Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer

In Press, (this is not the final "Version of Record"). Available online 12 February, 2024
Author(s): Mohammed Alnukhali, Omar Altabbakh, Ammad Ahmad Farooqi, Alan Pollack, Sylvia Daunert, Sapna Deo* and Wensi Tao*
Published on: 12 February, 2024

DOI: 10.2174/0109298673273303231208071403

Price: $95

Abstract

Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.

[1]
Noone, A.M. Cancer statistics review 1975-2017 - SEER Statistics, 2018. Available from: https://seer.cancer.gov/archive/csr/1975_2017/ [cited 2023 Apr 26].
[2]
Deb, P.; Dai, J.; Singh, S.; Kalyoussef, E.; Fitzgerald-Bocarsly, P. Triggering of the cGAS–STING pathway in human plasmacytoid dendritic cells inhibits tlr9-mediated ifn production. J. Immunol., 2020, 205(1), 223-236.
[http://dx.doi.org/10.4049/jimmunol.1800933] [PMID: 32471881]
[3]
Pu, F.; Chen, F.; Liu, J.; Zhang, Z.; Shao, Z. Immune regulation of the cgas-sting signaling pathway in the tumor microenvironment and its clinical application. OncoTargets Ther., 2021, 14, 1501-1516.
[http://dx.doi.org/10.2147/OTT.S298958] [PMID: 33688199]
[4]
Stultz, J.; Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer; Prostate Cancer and Prostatic Diseases. Springer Nature, 2021, 24, pp. 697-717.
[5]
Xu, Y.; Li, H.; Fan, Y. Progression patterns, treatment, and prognosis beyond resistance of responders to immunotherapy in advanced non-small cell lung cancer. Front. Oncol., 2021, 11, 642883.
[http://dx.doi.org/10.3389/fonc.2021.642883] [PMID: 33747966]
[6]
Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; Stenzl, A.; Csöszi, T.; Filipovic, Z.; Goncalves, F.; Prokhorov, A.; Cheung, E.; Hussain, A.; Sousa, N.; Bahl, A.; Hussain, S.; Fricke, H.; Kadlecova, P.; Scheiner, T.; Korolkiewicz, R.P.; Bartunkova, J.; Spisek, R.; Stadler, W.; Berg, A.S.; Kurth, K-H.; Higano, C.S.; Aapro, M.; Krainer, M.; Hruby, S.; Meran, J.; Polyakov, S.; Machiels, J-P.; Roumeguere, T.; Ackaert, K.; Lumen, N.; Gil, T.; Minchev, V.; Tomova, A.; Dimitrov, B.; Koleva, M.; Juretic, A.; Fröbe, A.; Vojnovic, Z.; Drabek, M.; Jarolim, L.; Buchler, T.; Kindlova, E.; Schraml, J.; Zemanova, M.; Prausova, J.; Melichar, B.; Chodacka, M.; Jansa, J.; Daugaard, G.; Delonchamps, N.; Duclos, B.; Culine, S.; Deplanque, G.; Le Moulec, S.; Hammerer, P.; Rodemer, G.; Ritter, M.; Merseburger, A.; Grimm, M-O.; Damjanoski, I.; Wirth, M.; Burmester, M.; Miller, K.; Herden, J.; Keck, B.; Wuelfing, C.; Winter, A.; Boegemann, M.; von Schmeling, I.K.; Fornara, P.; Jaeger, E.; Bodoky, G.; Pápai, Z.; Böszörményi-Nagy, G.; Vanella, P.; SotoParra, H.; Passalacqua, R.; Ferrau, F.; Maio, M.; Fratino, L.; Cortesi, E.; Purkalne, G.; Asadauskiene, J.; Janciauskiene, R.; Tulyte, S.; Cesas, A.; Polee, M.; Haberkorn, B.; van de Eertwegh, F.; van den Berg, P.; Beeker, A.; Nieboer, P.; Zdrojowy, R.; Staroslawska, E.; Fijuth, J.; Sikora-Kupis, B.; Karaszewska, B.; Fernandes, I.; Sousa, G.; Rodrigues, T.; Dzamic, Z.; Babovic, N.; Cvetkovic, B.; Sokol, R.; Mikuláš, J.; Gajdos, M.; Brezovsky, M.; Mincik, I.; Breza, J.; Arranz, J.A.; Calvo, V.; Rubio, G.; Chapado, M.S.; Boreu, P.G.; Montesa, A.; Olmos, D.; Mellado, B.; Castellano, D.; Puente, J.; Karlsson, E.T.; Ahlgren, J.; Pandha, H.; Mazhar, D.; Vilarino-Varela, M.; Elliott, T.; Pedley, I.; Zarkar, A.; Law, A.; Slater, D.; Karlin, G.; Bilusic, M.; Redfern, C.; Gaur, R.; McCroskey, R.; Clarkson, D.; Agrawal, M.; Shtivelband, M.; Nordquist, L.; Karim, N.; Hauke, R.; Flaig, T.; Jhangiani, H.; Singal, R.; Choi, B.; Reyes, E.; Corman, J.; Hwang, C.; Appleman, L.; McClay, E.; Fleming, M.; Gunuganti, V.; Cheung, E.; Gartrell, B.; Sartor, A.; Williamson, S.; Gandhi, J.; Schnadig, I.; Burke, J.; Bloom, S.; Shore, N.; Mayer, T.; Oh, W.; Bryce, A.; Belkoff, L.; Vaishampayan, U.; Agarwala, S.; Kucuk, O.; Agrawal, A.; Walsh, W.; Poiesz, B.; Harshman, L.; Dawson, N.; Sharma, S. Efficacy and safety of autologous dendritic cell–based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer. JAMA Oncol., 2022, 8(4), 546-552.
[http://dx.doi.org/10.1001/jamaoncol.2021.7298] [PMID: 35142815]
[7]
Wang, Y.; Xiang, Y.; Xin, V.W.; Wang, X.W.; Peng, X.C.; Liu, X.Q.; Wang, D.; Li, N.; Cheng, J.T.; Lyv, Y.N.; Cui, S.Z.; Ma, Z.; Zhang, Q.; Xin, H.W. Dendritic cell biology and its role in tumor immunotherapy. J. Hematol. Oncol., 2020, 13(1), 107.
[http://dx.doi.org/10.1186/s13045-020-00939-6] [PMID: 32746880]
[8]
Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers, 2021, 13(9), 2187.
[http://dx.doi.org/10.3390/cancers13092187] [PMID: 34063238]
[9]
Kim, T.J.; Koo, K.C. Current status and future perspectives of checkpoint inhibitor immunotherapy for prostate cancer: A comprehensive review. Int. J. Mol. Sci., 2020, 21(15), 5484.
[http://dx.doi.org/10.3390/ijms21155484] [PMID: 32751945]
[10]
Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T. J. Natl. Cancer Inst., 2020, 112(6), 562-573.
[http://dx.doi.org/10.1093/jnci/djaa021] [PMID: 32145020]
[11]
Kwon, J.; Bakhoum, S.F. The cytosolic dna-sensing cGAS–STING pathway in cancer. Cancer Discov., 2020, 10(1), 26-39.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0761] [PMID: 31852718]
[12]
Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; Capell, B.C.; Xu, C.; Xu, M.; Kieckhaefer, J.E.; Jiang, T.; Shoshkes-Carmel, M.; Tanim, K.M.A.A.; Barber, G.N.; Seykora, J.T.; Millar, S.E.; Kaestner, K.H.; Garcia, B.A.; Adams, P.D.; Berger, S.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550(7676), 402-406.
[http://dx.doi.org/10.1038/nature24050] [PMID: 28976970]
[13]
Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[14]
Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81.
[http://dx.doi.org/10.1186/s13045-020-00916-z] [PMID: 32571374]
[15]
Suter, M.A.; Tan, N.Y.; Thiam, C.H.; Khatoo, M.; MacAry, P.A.; Angeli, V.; Gasser, S.; Zhang, Y.L. cGAS–STING cytosolic DNA sensing pathway is suppressed by JAK2-STAT3 in tumor cells. Sci. Rep., 2021, 11(1), 7243.
[http://dx.doi.org/10.1038/s41598-021-86644-x] [PMID: 33790360]
[16]
Sen, T.; Rodriguez, B.L.; Chen, L.; Corte, C.M.D.; Morikawa, N.; Fujimoto, J.; Cristea, S.; Nguyen, T.; Diao, L.; Li, L.; Fan, Y.; Yang, Y.; Wang, J.; Glisson, B.S.; Wistuba, I.I.; Sage, J.; Heymach, J.V.; Gibbons, D.L.; Byers, L.A. Targeting DNA damage response promotes antitumor immunity through sting-mediated t-cell activation in small cell lung cancer. Cancer Discov., 2019, 9(5), 646-661.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1020] [PMID: 30777870]
[17]
Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer, 2018, 6(1), 157.
[http://dx.doi.org/10.1186/s40425-018-0479-7] [PMID: 30587233]
[18]
Liu, Y.T.; Sun, Z.J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11(11), 5365-5386.
[http://dx.doi.org/10.7150/thno.58390] [PMID: 33859752]
[19]
Han, G.; Yang, G.; Hao, D.; Lu, Y.; Thein, K.; Simpson, B.S.; Chen, J.; Sun, R.; Alhalabi, O.; Wang, R.; Dang, M.; Dai, E.; Zhang, S.; Nie, F.; Zhao, S.; Guo, C.; Hamza, A.; Czerniak, B.; Cheng, C.; Siefker-Radtke, A.; Bhat, K.; Futreal, A.; Peng, G.; Wargo, J.; Peng, W.; Kadara, H.; Ajani, J.; Swanton, C.; Litchfield, K.; Ahnert, J.R.; Gao, J.; Wang, L. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun., 2021, 12(1), 5606.
[http://dx.doi.org/10.1038/s41467-021-25894-9] [PMID: 34556668]
[20]
Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10(FEB), 168.
[http://dx.doi.org/10.3389/fimmu.2019.00168] [PMID: 30800125]
[21]
Nair, S.S.; Weil, R.; Dovey, Z.; Davis, A.; Tewari, A.K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North Am., 2020, 47(4), e17-e54.
[http://dx.doi.org/10.1016/j.ucl.2020.10.005] [PMID: 33446323]
[22]
Drake, C.G.; Doody, A.D.H.; Mihalyo, M.A.; Huang, C.T.; Kelleher, E.; Ravi, S.; Hipkiss, E.L.; Flies, D.B.; Kennedy, E.P.; Long, M.; McGary, P.W.; Coryell, L.; Nelson, W.G.; Pardoll, D.M.; Adler, A.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 2005, 7(3), 239-249.
[http://dx.doi.org/10.1016/j.ccr.2005.01.027] [PMID: 15766662]
[23]
Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol., 2015, 15(7), 405-414.
[http://dx.doi.org/10.1038/nri3845] [PMID: 26027717]
[24]
Anderson, M.J.; Shafer-Weaver, K.; Greenberg, N.M.; Hurwitz, A.A. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J. Immunol., 2007, 178(3), 1268-1276.
[http://dx.doi.org/10.4049/jimmunol.178.3.1268] [PMID: 17237372]
[25]
Ebelt, K.; Babaryka, G.; Figel, A.M.; Pohla, H.; Buchner, A.; Stief, C.G.; Eisenmenger, W.; Kirchner, T.; Schendel, D.J.; Noessner, E. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate, 2008, 68(1), 1-10.
[http://dx.doi.org/10.1002/pros.20661] [PMID: 17948280]
[26]
Owen, K.L.; Gearing, L.J.; Zanker, D.J.; Brockwell, N.K.; Khoo, W.H.; Roden, D.L.; Cmero, M.; Mangiola, S.; Hong, M.K.; Spurling, A.J.; McDonald, M.; Chan, C.L.; Pasam, A.; Lyons, R.J.; Duivenvoorden, H.M.; Ryan, A.; Butler, L.M.; Mariadason, J.M.; Giang Phan, T.; Hayes, V.M.; Sandhu, S.; Swarbrick, A.; Corcoran, N.M.; Hertzog, P.J.; Croucher, P.I.; Hovens, C.; Parker, B.S. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep., 2020, 21(6), e50162.
[http://dx.doi.org/10.15252/embr.202050162] [PMID: 32314873]
[27]
Sanaei, M.J.; Salimzadeh, L.; Bagheri, N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J. Leukoc. Biol., 2020, 107(1), 43-56.
[http://dx.doi.org/10.1002/JLB.4RU0819-150RR] [PMID: 31721301]
[28]
Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol., 2018, 9(MAR), 398.
[http://dx.doi.org/10.3389/fimmu.2018.00398] [PMID: 29552012]
[29]
Lopez-Bujanda, Z.; Drake, C.G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J. Leukoc. Biol., 2017, 102(2), 393-406.
[http://dx.doi.org/10.1189/jlb.5VMR1116-491RR] [PMID: 28550116]
[30]
Idorn, M.; Køllgaard, T.; Kongsted, P.; Sengeløv, L.; thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother., 2014, 63(11), 1177-1187.
[http://dx.doi.org/10.1007/s00262-014-1591-2] [PMID: 25085000]
[31]
Muthuswamy, R.; Corman, J.M.; Dahl, K.; Chatta, G.S.; Kalinski, P. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8+ T cells. Prostate, 2016, 76(12), 1095-1105.
[http://dx.doi.org/10.1002/pros.23194] [PMID: 27199259]
[32]
Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The tumor immune contexture of prostate cancer. In: Frontiers in Immunology; Frontiers Media S.A., 2019. 10.
[33]
Vidotto, T.; Saggioro, F.P.; Jamaspishvili, T.; Chesca, D.L.; Picanço de Albuquerque, C.G.; Reis, R.B.; Graham, C.H.; Berman, D.M.; Siemens, D.R.; Squire, J.A.; Koti, M. PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells. Prostate, 2019, 79(9), 969-979.
[http://dx.doi.org/10.1002/pros.23808] [PMID: 30999388]
[34]
Garcia-Lora, A.; Algarra, I.; Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell. Physiol., 2003, 195(3), 346-355.
[http://dx.doi.org/10.1002/jcp.10290] [PMID: 12704644]
[35]
Sanda, M.G.; Restifo, N.P.; Walsh, J.C.; Kawakami, Y.; Nelson, W.G.; Pardoll, D.M.; Simons, J.W. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst., 1995, 87(4), 280-285.
[http://dx.doi.org/10.1093/jnci/87.4.280] [PMID: 7707419]
[36]
Shen, Y.C.; Ghasemzadeh, A.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Lopez-Bujanda, Z.A. Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): Preclinical activity in the Myc-CaP model. Prost. Cancer Prost. Dis., 2017, 21(1), 113-125.
[37]
Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance mechanisms of Anti-PD1/PDL1 therapy in solid tumors. Front. Cell Dev. Biol., 2020, 8, 672.
[http://dx.doi.org/10.3389/fcell.2020.00672] [PMID: 32793604]
[38]
Ribas, A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov., 2015, 5(9), 915-919.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0563] [PMID: 26272491]
[39]
Montoya, M.; Schiavoni, G.; Mattei, F.; Gresser, I.; Belardelli, F.; Borrow, P.; Tough, D.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99(9), 3263-3271.
[http://dx.doi.org/10.1182/blood.V99.9.3263] [PMID: 11964292]
[40]
Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci., 1957, 147(927), 258-267.
[http://dx.doi.org/10.1098/rspb.1957.0048] [PMID: 13465720]
[41]
Yu, R.; Zhu, B.; Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell. Mol. Life Sci., 2022, 79(3), 191.
[http://dx.doi.org/10.1007/s00018-022-04219-z] [PMID: 35292881]
[42]
Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; Murphy, K.M.; Schreiber, R.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med., 2011, 208(10), 1989-2003.
[http://dx.doi.org/10.1084/jem.20101158] [PMID: 21930769]
[43]
Wan, D.; Jiang, W.; Hao, J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front. Immunol., 2020, 11, 615.
[http://dx.doi.org/10.3389/fimmu.2020.00615] [PMID: 32411126]
[44]
Sun, W.; Li, Y.; Chen, L.; Chen, H.; You, F.; Zhou, X.; Zhou, Y.; Zhai, Z.; Chen, D.; Jiang, Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8653-8658.
[http://dx.doi.org/10.1073/pnas.0900850106] [PMID: 19433799]
[45]
Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; Jing, M.; Wang, X.; Liu, Y.C.; Mei, Q.; Han, W.; Jiang, Z. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res., 2020, 30(11), 966-979.
[http://dx.doi.org/10.1038/s41422-020-00395-4] [PMID: 32839553]
[46]
Li, T.; Chen, Z.J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med., 2018, 215(5), 1287-1299.
[http://dx.doi.org/10.1084/jem.20180139] [PMID: 29622565]
[47]
Baird, J.R.; Friedman, D.; Cottam, B.; Dubensky, T.W., Jr; Kanne, D.B.; Bambina, S.; Bahjat, K.; Crittenden, M.R.; Gough, M.J. Radiotherapy combined with novel sting-targeting oligonucleotides results in regression of established tumors. Cancer Res., 2016, 76(1), 50-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3619] [PMID: 26567136]
[48]
Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[49]
Kumar, S.; Han, J.A.; Michael, I.J.; Ki, D.; Sunkara, V.; Park, J.; Gautam, S.; Ha, H.K.; Zhang, L.; Cho, Y-K. Human platelet membrane functionalized microchips with plasmonic codes for cancer detection. Adv. Funct. Mater., 2019, 29(30), 1902669.
[http://dx.doi.org/10.1002/adfm.201902669]
[50]
Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B.L.; Zillinger, T.; Serganov, A.A.; Liu, Y.; Jones, R.A.; Hartmann, G.; Tuschl, T.; Patel, D.J. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 2013, 153(5), 1094-1107.
[http://dx.doi.org/10.1016/j.cell.2013.04.046] [PMID: 23647843]
[51]
Kang, J.; Wu, J.; Liu, Q.; Wu, X.; Zhao, Y.; Ren, J. Post-translational modifications of STING: A potential therapeutic target. Front. Immunol., 2022, 13, 888147.
[http://dx.doi.org/10.3389/fimmu.2022.888147] [PMID: 35603197]
[52]
Tao, J.; Zhou, X.; Jiang, Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68(11), 858-870.
[http://dx.doi.org/10.1002/iub.1566] [PMID: 27706894]
[53]
Gao, Y.; Zheng, X.; Chang, B.; Lin, Y.; Huang, X.; Wang, W.; Ding, S.; Zhan, W.; Wang, S.; Xiao, B.; Huo, L.; Yu, Y.; Chen, Y.; Gong, R.; Wu, Y.; Zhang, R.; Zhong, L.; Wang, X.; Chen, Q.; Gao, S.; Jiang, Z.; Wei, D.; Kang, T. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Res., 2022, 32(12), 1086-1104.
[http://dx.doi.org/10.1038/s41422-022-00731-w] [PMID: 36280710]
[54]
Hu, X.; Zhang, H.; Zhang, Q.; Yao, X.; Ni, W.; Zhou, K. Emerging role of STING signalling in CNS injury: Inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J. Neuroinflammation, 2022, 19(1), 242.
[http://dx.doi.org/10.1186/s12974-022-02602-y] [PMID: 36195926]
[55]
Jianfeng, W.; Yutao, W.; Jianbin, B. Indolethylamine-N-Methyltransferase inhibits proliferation and promotes apoptosis of human prostate cancer cells: A mechanistic exploration. Front. Cell Dev. Biol., 2022, 10, 805402.
[http://dx.doi.org/10.3389/fcell.2022.805402] [PMID: 35252179]
[56]
Ihle, C.L.; Provera, M.D.; Straign, D.M.; Smith, E.E.; Edgerton, S.M.; Van Bokhoven, A.; Lucia, M.S.; Owens, P. Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients. J. Immunother. Cancer, 2019, 7(1), 293.
[http://dx.doi.org/10.1186/s40425-019-0753-3] [PMID: 31703602]
[57]
Lindblad, K.E.; Ruiz de Galarreta, M.; Lujambio, A. Tumor-intrinsic mechanisms regulating immune exclusion in liver cancers. Front. Immunol., 2021, 12, 642958>.
[http://dx.doi.org/10.3389/fimmu.2021.642958] [PMID: 33981303]
[58]
O’Donnell, J.S.; Madore, J.; Li, X.Y.; Smyth, M.J. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol., 2020, 65, 189-196.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.013] [PMID: 31883911]
[59]
Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood, 2018, 131(1), 58-67.
[http://dx.doi.org/10.1182/blood-2017-06-741033] [PMID: 29118008]
[60]
Stamper, C.C.; Zhang, Y.; Tobin, J.F.; Erbe, D.V.; Ikemizu, S.; Davis, S.J.; Stahl, M.L.; Seehra, J.; Somers, W.S.; Mosyak, L. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 2001, 410(6828), 608-611.
[http://dx.doi.org/10.1038/35069118] [PMID: 11279502]
[61]
Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668.
[http://dx.doi.org/10.1038/s41577-020-0306-5]
[62]
Degl’Innocenti, E.; Grioni, M.; Boni, A.; Camporeale, A.; Bertilaccio, M.T.S.; Freschi, M.; Monno, A.; Arcelloni, C.; Greenberg, N.M.; Bellone, M. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol., 2005, 35(1), 66-75.
[http://dx.doi.org/10.1002/eji.200425531] [PMID: 15597325]
[63]
Li, X.; Khorsandi, S.; Wang, Y.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M.; Lee, D.; Lu, Y.; Gao, R.; Kim, B.Y.S.; de Gracia Lux, C.; Mattrey, R.F.; Jiang, W.; Lux, J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol., 2022, 17(8), 891-899.
[http://dx.doi.org/10.1038/s41565-022-01134-z] [PMID: 35637356]
[64]
Sun, X.; Zhang, Y.; Li, J.; Park, K.S.; Han, K.; Zhou, X.; Xu, Y.; Nam, J.; Xu, J.; Shi, X.; Wei, L.; Lei, Y.L.; Moon, J.J. Amplifying STING activation by cyclic dinucleotide– manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol., 2021, 16(11), 1260-1270.
[http://dx.doi.org/10.1038/s41565-021-00962-9] [PMID: 34594005]
[65]
Lin, H.; Wang, K.; Xiong, Y.; Zhou, L.; Yang, Y.; Chen, S.; Xu, P.; Zhou, Y.; Mao, R.; Lv, G.; Wang, P.; Zhou, D. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front. Immunol., 2022, 13, 773264.
[http://dx.doi.org/10.3389/fimmu.2022.773264] [PMID: 35185876]
[66]
Shortman, K.; Lahoud, M.H.; Caminschi, I. Improving vaccines by targeting antigens to dendritic cells. Exp. Mol. Med., 2009, 41(2), 61-66.
[http://dx.doi.org/10.3858/emm.2009.41.2.008] [PMID: 19287186]
[67]
Kratzer, T.B.; Jemal, A.; Miller, K.D.; Nash, S.; Wiggins, C.; Redwood, D.; Smith, R.; Siegel, R.L. Cancer statistics for A merican I ndian and A laska N ative individuals, 2022: Including increasing disparities in early onset colorectal cancer. CA Cancer J. Clin., 2023, 73(2), 120-146.
[http://dx.doi.org/10.3322/caac.21757] [PMID: 36346402]
[68]
Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791.
[http://dx.doi.org/10.1126/science.1232458] [PMID: 23258413]
[69]
Liu, Y.; Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother., 2012, 35(4), 299-308.
[http://dx.doi.org/10.1097/CJI.0b013e3182518e83] [PMID: 22495387]
[70]
Disis, M.L. Immune regulation of cancer. J. Clin. Oncol., 2010, 28(29), 4531-4538.
[http://dx.doi.org/10.1200/JCO.2009.27.2146] [PMID: 20516428]
[71]
Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S3-S23.
[http://dx.doi.org/10.1016/j.jaci.2009.12.980] [PMID: 20176265]
[72]
Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol., 2023, 20(5), 432-447.
[http://dx.doi.org/10.1038/s41423-023-00990-6] [PMID: 36949244]
[73]
Das, P.; Shen, T.; McCord, R.P. Characterizing the variation in chromosome structure ensembles in the context of the nuclear microenvironment. PLOS Comput. Biol., 2022, 18(8), e1010392.
[http://dx.doi.org/10.1371/journal.pcbi.1010392] [PMID: 35969616]
[74]
Strickfaden, H.; Zunhammer, A.; van Koningsbruggen, S.; Köhler, D.; Cremer, T. 4D Chromatin dynamics in cycling cells. Nucleus, 2010, 1(3), 284-297.
[http://dx.doi.org/10.4161/nucl.11969] [PMID: 21327076]
[75]
Ho, S.S.W.; Zhang, W.Y.L.; Tan, N.Y.J.; Khatoo, M.; Suter, M.A.; Tripathi, S.; Cheung, F.S.G.; Lim, W.K.; Tan, P.H.; Ngeow, J.; Gasser, S. The DNA structure-specific endonuclease mus81 mediates dna sensor sting-dependent host rejection of prostate cancer cells. Immunity, 2016, 44(5), 1177-1189.
[http://dx.doi.org/10.1016/j.immuni.2016.04.010] [PMID: 27178469]
[76]
Zhang, W.; Li, G.; Luo, R.; Lei, J.; Song, Y.; Wang, B.; Ma, L.; Liao, Z.; Ke, W.; Liu, H.; Hua, W.; Zhao, K.; Feng, X.; Wu, X.; Zhang, Y.; Wang, K.; Yang, C. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp. Mol. Med., 2022, 54(2), 129-142.
[http://dx.doi.org/10.1038/s12276-022-00729-9] [PMID: 35145201]
[77]
Newman, L.E.; Shadel, G.S. Mitochondrial DNA release in innate immune signaling. Annu. Rev. Biochem., 2023, 92(1), 299-332.
[http://dx.doi.org/10.1146/annurev-biochem-032620-104401] [PMID: 37001140]
[78]
Singh, J.; Boettcher, M.; Dölling, M.; Heuer, A.; Hohberger, B.; Leppkes, M.; Naschberger, E.; Schapher, M.; Schauer, C.; Schoen, J.; Stürzl, M.; Vitkov, L.; Wang, H.; Zlatar, L.; Schett, G.A.; Pisetsky, D.S.; Liu, M.L.; Herrmann, M.; Knopf, J. Moonlighting chromatin: When DNA escapes nuclear control. Cell Death Differ., 2023, 30(4), 861-875.
[http://dx.doi.org/10.1038/s41418-023-01124-1] [PMID: 36755071]
[79]
Vassilieva, E.V.; Taylor, D.W.; Compans, R.W. Combination of STING pathway agonist with saponin is an effective adjuvant in immunosenescent mice. Front. Immunol., 2019, 10, 3006.
[http://dx.doi.org/10.3389/fimmu.2019.03006] [PMID: 31921219]
[80]
Liu, Y.; Lu, X.; Qin, N.; Qiao, Y.; Xing, S.; Liu, W.; Feng, F.; Liu, Z.; Sun, H. STING, a promising target for small molecular immune modulator: A review. Eur. J. Med. Chem., 2021, 211, 113113.
[http://dx.doi.org/10.1016/j.ejmech.2020.113113] [PMID: 33360799]
[81]
Ross, P.; Weinhouse, H.; Aloni, Y.; Michaeli, D.; Weinberger-Ohana, P.; Mayer, R.; Braun, S.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Benziman, M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987, 325(6101), 279-281.
[http://dx.doi.org/10.1038/325279a0] [PMID: 18990795]
[82]
Elmanfi, S.; Yilmaz, M.; Ong, W.W.S.; Yeboah, K.S.; Sintim, H.O.; Gürsoy, M.; Könönen, E.; Gürsoy, U.K. Bacterial cyclic dinucleotides and the cGAS–cGAMP–STING pathway: A role in periodontitis? Pathogens, 2021, 10(6), 675.
[http://dx.doi.org/10.3390/pathogens10060675] [PMID: 34070809]
[83]
Gonugunta, V.K.; Sakai, T.; Pokatayev, V.; Yang, K.; Wu, J.; Dobbs, N.; Yan, N. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep., 2017, 21(11), 3234-3242.
[http://dx.doi.org/10.1016/j.celrep.2017.11.061] [PMID: 29241549]
[84]
Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y.; Celis, E.; Kobayashi, H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother., 2017, 66(6), 705-716.
[http://dx.doi.org/10.1007/s00262-017-1975-1] [PMID: 28243692]
[85]
Ji, N.; Wang, M.; Tan, C. Liposomal delivery of MIW815 (ADU-S100) for potentiated STING activation. Pharmaceutics, 2023, 15(2), 638.
[http://dx.doi.org/10.3390/pharmaceutics15020638] [PMID: 36839960]
[86]
Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; Metchette, K.; Dubensky, T.W., Jr; Gajewski, T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030.
[http://dx.doi.org/10.1016/j.celrep.2015.04.031] [PMID: 25959818]
[87]
Harrington, K.J.; Brody, J.; Ingham, M.; Strauss, J.; Cemerski, S.; Wang, M.; Tse, A.; Khilnani, A.; Marabelle, A.; Golan, T. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol., 2018, 29, viii712.
[http://dx.doi.org/10.1093/annonc/mdy424.015]
[88]
Papaevangelou, E.; Esteves, A.M.; Dasgupta, P.; Galustian, C. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models. Front. Immunol., 2023, 14, 1196829.
[http://dx.doi.org/10.3389/fimmu.2023.1196829] [PMID: 37465665]
[89]
Cui, X.; Zhang, R.; Cen, S.; Zhou, J. STING modulators: Predictive significance in drug discovery. Eur. J. Med. Chem., 2019, 182, 111591.
[http://dx.doi.org/10.1016/j.ejmech.2019.111591] [PMID: 31419779]
[90]
Jassar, A.S.; Suzuki, E.; Kapoor, V.; Sun, J.; Silverberg, M.B.; Cheung, L.; Burdick, M.D.; Strieter, R.M.; Ching, L.M.; Kaiser, L.R.; Albelda, S.M. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res., 2005, 65(24), 11752-11761.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1658] [PMID: 16357188]
[91]
Kanwar, KRPSCLKGW, JR Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res. , 2001, 61(5), 1948-1956.
[92]
Lara, P.N., Jr; Douillard, J.Y.; Nakagawa, K.; von Pawel, J.; McKeage, M.J.; Albert, I.; Losonczy, G.; Reck, M.; Heo, D.S.; Fan, X.; Fandi, A.; Scagliotti, G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(22), 2965-2971.
[http://dx.doi.org/10.1200/JCO.2011.35.0660] [PMID: 21709202]
[93]
Woon, S.T.; Zwain, S.; Schooltink, M.A.; Newth, A.L.; Baguley, B.C.; Ching, L.M. NF-kappa B activation in vivo in both host and tumour cells by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Eur. J. Cancer, 2003, 39(8), 1176-1183.
[http://dx.doi.org/10.1016/S0959-8049(03)00196-5] [PMID: 12736120]
[94]
Ching, L-M.; Cao, Z.; Kieda, C.; Zwain, S.; Jameson, M.B.; Baguley, B.C. Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Br. J. Cancer, 2002, 86(12), 1937-1942.
[http://dx.doi.org/10.1038/sj.bjc.6600368] [PMID: 12085190]
[95]
Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. cGAS-STING pathway in cancer biotherapy. Mol. Cancer, 2020, 19(1), 136.
[http://dx.doi.org/10.1186/s12943-020-01247-w] [PMID: 32887628]
[96]
Garland, K.M.; Sheehy, T.L.; Wilson, J.T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev., 2022, 122(6), 5977-6039.
[http://dx.doi.org/10.1021/acs.chemrev.1c00750] [PMID: 35107989]
[97]
Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; Muelbaier, M.; Schneck, J.L.; Clemens, J.; Adam, M.; Mehlmann, J.; Romano, J.; Morales, A.; Kang, J.; Leister, L.; Graybill, T.L.; Charnley, A.K.; Ye, G.; Nevins, N.; Behnia, K.; Wolf, A.I.; Kasparcova, V.; Nurse, K.; Wang, L.; Puhl, A.C.; Li, Y.; Klein, M.; Hopson, C.B.; Guss, J.; Bantscheff, M.; Bergamini, G.; Reilly, M.A.; Lian, Y.; Duffy, K.J.; Adams, J.; Foley, K.P.; Gough, P.J.; Marquis, R.W.; Smothers, J.; Hoos, A.; Bertin, J. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564(7736), 439-443.
[http://dx.doi.org/10.1038/s41586-018-0705-y] [PMID: 30405246]
[98]
Pan, B.S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; Cemerski, S.; Chang, W.; Chen, Y.; Dandliker, P.J.; Feng, G.; Haidle, A.; Henderson, T.; Jewell, J.; Kariv, I.; Knemeyer, I.; Kopinja, J.; Lacey, B.M.; Laskey, J.; Lesburg, C.A.; Liang, R.; Long, B.J.; Lu, M.; Ma, Y.; Minnihan, E.C.; O’Donnell, G.; Otte, R.; Price, L.; Rakhilina, L.; Sauvagnat, B.; Sharma, S.; Tyagarajan, S.; Woo, H.; Wyss, D.F.; Xu, S.; Bennett, D.J.; Addona, G.H. An orally available non-nucleotide STING agonist with antitumor activity. Science, 2020, 369(6506), eaba6098.
[http://dx.doi.org/10.1126/science.aba6098] [PMID: 32820094]
[99]
Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 2014, 41(5), 843-852.
[http://dx.doi.org/10.1016/j.immuni.2014.10.019] [PMID: 25517616]
[100]
Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. OncoImmunology, 2020, 9(1), 1777624.
[http://dx.doi.org/10.1080/2162402X.2020.1777624] [PMID: 32934881]
[101]
Guo, F.; Han, Y.; Zhao, X.; Wang, J.; Liu, F.; Xu, C.; Wei, L.; Jiang, J.D.; Block, T.M.; Guo, J.T.; Chang, J. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother., 2015, 59(2), 1273-1281.
[http://dx.doi.org/10.1128/AAC.04321-14] [PMID: 25512416]
[102]
Bhatnagar, S.; Revuri, V.; Shah, M.; Larson, P.; Shao, Z.; Yu, D.; Prabha, S.; Griffith, T.S.; Ferguson, D.; Panyam, J. Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy. Cancers (Basel), 2022, 14(24), 6091.
[http://dx.doi.org/10.3390/cancers14246091] [PMID: 36551577]
[103]
Wobma, H.; Shin, D.S.; Chou, J.; Dedeoğlu, F. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus. Front. Immunol., 2022, 13, 905109.
[http://dx.doi.org/10.3389/fimmu.2022.905109] [PMID: 35693769]
[104]
Leventhal, D.S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S.A.; Gallant, C.W.; Christmas, R.; Gao, J.R.; James, M.J.; Abin-Fuentes, A.; Momin, M.; Bergeron, C.; Fisher, A.; Miller, P.F.; West, K.A.; Lora, J.M. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun., 2020, 11(1), 2739.
[http://dx.doi.org/10.1038/s41467-020-16602-0] [PMID: 32483165]
[105]
Toulany, M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes, 2019, 10(1), 25.
[http://dx.doi.org/10.3390/genes10010025] [PMID: 30621219]
[106]
Hoong, B.Y.D.; Gan, Y.H.; Liu, H.; Chen, E.S. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget, 2020, 11(30), 2930-2955.
[http://dx.doi.org/10.18632/oncotarget.27673] [PMID: 32774773]
[107]
Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGAS–STING pathway in health and disease. Nat. Rev. Genet., 2019, 20(11), 657-674.
[http://dx.doi.org/10.1038/s41576-019-0151-1] [PMID: 31358977]
[108]
Storozynsky, Q.; Hitt, M.M. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int. J. Mol. Sci., 2020, 21(22), 8877.
[http://dx.doi.org/10.3390/ijms21228877] [PMID: 33238631]
[109]
Lhuillier, C.; Rudqvist, N.P.; Elemento, O.; Formenti, S.C.; Demaria, S. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. Genome Med., 2019, 11(1), 40.
[http://dx.doi.org/10.1186/s13073-019-0653-7] [PMID: 31221199]
[110]
Fillon, M. Lung cancer radiation may increase the risk of major adverse cardiac events. CA Cancer J. Clin., 2019, 69(6), 435-437.
[http://dx.doi.org/10.3322/caac.21581] [PMID: 31545880]
[111]
Xue, A.; Shang, Y.; Jiao, P.; Zhang, S.; Zhu, C.; He, X.; Feng, G.; Fan, S. Increased activation of CGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells. Thorac. Cancer, 2022, 13(9), 1361-1368.
[http://dx.doi.org/10.1111/1759-7714.14400] [PMID: 35429143]
[112]
Liu, Y.; Crowe, W.N.; Wang, L.; Lu, Y.; Petty, W.J.; Habib, A.A.; Zhao, D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun., 2019, 10(1), 5108.
[http://dx.doi.org/10.1038/s41467-019-13094-5] [PMID: 31704921]
[113]
Luo, M.; Liu, Z.; Zhang, X.; Han, C.; Samandi, L.Z.; Dong, C.; Sumer, B.D.; Lea, J.; Fu, Y.X.; Gao, J. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J. Control. Release, 2019, 300, 154-160.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.036] [PMID: 30844475]
[114]
Patel, R.B.; Ye, M.; Carlson, P.M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y.; Arthur, I.; Xie, R.; Brown, R.J.; Wang, X.; Sriramaneni, R.; Kim, K.; Gong, S.; Morris, Z.S. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater., 2019, 31(43), 1902626.
[http://dx.doi.org/10.1002/adma.201902626] [PMID: 31523868]
[115]
Gan, Y.; Li, X.; Han, S.; Liang, Q.; Ma, X.; Rong, P.; Wang, W.; Li, W. The cGAS/STING pathway: A novel target for cancer therapy. Front. Immunol., 2022, 12, 795401.
[http://dx.doi.org/10.3389/fimmu.2021.795401] [PMID: 35046953]
[116]
Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions. Front. Pharmacol., 2018, 9(MAR), 185.
[http://dx.doi.org/10.3389/fphar.2018.00185] [PMID: 29556198]
[117]
Ukleja, J.; Kusaka, E.; Miyamoto, D.T. Immunotherapy combined with radiation therapy for genitourinary malignancies. Front. Oncol., 2021, 11, 663852.
[http://dx.doi.org/10.3389/fonc.2021.663852]
[118]
Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun., 2017, 8(1), 15618.
[http://dx.doi.org/10.1038/ncomms15618] [PMID: 28598415]
[119]
Constanzo, J.; Faget, J.; Ursino, C.; Badie, C.; Pouget, J.P. Radiation-induced immunity and toxicities: The versatility of the cGAS-STING pathway. Front. Immunol., 2021, 12, 680503.
[http://dx.doi.org/10.3389/fimmu.2021.680503] [PMID: 34079557]
[120]
Kaidar-Person, O.; Zagar, T.M.; Deal, A.; Moschos, S.J.; Ewend, M.G.; Sasaki-Adams, D.; Lee, C.B.; Collichio, F.A.; Fried, D.; Marks, L.B.; Chera, B.S. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases. Anticancer Drugs, 2017, 28(6), 669-675.
[http://dx.doi.org/10.1097/CAD.0000000000000497] [PMID: 28368903]
[121]
Wang, H.; Guan, Y.; Li, C.; Chen, J.; Yue, S.; Qian, J.; Dai, B.; Jiang, C.; Wen, C.; Wen, L.; Liang, C.; Zhang, Y.; Zhang, L. PEGylated manganese–zinc ferrite nanocrystals combined with intratumoral implantation of micromagnets enabled synergetic prostate cancer therapy via ferroptotic and immunogenic cell death. Small, 2023, 19(22), 2207077.
[http://dx.doi.org/10.1002/smll.202207077] [PMID: 36861297]
[122]
Hsu, S.C.; Chen, C.L.; Cheng, M.L.; Chu, C.Y.; Changou, C.A.; Yu, Y.L.; Yeh, S.D.; Kuo, T.C.; Kuo, C.C.; Chuu, C.P.; Li, C.F.; Wang, L.H.; Chen, H.W.; Yen, Y.; Ann, D.K.; Wang, H.J.; Kung, H.J. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Theranostics, 2021, 11(15), 7527-7545.
[http://dx.doi.org/10.7150/thno.54695] [PMID: 34158865]
[123]
Esteves, A.M.; Papaevangelou, E.; Dasgupta, P.; Galustian, C. Combination of interleukin-15 with a STING agonist, ADU-S100 analog: A potential immunotherapy for prostate cancer. Front. Oncol., 2021, 11, 621550.
[http://dx.doi.org/10.3389/fonc.2021.621550] [PMID: 33777767]
[124]
Ager, C.R.; Reilley, M.J.; Nicholas, C.; Bartkowiak, T.; Jaiswal, A.R.; Curran, M.A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res., 2017, 5(8), 676-684.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0049] [PMID: 28674082]
[125]
Ma, Z.; Zhang, W.; Dong, B.; Xin, Z.; Ji, Y.; Su, R.; Shen, K.; Pan, J.; Wang, Q.; Xue, W. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics, 2022, 12(11), 4965-4979.
[http://dx.doi.org/10.7150/thno.73152] [PMID: 35836810]
[126]
Huang, W.; Randhawa, R.; Jain, P.; Hubbard, S.; Eickhoff, J.; Kummar, S.; Wilding, G.; Basu, H.; Roy, R. A novel artificial intelligence–powered method for prediction of early recurrence of prostate cancer after prostatectomy and cancer drivers. JCO Clin. Cancer Inform., 2022, 6(6), e2100131.
[http://dx.doi.org/10.1200/CCI.21.00131] [PMID: 35192404]
[127]
Geng, C.; Zhang, M.C.; Manyam, G.C.; Vykoukal, J.V.; Fahrmann, J.F.; Peng, S.; Wu, C.; Park, S.; Kondraganti, S.; Wang, D.; Robinson, B.D.; Loda, M.; Barbieri, C.E.; Yap, T.A.; Corn, P.G.; Hanash, S.; Broom, B.M.; Pilié, P.G.; Thompson, T.C. SPOP mutations target STING1 signaling in prostate cancer and create therapeutic vulnerabilities to PARP inhibitor-induced growth suppression. Clin. Cancer Res., 2023, 29(21), 4464-4478.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-1439] [PMID: 37581614]
[128]
Olson, B.M.; Chaudagar, K.; Bao, R.; Saha, S.S.; Hong, C.; Li, M.; Rameshbabu, S.; Chen, R.; Thomas, A.; Patnaik, A. BET inhibition sensitizes immunologically cold rb-deficient prostate cancer to immune checkpoint blockade. Mol. Cancer Ther., 2023, 22(6), 751-764.
[http://dx.doi.org/10.1158/1535-7163.MCT-22-0369] [PMID: 37014264]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy