Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens

Author(s): Smarita Lenka, Debasmita Dubey*, Santosh Kumar Swain, Goutam Rath, Ajit Mishra, Ajit Kumar Bishoyi and Gopal Krishna Purohit

Volume 25, Issue 17, 2024

Published on: 12 February, 2024

Page: [2312 - 2325] Pages: 14

DOI: 10.2174/0113892010290653240109053852

Price: $65

Abstract

Background: Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. Objectives: This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens.

Methods: The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters.

Results: Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23 mm and 21 mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies.

Conclusion: The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.

[1]
Roscoe, D.L.; Hoang, L. Microbiologic investigations for head and neck infections. Infect. Dis. Clin. North Am., 2007, 21(2), 283-304. v.
[http://dx.doi.org/10.1016/j.idc.2007.03.012] [PMID: 17561072]
[2]
Puri, A.; Mohite, P.; Patil, S.; Chidrawar, V.R.; Ushir, Y.V.; Dodiya, R.; Singh, S. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem., 2023, 11, 1273360.
[http://dx.doi.org/10.3389/fchem.2023.1273360] [PMID: 37810585]
[3]
Kumar, A.; Shah, S.R.; Jayeoye, T.J.; Kumar, A.; Parihar, A.; Prajapati, B.; Singh, S.; Kapoor, D.U. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products. Front. Nanotechnol., 2023, 5, 1175149.
[http://dx.doi.org/10.3389/fnano.2023.1175149]
[4]
Bordiwala, R.V. Green synthesis and applications of metal nanoparticles-A review article. Results Chem., 2023, 3, 100832.
[5]
Singh, S.; Nwabor, O.F.; Sukri, D.M.; Wunnoo, S.; Dumjun, K.; Lethongkam, S.; Kusolphat, P.; Hemtanon, N.; Klinprathum, K.; Sunghan, J.; Dejyong, K.; Lertwittayanon, K.; Pisuchpen, S.; Voravuthikunchai, S.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int. J. Biol. Macromol., 2022, 216, 235-250.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.172] [PMID: 35780920]
[6]
Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M. Issaabadi, Z Green nanotechnology. In: Interface science and technology; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-12-813586-0.00005-5]
[7]
Nwabor, O.F.; Singh, S.; Ontong, J.C.; Vongkamjan, K.; Voravuthikunchai, S.P. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste Biomass Valoriz., 2021, 12(6), 3287-3301.
[http://dx.doi.org/10.1007/s12649-020-01237-5]
[8]
Nagime, P.V.; Singh, S.; Shaikh, N.M.; Gomare, K.S.; Chitme, H.; Abdel-Wahab, B.A.; Alqahtany, Y.S.; Khateeb, M.M.; Habeeb, M.S.; Bakir, M.B. Biogenic fabrication of silver nanoparticles using calotropis procera flower extract with enhanced biomimetics attributes. Materials, 2023, 16(11), 4058.
[http://dx.doi.org/10.3390/ma16114058] [PMID: 37297192]
[9]
Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 2020, 3, 756-769.
[http://dx.doi.org/10.1016/j.mset.2020.09.002]
[10]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[11]
Jayeoye, T.J.; Eze, F.N.; Olatunde, O.O.; Singh, S.; Zuo, J.; Olatunji, O.J. Multifarious biological applications and toxic Hg2+ sensing potentiality of biogenic silver nanoparticles based on securidaca inappendiculata hassk stem extract. Int. J. Nanomedicine, 2021, 16, 7557-7574.
[http://dx.doi.org/10.2147/IJN.S325996] [PMID: 34803379]
[12]
Syafiuddin, A.; Fulazzaky, M.A.; Salmiati, S.; Roestamy, M.; Fulazzaky, M.; Sumeru, K.; Yusop, Z. Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract. SN Appl. Sci., 2020, 2(4), 733.
[http://dx.doi.org/10.1007/s42452-020-2534-5]
[13]
Daengngam, C.; Lethongkam, S.; Srisamran, P.; Paosen, S.; Wintachai, P.; Anantravanit, B.; Vattanavanit, V.; Voravuthikunchai, S. Green fabrication of anti-bacterial biofilm layer on endotracheal tubing using silver nanoparticles embedded in polyelectrolyte multilayered film. Mater. Sci. Eng. C, 2019, 101, 53-63.
[http://dx.doi.org/10.1016/j.msec.2019.03.061] [PMID: 31029348]
[14]
Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms, 2023, 11(3), 629.
[http://dx.doi.org/10.3390/microorganisms11030629] [PMID: 36985203]
[15]
Syukri, D.M.; Nwabor, O.F.; Singh, S.; Ontong, J.C.; Wunnoo, S.; Paosen, S.; Munah, S.; Voravuthikunchai, S.P. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J. Microbiol. Methods, 2020, 174, 105955.
[http://dx.doi.org/10.1016/j.mimet.2020.105955] [PMID: 32442657]
[16]
Baygar, T.; Sarac, N.; Ugur, A.; Karaca, I.R. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg. Chem., 2019, 86, 254-258.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.034] [PMID: 30716622]
[17]
Cai, Y.; Yang, H.; Li, J.; Gu, R.; Dong, Y.; Zhao, Q.; Chen, Y.; Li, Y.; Wang, R. Antibacterial AgNPs-PAAm-CS-PVP nanocomposite hydrogel coating for urinary catheters. Eur. Polym. J., 2023, 196, 112260.
[http://dx.doi.org/10.1016/j.eurpolymj.2023.112260]
[18]
Nwabor, O.F.; Singh, S.; Paosen, S.; Vongkamjan, K.; Voravuthikunchai, S.P. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci., 2020, 36, 100609.
[http://dx.doi.org/10.1016/j.fbio.2020.100609]
[19]
Ontong, J.C.; Singh, S.; Nwabor, O.F.; Chusri, S.; Voravuthikunchai, S.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol. Lett., 2020, 42(12), 2653-2664.
[http://dx.doi.org/10.1007/s10529-020-02971-5] [PMID: 32683522]
[20]
Das, S.; Langbang, L.; Haque, M.; Belwal, V.K.; Aguan, K.; Singha Roy, A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J. Pharm. Anal., 2021, 11(4), 422-434.
[http://dx.doi.org/10.1016/j.jpha.2020.12.003] [PMID: 34513118]
[21]
Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control, 2019, 8(1), 76.
[http://dx.doi.org/10.1186/s13756-019-0533-3] [PMID: 31131107]
[22]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[23]
Mallmann, E.J.J.; Cunha, F.A.; Castro, B.N.M.F.; Maciel, A.M.; Menezes, E.A.; Fechine, P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. São Paulo, 2015, 57(2), 165-167.
[http://dx.doi.org/10.1590/S0036-46652015000200011] [PMID: 25923897]
[24]
Dubey, D.; Swain, S.K.; Lenka, S.; Meher, R.K.; Kar, B.; Rath, S. Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection. J. Appl. Biol. Biotechnol., 2022, 11(1), 139-145.
[http://dx.doi.org/10.7324/JABB.2023.110119]
[25]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[26]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[27]
Mansfield, J.M.; Campbell, J.H.; Bhandari, A.R.; Jesionowski, A.M.; Vickerman, M.M. Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars. J. Oral Maxillofac. Surg., 2012, 70(7), 1507-1514.e6, 6.
[http://dx.doi.org/10.1016/j.joms.2011.09.049] [PMID: 22326171]
[28]
Dogiparthi, L.K.; Sana, S.S.; Shaik, S.Z.; Kalvapalli, M.R.; Kurupati, G.; Kumar, G.S.; Gangadhar, L. Phytochemical mediated synthesis of silver nanoparticles and their antibacterial activity. SN Appl. Sci., 2021, 3(6), 631.
[http://dx.doi.org/10.1007/s42452-021-04641-1]
[29]
Dubey, D.; Padhy, R.N. Antibacterial activity of Lantana camara L. against multidrug resistant pathogens from ICU patients of a teaching hospital. J. Herb. Med., 2013, 3(2), 65-75.
[http://dx.doi.org/10.1016/j.hermed.2012.12.002]
[30]
Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 2019, 9(50), 29293-29299.
[http://dx.doi.org/10.1039/C9RA04246F] [PMID: 35528426]
[31]
Ngobeni, B.; Mashele, S.S.; Malebo, N.J.; van der Watt, E.; Manduna, I.T. Disruption of microbial cell morphology by Buxus macowanii. BMC Complemen. Med. Thera., 2020, 20(1), 266.
[http://dx.doi.org/10.1186/s12906-020-03049-5] [PMID: 32867768]
[32]
Chandrasekharan, S.; Chinnasamy, G.; Bhatnagar, S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci. Rep., 2022, 12(1), 156.
[http://dx.doi.org/10.1038/s41598-021-04025-w] [PMID: 34997051]
[33]
Swain, S.K.; Samal, S.; Meher, R.K.; Dubey, D.; Mir, S.A.; Nayak, B.; Sahu, M.C.; Naik, P.K.; Rath, G. In-silico and in-vitro evaluation of docetaxel and berberine as potential p53 modulating apoptotic inducers in oral squamous cell carcinoma. Asian Pac. J. Trop. Biomed., 2022, 12(12), 530-540.
[http://dx.doi.org/10.4103/2221-1691.363879]
[34]
Hidaka, H.; Yamaguchi, T.; Hasegawa, J.; Yano, H.; Kakuta, R.; Ozawa, D.; Nomura, K.; Katori, Y. Clinical and bacteriological influence of diabetes mellitus on deep neck infection: Systematic review and meta‐analysis. Head Neck, 2015, 37(10), 1536-1546.
[http://dx.doi.org/10.1002/hed.23776] [PMID: 24844194]
[35]
Cramer, J.D.; Purkey, M.R.; Smith, S.S.; Schroeder, J.W., Jr The impact of delayed surgical drainage of deep neck abscesses in adult and pediatric populations. Laryngoscope, 2016, 126(8), 1753-1760.
[http://dx.doi.org/10.1002/lary.25835] [PMID: 27061116]
[36]
Gehrke, T.; Scherzad, A.; Hagen, R.; Hackenberg, S. Deep neck infections with and without mediastinal involvement: Treatment and outcome in 218 patients. Eur. Arch. Otorhinolaryngol., 2022, 279(3), 1585-1592.
[http://dx.doi.org/10.1007/s00405-021-06945-9] [PMID: 34160666]
[37]
Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral Candida infection and therapeutic strategies. Front. Microbiol., 2015, 6, 1391.
[http://dx.doi.org/10.3389/fmicb.2015.01391] [PMID: 26733948]
[38]
Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci., 2021, 22(13), 7202.
[http://dx.doi.org/10.3390/ijms22137202] [PMID: 34281254]
[39]
Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon, 2021, 7(7), e07448.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07448] [PMID: 34286126]
[40]
Abeer Mohammed, A.B.; Abd Elhamid, M.M.; Khalil, M.K.M.; Ali, A.S.; Abbas, R.N. The potential activity of biosynthesized silver nanoparticles of Pseudomonas aeruginosa as an antibacterial agent against multidrug-resistant isolates from intensive care unit and anticancer agent. Environ. Sci. Eur., 2022, 34(1), 109.
[http://dx.doi.org/10.1186/s12302-022-00684-2]
[41]
Nayagam, V.; Gabriel, M.; Palanisamy, K. Green synthesis of silver nanoparticles mediated by Coccinia grandis and Phyllanthus emblica: A comparative comprehension. Appl. Nanosci., 2018, 8(3), 205-219.
[http://dx.doi.org/10.1007/s13204-018-0739-3]
[42]
Jayandran, M.; Haneefa, M.M.; Balasubramanian, V. Green synthesis of copper nanoparticles using natural reducer and stabilizer and an evaluation of antimicrobial activity. J. Chem. Pharm. Res., 2015, 7(2), 251-259.
[43]
Zhangabay, Z.; Berillo, D. Antimicrobial and antioxidant activity of AgNPs stabilized with Calendula officinalis flower extract. Results. Surf. Interfaces, 2023, 11, 100109.
[http://dx.doi.org/10.1016/j.rsurfi.2023.100109]
[44]
Haseeb, M.; Khan, M.S.; Baker, A.; Khan, I.; Wahid, I.; Jaabir, M.M. Anticancer and antibacterial potential of MDR Staphylococcus aureus mediated synthesized silver nanoparticles. Biosci. Biotechnol. Res. Commun., 2019, 12, 26-35.
[45]
Barbhuiya, R.I.; Singha, P.; Asaithambi, N.; Singh, S.K. Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chem., 2022, 385, 132602.
[http://dx.doi.org/10.1016/j.foodchem.2022.132602] [PMID: 35278731]
[46]
Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C, 2020, 112, 110901.
[http://dx.doi.org/10.1016/j.msec.2020.110901] [PMID: 32409057]
[47]
Otunola, G.A.; Afolayan, A.J. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol. Biotechnol. Equip., 2018, 32(3), 724-733.
[http://dx.doi.org/10.1080/13102818.2018.1448301]
[48]
Seralathan, J.; Stevenson, P.; Subramaniam, S.; Raghavan, R.; Pemaiah, B.; Sivasubramanian, A.; Veerappan, A. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 349-355.
[http://dx.doi.org/10.1016/j.saa.2013.08.114] [PMID: 24056313]
[49]
Settu, S.; Arunachalam, S. Comparison of Phytochemical analysis and in vitro Pharmacological activities of most commonly available medicinal plants belonging to the Cucurbitaceae family. Res. J. Pharma. Technol., 2019, 12(4), 1541-1546.
[http://dx.doi.org/10.5958/0974-360X.2019.00255.5]
[50]
Pratoomsoot, C.; Wongkattiya, N.; Sanguansermsri, D. Synergistic antimicrobial and antioxidant properties of Coccinia grandis (L.) Voigt, Clerodendrum inerme (L.) Gaertn. and Acanthus ebracteatus Vahl. extracts and their potential as a treatment for xerosis cutis. Complement. Med. Res., 2020, 27(6), 410-420.
[http://dx.doi.org/10.1159/000507606] [PMID: 32526744]
[51]
Muthulakshmi, G.M.P.; Neelanarayanan, N. Antibacterial and antifungal activity of Coccinia grandis leaves’ extracts against fish pathogens. Asian J. Biol. Life Sci., 2021, 9(3), 424-430.
[http://dx.doi.org/10.5530/ajbls.2020.9.65]
[52]
Alshahrani, M.Y.; Ibrahim, E.H.; Asiri, M.; Kilany, M.; Alshehri, A.; Alkhathami, A.G.; Morsy, K.; Chandramoorthy, H.C. Inhibition realization of multidrug resistant bacterial and fungal isolates using Coccinia indica extracts. Saudi J. Biol. Sci., 2022, 29(5), 3207-3212.
[http://dx.doi.org/10.1016/j.sjbs.2022.01.045] [PMID: 35844424]
[53]
Mussin, J.; Robles-Botero, V.; Casañas-Pimentel, R.; Rojas, F.; Angiolella, L.; San Martín-Martínez, E.; Giusiano, G. Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci. Rep., 2021, 11(1), 14566.
[http://dx.doi.org/10.1038/s41598-021-94012-y] [PMID: 34267298]
[54]
Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15, 2555-2562.
[http://dx.doi.org/10.2147/IJN.S246764] [PMID: 32368040]
[55]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[56]
Mollick, M.M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem., 2019, 12(8), 2572-2584.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.033]
[57]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, 14, 1469-1487.
[http://dx.doi.org/10.2147/IJN.S191340] [PMID: 30880959]
[58]
Ahamad, I.; Bano, F.; Anwer, R.; Srivastava, P.; Kumar, R.; Fatma, T. Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front. Microbiol., 2022, 12, 741493.
[http://dx.doi.org/10.3389/fmicb.2021.741493] [PMID: 35069463]
[59]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[60]
Hamouda, R.A.; Abd El-Mongy, M.; Eid, K.F. Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: Insights of characterization and antibacterial activity. Microb. Pathog., 2019, 129, 224-232.
[http://dx.doi.org/10.1016/j.micpath.2019.02.016] [PMID: 30769027]
[61]
Liu, X.; Chen, J.L.; Yang, W.Y.; Qian, Y.C.; Pan, J.Y.; Zhu, C.N.; Liu, L.; Ou, W.B.; Zhao, H.X.; Zhang, D.P. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Sci. Rep., 2021, 11(1), 15795.
[http://dx.doi.org/10.1038/s41598-021-95262-6] [PMID: 34349183]
[62]
Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci., 2019, 20(10), 2468.
[http://dx.doi.org/10.3390/ijms20102468] [PMID: 31109079]
[63]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnology, 2015, 13(1), 91.
[http://dx.doi.org/10.1186/s12951-015-0147-8] [PMID: 26666378]
[64]
Rajeshkumar, S.; Malarkodi, C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl., 2014, 2014, 581890.
[http://dx.doi.org/10.1155/2014/581890]
[65]
Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8, 4277-4290.
[PMID: 24235826]
[66]
Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater., 2020, 11(4), 84.
[http://dx.doi.org/10.3390/jfb11040084] [PMID: 33255874]
[67]
Ibraheem, D.R.; Hussein, N.N.; Sulaiman, G.M.; Mohammed, H.A.; Khan, R.A.; Al Rugaie, O. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials, 2022, 12(16), 2808.
[http://dx.doi.org/10.3390/nano12162808] [PMID: 36014673]
[68]
Albukhari, S.M.; Ismail, M.; Akhtar, K.; Danish, E.Y. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf. A Physicochem. Eng. Asp., 2019, 577, 548-561.
[http://dx.doi.org/10.1016/j.colsurfa.2019.05.058]
[69]
Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dentis., 2020, 7(1), 105-109.
[70]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[71]
Zawadzka, K.; Kądzioła, K.; Felczak, A.; Wrońska, N.; Piwoński, I.; Kisielewska, A.; Lisowska, K. Surface area or diameter - which factor really determines the antibacterial activity of silver nanoparticles grown on TiO 2 coatings? New J. Chem., 2014, 38(7), 3275-3281.
[http://dx.doi.org/10.1039/C4NJ00301B]
[72]
Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; Batiha, G.E.S.; Elkady, A.A.; Mohamed, N.A.; Algammal, A.M. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep., 2021, 11(1), 10751.
[http://dx.doi.org/10.1038/s41598-021-90208-4] [PMID: 34031472]
[73]
Nwabor, O.F.; Singh, S.; Wunnoo, S.; Lerwittayanon, K.; Voravuthikunchai, S.P. Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling, 2021, 37(5), 538-554.
[http://dx.doi.org/10.1080/08927014.2021.1934457] [PMID: 34148443]
[74]
Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10(1), 19.
[http://dx.doi.org/10.1186/1477-3155-10-19] [PMID: 22559747]
[75]
Durán, N.; Nakazato, G.; Seabra, A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol., 2016, 100(15), 6555-6570.
[http://dx.doi.org/10.1007/s00253-016-7657-7] [PMID: 27289481]
[76]
Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Sivagurunathan, P.; Saratale, G.D.; Dung, T.N.B.; Kannapiran, E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Rep., 2017, 14, 1-7.
[http://dx.doi.org/10.1016/j.btre.2017.02.001] [PMID: 28459002]
[77]
Bhandi, S.; Mehta, D.; Mashyakhy, M.; Chohan, H.; Testarelli, L.; Thomas, J.; Dhillon, H.; Raj, A.T.; Madapusi Balaji, T.; Varadarajan, S.; Patil, S. Antimicrobial efficacy of silver nanoparticles as root canal irrigant’s: A systematic review. J. Clin. Med., 2021, 10(6), 1152.
[http://dx.doi.org/10.3390/jcm10061152] [PMID: 33801820]
[78]
Thangavelu, L.; Adil, A.H.; Arshad, S.; Devaraj, E.; Mallineni, S.K.; Sajja, R.; Chakradhar, A.; Karobari, M.I. Antimicrobial properties of silver nitrate nanoparticle and its application in endodontics and dentistry: A review of literature. J. Nanomater., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/9132714]
[79]
Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503.
[http://dx.doi.org/10.1002/adhm.201701503] [PMID: 29808627]
[80]
Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog., 2017, 102, 133-142.
[http://dx.doi.org/10.1016/j.micpath.2016.11.030] [PMID: 27916692]
[81]
Choi, J.E.; Kim, S.; Ahn, J.H.; Youn, P.; Kang, J.S.; Park, K.; Yi, J.; Ryu, D.Y. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol., 2010, 100(2), 151-159.
[http://dx.doi.org/10.1016/j.aquatox.2009.12.012] [PMID: 20060176]
[82]
Paciorek, P.; Żuberek, M.; Grzelak, A. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles. Materials, 2020, 13(11), 2460.
[http://dx.doi.org/10.3390/ma13112460] [PMID: 32481688]
[83]
Massarsky, A.; Abraham, R.; Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Trudeau, V.L.; Moon, T.W. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 159, 10-21.
[http://dx.doi.org/10.1016/j.cbpc.2013.09.008] [PMID: 24096131]
[84]
Shaluei, F.; Hedayati, A.; Jahanbakhshi, A.; Kolangi, H.; Fotovat, M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum. Exp. Toxicol., 2013, 32(12), 1270-1277.
[http://dx.doi.org/10.1177/0960327113485258] [PMID: 23632006]
[85]
Bian, Y.; Kim, K.; Ngo, T.; Kim, I.; Bae, O.N.; Lim, K.M.; Chung, J.H. Silver nanoparticles promote procoagulant activity of red blood cells: A potential risk of thrombosis in susceptible population. Part. Fibre Toxicol., 2019, 16(1), 9.
[http://dx.doi.org/10.1186/s12989-019-0292-6] [PMID: 30764834]
[86]
Lee, I.Y.; Joo, N. Identification and quantification of key phytochemicals, phytohormones, and antioxidant properties in Coccinia grandis during fruit ripening. Antioxidants, 2022, 11(11), 2218.
[http://dx.doi.org/10.3390/antiox11112218] [PMID: 36358590]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy