Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Characterization, and Molecular Modeling Studies of Novel In-denopyridazine-Thiazole Molecular Hybrids

In Press, (this is not the final "Version of Record"). Available online 12 February, 2024
Author(s): Jehan Y. Al-Humaidi, Sobhi M. Gomha*, AbdElAziz A. Nayl, Ashraf A. Aly, Mahmoud A. A. Ibrahim, Magdi E. A. Zaki, Stefan Bräse* and Reda A. Haggam
Published on: 12 February, 2024

DOI: 10.2174/0115701794266795231129074028

Price: $95

Abstract

Background: Previous studies have reported various biological activities of indeno-pyridazine and thiazole derivatives, including antiviral activity and CoV-19 inhibition. In this pa-per, the authors aimed to design, synthesize, and characterize a novel series of indenopyridazinethi-azoles, starting with 2-(4-cyano-3-oxo-2,3-dihydro-9H-indeno[2,1-c]pyridazin-9-ylidene)-hydra-zine-1-carbothioamide and available laboratory reagents.

Methods: The strategy involved the synthesis of indeno[2,1-c]pyridazincarbothioamide, followed by its reaction with various hydrazonoyl chlorides and α-halocompounds (phenacyl bromides and α-chloroketones) to obtain the desired indenopyridazinethiazole derivatives. The synthesized structures were confirmed using IR, NMR, mass spectra, elemental analysis, and alternative syn-thesis when possible. Docking scores and poses of thirteen synthesized compounds were examined using AutoDock4.2.6 software against multiple targets of SARS-CoV-2, including 3C-like prote-ase (3CLpro), helicase, receptor binding domain (RBD), papain-like protease (PLpro), neuropilin-1 (NRP-1), RNA-dependent RNA polymerase (RdRp), and human angiotensin‐converting enzyme 2 (ACE2).

Results: Docking predictions revealed that compound 13d exhibited high potency against 3CLpro and helicase, with docking scores of -10.9 and -10.5 kcal/mol, respectively. Compound 10c showed superior docking scores against RBD and ACE2, with values of -8.7 and -11.8 kcal/mol, respectively. Compounds 10a, 13c, and 7b demonstrated excellent docking scores against RdRp, PLpro, and NRP-1, with values of -10.3, -10.4, and -8.6 kcal/mol, respectively.

Conclusion: The authors recommend further experimental assessments of compounds 13d, 10c, 10a, 13c, and 7b against SARS-CoV-2 multi-targets, considering their promising docking scores.

[1]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[2]
Luo, C.M.; Wang, N.; Yang, X.L.; Liu, H.Z.; Zhang, W.; Li, B.; Hu, B.; Peng, C.; Geng, Q.B.; Zhu, G.J.; Li, F.; Shi, Z.L. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J. Virol., 2018, 92(13), e00116-e00118.
[http://dx.doi.org/10.1128/JVI.00116-18] [PMID: 29669833]
[3]
Chu, H.; Chan, C.M.; Zhang, X.; Wang, Y.; Yuan, S.; Zhou, J.; Au-Yeung, R.K.H.; Sze, K.H.; Yang, D.; Shuai, H.; Hou, Y.; Li, C.; Zhao, X.; Poon, V.K.M.; Leung, S.P.; Yeung, M.L.; Yan, J.; Lu, G.; Jin, D.Y.; Gao, G.F.; Chan, J.F.W.; Yuen, K.Y. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J. Biol. Chem., 2018, 293(30), 11709-11726.
[http://dx.doi.org/10.1074/jbc.RA118.001897] [PMID: 29887526]
[4]
Samrat, S.K.; Tharappel, A.M.; Li, Z.; Li, H. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res., 2020, 288, 198141.
[http://dx.doi.org/10.1016/j.virusres.2020.198141] [PMID: 32846196]
[5]
Negi, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg. Chem., 2020, 104, 104315.
[http://dx.doi.org/10.1016/j.bioorg.2020.104315] [PMID: 33007742]
[6]
Abu-Melha, S.; Edrees, M.M.; Said, M.A.; Riyadh, S.M.; Al-Kaff, N.S.; Gomha, S.M. Potential COVID-19 drug candidates based on diazinyl-thiazol-imine moieties: Synthesis and greener pastures biological study. Molecules, 2022, 27(2), 488.
[http://dx.doi.org/10.3390/molecules27020488] [PMID: 35056802]
[7]
Said, M.A.; Riyadh, S.M.; Al-Kaff, N.S.; Nayl, A.A.; Khalil, K.D. Bräse, S.; Gomha, S.M. Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates. Arab. J. Chem., 2022, 15(9), 104101.
[http://dx.doi.org/10.1016/j.arabjc.2022.104101] [PMID: 35845755]
[8]
Gomha, S.M.; Riyadh, S.M.; Abdellattif, M.H.; Abolibda, T.Z.; Abdel-aziz, H.M.; Nayl, A.A.; Elgohary, A.M.; Elfiky, A.A. Synthesis and in silico study of some new bis-[1,3,4]thiadiazolimines and bis-thiazolimines as potential inhibitors for SARS-CoV-2 main protease. Curr. Issues Mol. Biol., 2022, 44(10), 4540-4556.
[http://dx.doi.org/10.3390/cimb44100311] [PMID: 36286026]
[9]
Jones, R.A.; Whitmore, A. The tautomeric properties of 6-(2-pyrrolyl)pyridazin-3-one and 6-(2-pyrrolyl) pyridazin-3-thione. ARKIVOC, 2007, 11, 114-119.
[10]
Abu-Melha, S.; Gomha, S.; Abouzied, A.; Edrees, M.; Abo Dena, A.; Muhammad, Z. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential anti-microbial agents against antibiotic-resistant bacteria. Molecules, 2021, 26(14), 4260.
[http://dx.doi.org/10.3390/molecules26144260] [PMID: 34299535]
[11]
Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Verma, G.; Khan, M.F.; Alam, M.M. The therapeutic journey of pyridazinone. Eur. J. Med. Chem., 2016, 123, 256-281.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.061] [PMID: 27484513]
[12]
Salvadeo, A.; Villa, G.; Segagni, S.; Piazza, V.; Picardi, L.; Romano, M.; Parini, J. Cadralazine, a new vasodilator, in addition to a beta-blocker for long-term treatment of hypertension. Arzneimittelforschung, 1985, 35(3), 623-625.
[PMID: 2859865]
[13]
Imad, S.; Nisar, S.; Maqsood, Z.T. A study of redox properties of hydralazine hydrochloride, an antihypertensive drug. J. Saudi Chem. Soc., 2010, 14(3), 241-245.
[http://dx.doi.org/10.1016/j.jscs.2010.02.003]
[14]
Fung, M.; Thornton, A.; Mybeck, K.; Wu, J.H.H.; Hornbuckle, K.; Muniz, E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf. J., 2001, 35(1), 293-317.
[http://dx.doi.org/10.1177/009286150103500134]
[15]
Asif, M. The pharmacological importance of some diazine containing drug molecules. Sop Trans. Org. Chem., 2014, 1, 1-16.
[http://dx.doi.org/10.15764/STAC.2014.01001]
[16]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel pyridazines. Eur. J. Med. Chem., 2012, 54, 33-41.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.020] [PMID: 22608761]
[17]
Sweeney, Z.K.; Dunn, J.P.; Li, Y.; Heilek, G.; Dunten, P.; Elworthy, T.R.; Han, X.; Harris, S.F.; Hirschfeld, D.R.; Hogg, J.H.; Huber, W.; Kaiser, A.C.; Kertesz, D.J.; Kim, W.; Mirzadegan, T.; Roepel, M.G.; Saito, Y.D.; Silva, T.M.P.C.; Swallow, S.; Tracy, J.L.; Villasenor, A.; Vora, H.; Zhou, A.S.; Klumpp, K. Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett., 2008, 18(15), 4352-4354.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.072] [PMID: 18632268]
[18]
Li, D.; Zhan, P.; Liu, H.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs. Bioorg. Med. Chem., 2013, 21(7), 2128-2134.
[http://dx.doi.org/10.1016/j.bmc.2012.12.049] [PMID: 23415090]
[19]
Ferro, S.; Agnello, S.; Barreca, M.L.; De Luca, L.; Christ, F.; Gitto, R. Synthesis of new pyridazine derivatives as potential anti‐HIV‐1 agents. J. Heterocycl. Chem., 2009, 46(6), 1420-1424.
[http://dx.doi.org/10.1002/jhet.230]
[20]
Rashad, A.E.; Shamroukh, A.H.; Ali, M.A.; Abdel-Motti, F.M. Synthesis and antiviral screening of some novel pyridazine and triazolopyridazine nucleosides. Heteroatom Chem., 2007, 18(3), 274-282.
[http://dx.doi.org/10.1002/hc.20296]
[21]
Flefel, E.; Tantawy, W.; El-Sofany, W.; El-Shahat, M.; El-Sayed, A.; Abd-Elshafy, D. Synthesis of some new pyridazine derivatives for anti-HAV evaluation. Molecules, 2017, 22(1), 148-22.
[http://dx.doi.org/10.3390/molecules22010148] [PMID: 28106751]
[22]
Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V.K.; Smith, D.B.; Jekle, A.; Kinkade, A.; Symons, J.A.; Jin, Z.; Deval, J.; Zhang, Q.; Tam, Y.; Chanda, S.; Blatt, L.; Beigelman, L. Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine C -nucleosides as favipiravir (T-705) analogues. J. Med. Chem., 2016, 59(10), 4611-4624.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01933] [PMID: 27120583]
[23]
Asif, M. Pyridazine derivatives as HCV polymerase inhibitors: A drug discovery for the treatment of hepatitis c virus infection. Modern Approach. Drug Desig., 2018, 2(2), 1-20.
[http://dx.doi.org/10.31031/MADD.2018.02.000533]
[24]
Flefel, E.M.; Abdel-Mageid, R.E.; Tantawy, W.A.; Ali, M.A.; Amr, A.E.G.E. Heterocyclic compounds based on 3-(4-bromophenyl) azo-5-phenyl-2(3H)-furanone: Anti-avian influenza virus (H5N1) activity/Heterociklički derivati 3-(4-bromfenil) azo-5-fenil-2(3H)-furanona: Djelovanje na virus ptičje gripe (H5N1). Acta Pharm., 2012, 62(4), 593-606.
[http://dx.doi.org/10.2478/v10007-012-0037-7] [PMID: 23333891]
[25]
Galtier, C.; Mavel, S.; Snoeck, R.; Andreï, G.; Pannecouque, C.; Witvrouw, M.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis and antiviral activities of 3-aralkylthiomethylimidazo[1,2-b]pyridazine derivatives. Antivir. Chem. Chemother., 2003, 14(4), 177-182.
[http://dx.doi.org/10.1177/095632020301400402] [PMID: 14582846]
[26]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[PMID: 24845946]
[27]
Huang, Y.S.; Liu, J.Q.; Zhang, L-J.; Lu, H-L. Synthesis of 1-Indanones from Benzoic Acids. Ind. Eng. Chem. Res., 2012, 51(3), 1105-1109.
[http://dx.doi.org/10.1021/ie202369w]
[28]
Maresova, P.; Mohelska, H.; Kuca, K. Social and family load of Alzheimer’s disease. Appl. Econ., 2016, 48(21), 1936-1948.
[http://dx.doi.org/10.1080/00036846.2015.1111986]
[29]
Kumar, S.; Aggarwal, R. Thiazole: A privileged motif in marine natural products. Mini Rev. Org. Chem., 2018, 16(1), 26-34.
[http://dx.doi.org/10.2174/1570193X15666180412152743]
[30]
Sujatha, K.; Vedula, R.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions. Synth. Commun., 2018, 48(3), 302-308.
[http://dx.doi.org/10.1080/00397911.2017.1399422]
[31]
Abdalla, M.A.; Gomha, S.M.; Abdelaziz, M.; Serag, N. Synthesis and antiviral evaluation of some novel thiazoles and 1,3-thiazines substituted with pyrazole moiety against rabies virus. Turk. J. Chem., 2016, 40, 441-453.
[http://dx.doi.org/10.3906/kim-1506-13]
[32]
Al-Humaidi, J.Y.; Gomha, S.M.; El-Ghany, N.A.A.; Farag, B.; Zaki, M.E.A.; Abolibda, T.Z.; Mohamed, N.A. Green synthesis and molecular docking study of some new thiazoles using terephthalohydrazide chitosan hydrogel as ecofriendly biopolymeric catalyst. Catalysts, 2023, 13(9), 1311.
[http://dx.doi.org/10.3390/catal13091311]
[33]
Nayak, S.; Gaonkar, S.L. A Review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[34]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[35]
Konno, S.; Thanigaimalai, P.; Yamamoto, T.; Nakada, K.; Kakiuchi, R.; Takayama, K.; Yamazaki, Y.; Yakushiji, F.; Akaji, K.; Kiso, Y.; Kawasaki, Y.; Chen, S.E.; Freire, E.; Hayashi, Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem., 2013, 21(2), 412-424.
[http://dx.doi.org/10.1016/j.bmc.2012.11.017] [PMID: 23245752]
[36]
Kaminskyy, D.V. Screening of the antiviral activity in the range of C5 and N3 substituted 4-thiazolidinone derivatives. J. Organic Pharmaceut. Chem., 2015, 13(2(50)), 64-69.
[http://dx.doi.org/10.24959/ophcj.15.819]
[37]
Atamanyuk, D.; Zimenkovsky, B.; Atamanyuk, V.; Lesyk, R. 5-Ethoxymethylidene-4-thioxo- 2-thiazolidinone as versatile building block for novel biorelevant small molecules with thiopyrano[2,3-d][1,3]thiazole core. Synth. Commun., 2014, 44(2), 237-244.
[http://dx.doi.org/10.1080/00397911.2013.800552]
[38]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer and antiviral activities of new 2-pyrazoline-substituted 4-thiazolidinones. J. Heterocycl. Chem., 2013, 50(S1), E55-E62.
[http://dx.doi.org/10.1002/jhet.1056]
[39]
Haggam, R.A.; Assy, M.G.; Mohamed, E.K.; Mohamed, A.S. Synthesis of Pyrano[2,3‐ d]pyrimidine‐2,4‐diones and Pyridino[2,3‐ d]pyrimidine‐2,4,6,8‐tetraones: Evaluation Antitumor Activity. J. Heterocycl. Chem., 2020, 57(2), 842-850.
[http://dx.doi.org/10.1002/jhet.3830]
[40]
Gomha, S.M.; Abdelhady, H.A.; Hassain, D.Z.H.; Abdelmonsef, A.H.; El-Naggar, M.; Elaasser, M.M.; Mahmoud, H.K. Thiazole based thiosemicarbazones: Synthesis, cytotoxicity evaluation and molecular docking study. Drug Des. Devel. Ther., 2021, 15, 659-677.
[http://dx.doi.org/10.2147/DDDT.S291579] [PMID: 33633443]
[41]
Haggam, R.A.; Assy, M.G.; Sherif, M.H.; Galahom, M.M. Facile synthesis of some condensed 1,3-thiazines and thiazoles under conventional conditions: Antitumor activity. Res. Chem. Intermed., 2017, 43(11), 6299-6315.
[http://dx.doi.org/10.1007/s11164-017-2990-8]
[42]
Edrees, M.; Melha, S.; Saad, A.; Kheder, N.; Gomha, S.; Muhammad, Z. Eco-friendly synthesis, characterization and biological evaluation of some new pyrazolines containing thiazole moiety as potential anticancer and anti-microbial agents. Molecules, 2018, 23(11), 2970.
[http://dx.doi.org/10.3390/molecules23112970] [PMID: 30441815]
[43]
Gomha, S.M.; Muhammad, Z.A.; Abdel-aziz, H.M.; Matar, I.K.; El-Sayed, A.A. Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5-dicarbohydrazones under grind-stone chemistry. Green Chem. Lett. Rev., 2020, 13, 6-17.
[http://dx.doi.org/10.1007/s11164-021-04501-y]
[44]
Abbas, I.M.; Riyadh, S.M.; Abdallah, M.A.; Gomha, S.M. A novel route to tetracyclic fused tetrazines and thiadiazines. J. Heterocycl. Chem., 2006, 43(4), 935-942.
[http://dx.doi.org/10.1002/jhet.5570430419]
[45]
Ibrahim, M.S.; Farag, B.; Al-Humaidi, J.; Zaki, M.E.A.; Fathalla, M.; Gomha, S.M. Mechanochemical synthesis and molecular docking studies of new azines bearing indole as anticancer agents. Molecules, 2023, 28(9), 3869.
[http://dx.doi.org/10.3390/molecules28093869] [PMID: 37175279]
[46]
Haggam, R.A.; El-Sayed, H.A.; Said, S.A.; Ahmed, M.H.M.; Moustafa, A.H.; Abd-El-Noor, R.E. O ‐glycosylation/alkylation and antimicrobial activity of 4,6‐diaryl‐2‐oxonicotinonitrile derivatives. J. Heterocycl. Chem., 2017, 54(1), 375-383.
[http://dx.doi.org/10.1002/jhet.2593]
[47]
Gomha, S.M.; Eldebss, T.M.A.; Badrey, M.G.; Abdulla, M.M.; Mayhoub, A.S. Novel 4-heteroaryl-antipyrines as DPP-IV inhibitors. Chem. Biol. Drug Des., 2015, 86(5), 1292-1303.
[http://dx.doi.org/10.1111/cbdd.12593] [PMID: 26032047]
[48]
Gomha, S.; Edrees, M.; Muhammad, Z.; El-Reedy, A. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents. Drug Des. Devel. Ther., 2018, 12, 1511-1523.
[http://dx.doi.org/10.2147/DDDT.S165276] [PMID: 29881258]
[49]
Gomha, S.M.; Abdelhamid, A.O.; Kandil, O.M.; Kandeel, S.M.; Abdelrehem, N.A. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini-Reviews. Med. Chem., 2018, 18, 1670-1682.
[50]
Gomha, S.; Abdallah, M.; Abd El-Aziz, M.; Serag, N. Ecofriendly one-pot synthesis and antiviral evaluation of novel pyrazolyl pyrazolines of medicinal interest. Turk. J. Chem., 2016, 40, 484-498.
[http://dx.doi.org/10.3906/kim-1510-25]
[51]
Abolibda, T.Z.; Fathalla, M.; Farag, B.; Zaki, M.E.A.; Gomha, S.M. Synthesis and Molecular docking of Some Novel 3-thiazolyl-Coumarins as Inhibitors of VEGFR-2 kinase. Molecules, 2023, 28(2), 689.
[http://dx.doi.org/10.3390/molecules28020689] [PMID: 36677750]
[52]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[53]
Newman, J.A.; Douangamath, A.; Yazdani, S.; Yosaatmadja, Y.; Aimon, A. Brandão-Neto, J.; Dunnett, L.; Gorrie-stone, T.; Skyner, R.; Fearon, D.; Schapira, M.; von Delft, F.; Gileadi, O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 hel-icase. Nat. Commun., 2021, 12(1), 4848.
[54]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[55]
Osipiuk, J.; Jedrzejczak, R.; Tesar, C.; Endres, M.; Stols, L.; Babnigg, G.; Kim, Y.; Michalska, K.; Joachimiak, A.J.R.P. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2020, 12(1), 743.
[56]
Daly, J.L.; Simonetti, B.; Klein, K.; Chen, K.E.; Williamson, M.K. Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; Greber, U.F.; Horvath, P.; Sessions, R.B.; Helenius, A.; Hiscox, J.A.; Teesalu, T.; Matthews, D.A.; Davidson, A.D.; Collins, B.M.; Cullen, P.J.; Yamauchi, Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, 370(6518), 861-865.
[http://dx.doi.org/10.1126/science.abd3072] [PMID: 33082294]
[57]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[58]
Martí-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. J. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct., 2000, 29, 291-325.
[59]
Gordon, J.C.; Myers, J.B.; Folta, T.; Shoja, V.; Heath, L.S.; Onufriev, A.H++ : A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res., 2005, 33, W368-W371.
[60]
Halgren, T.A. MMFF VI. MMFF94s option for energy minimization studies. J. Comput. Chem., 1999, 20(7), 720-729.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X] [PMID: 34376030]
[61]
OpenEye Scientific Software; Santa Fe, NM, USA, 2016.
[62]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[63]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[64]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[65]
Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28(7), 849-857.
[http://dx.doi.org/10.1021/jm00145a002] [PMID: 3892003]
[66]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Jaragh-Alhadad, L.A.; Atia, M.A.M.; Alzahrani, O.R.; Ahmed, M.N.; Moustafa, M.S.; Soliman, M.E.S.; Shawky, A.M.; Paré, P.W.; Hegazy, M.E.F.; Sidhom, P.A. Exploring toxins for hunting SARS-CoV-2 main protease inhibitors: Molecular docking, molecular dynamics, pharmacokinetic properties, and reactome study. Pharmaceuticals, 2022, 15(2), 153-174.
[http://dx.doi.org/10.3390/ph15020153] [PMID: 35215266]
[67]
Gomha, S.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo[4,5]thieno[2,3-d]-1,2,4-triazolo[4,5-a]pyrimidin-5-ones. Monatsh. Chem., 2009, 140(2), 213-220.
[http://dx.doi.org/10.1007/s00706-008-0060-z]
[68]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy