feng, Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int. J. Mol. Sci., 2020, 21(21), 8387.
[http://dx.doi.org/10.3390/ijms21218387] [PMID: 33182266]
[68]
Bao, D.; Zhuang, C.; Jiao, Y.; Yang, L. The possible involvement of circRNA DMNT1/p53/JAK/STAT in gestational diabetes mellitus and preeclampsia. Cell Death Discov., 2022, 8(1), 121.
[http://dx.doi.org/10.1038/s41420-022-00913-w] [PMID: 35296654]
[69]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[70]
Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair, 2019, 81, 102651.
[http://dx.doi.org/10.1016/j.dnarep.2019.102651] [PMID: 31302005]
[71]
Ying, Y.; Padanilam, B.J. Regulation of necrotic cell death: P53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell. Mol. Life Sci., 2016, 73(11-12), 2309-2324.
[http://dx.doi.org/10.1007/s00018-016-2202-5] [PMID: 27048819]
[72]
Demény, M.A.; Virág, L. The PARP enzyme family and the hallmarks of cancer Part 2: Hallmarks related to cancer host interactions. Cancers, 2021, 13(9), 2057.
[http://dx.doi.org/10.3390/cancers13092057] [PMID: 33923319]
[73]
Zhang, Y.; Wang, W.J.E.c.r. Bidirectional regulation role of PARP-1 in high glucose-induced endothelial injury. Exp. Cell Res., 2022, 421(2), 113400.
[http://dx.doi.org/10.1016/j.yexcr.2022.113400]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy