Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

A Mechanistic Review on Protective Effects of Mangosteen and its Xanthones Against Hazardous Materials and Toxins

Author(s): Roghayeh Yahyazadeh, Vafa Baradaran Rahimi, Ahmad Yahyazadeh and Vahid Reza Askari*

Volume 22, Issue 12, 2024

Published on: 14 March, 2024

Page: [1986 - 2015] Pages: 30

DOI: 10.2174/1570159X22666240212142655

Price: $65

Abstract

Due to its pharmacological properties, α-Mangostin, mainly found in Garcinia mangostana (G. mangostana) L. (Mangosteen, queen of fruits), treats wounds, skin infections, and many other disorders. In fact, α-Mangostin and other xanthonoid, including β-Mangostin and γ-Mangostin, are found in G. mangostana, which have various advantages, namely neuroprotective, anti-proliferative, antinociceptive, antioxidant, pro-apoptotic, anti-obesity, anti-inflammatory, and hypoglycemic through multiple signaling mechanisms, for instance, extracellular signal-regulated kinase1/2 (ERK 1/2), mitogenactivated Protein kinase (MAPK), nuclear factor-kappa B (NF-kB), transforming growth factor beta1 (TGF-β1) and AMP-activated protein kinase (AMPK). This review presents comprehensive information on Mangosteen's pharmacological and antitoxic aspects and its xanthones against various natural and chemical toxins. Because of the insufficient clinical study, we hope the current research can benefit from performing clinical and preclinical studies against different toxic agents.

Graphical Abstract

[1]
Batiha, G.E.S.; Beshbishy, A.M.; Tayebwa, D.S.; Adeyemi, O.S.; Yokoyama, N.; Igarashi, I. Evaluation of the inhibitory effect of ivermectin on the growth of Babesia and Theileria parasites in vitro and in vivo. Trop. Med. Health, 2019, 47(1), 42.
[http://dx.doi.org/10.1186/s41182-019-0171-8] [PMID: 31337949]
[2]
Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Uncaria tomentosa bark, Myrtus communis roots, Origanum vulgare leaves and Cuminum cyminum seeds extracts against the growth of babesia and theileria in vitro. Jpn. J. Vet. Parasitol. Vol, 2018, 17(1)
[3]
Alipour, A.; Baradaran Rahimi, V.; Askari, V.R. Promising influences of gingerols against metabolic syndrome: A mechanistic review. Biofactors, 2022, 48(5), 993-1004.
[http://dx.doi.org/10.1002/biof.1892] [PMID: 36191294]
[4]
El-Saber, B.G.; Magdy, B.A.; Stephen, A.O.; Nadwa, E.; Rashwan, E.; Yokoyama, N.; Igarashi, I. Safety and efficacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS One, 2020, 15(2), e0228996.
[http://dx.doi.org/10.1371/journal.pone.0228996] [PMID: 32053698]
[5]
Batiha, G.E.S.; Beshbishy, A.M.; Alkazmi, L.; Adeyemi, O.S.; Nadwa, E.; Rashwan, E.; El-Mleeh, A.; Igarashi, I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complementary Medicine and Therapies, 2020, 20(1), 87.
[http://dx.doi.org/10.1186/s12906-020-2848-2] [PMID: 32183812]
[6]
Baradaran, R.V.; Askari, V.R. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β‐caryophyllene. Biofactors, 2022, 48(4), 857-882.
[http://dx.doi.org/10.1002/biof.1869] [PMID: 35648433]
[7]
Rahmanian-Devin, P.; Baradaran Rahimi, V.; Jaafari, M.R.; Golmohammadzadeh, S.; Sanei-far, Z.; Askari, V.R. Noscapine, an emerging medication for different diseases: A mechanistic review. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/8402517] [PMID: 34880922]
[8]
Igarashi, I.; Beshbishy, A.M.; El-Saber Batiha, G.; Adeyemi, O.S.; Yokoyama, N. Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on growth of Babesia and Theileria. Asian Pac. J. Trop. Med., 2019, 12(9), 425.
[http://dx.doi.org/10.4103/1995-7645.267586]
[9]
Batiha, G.E.S.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick Borne Dis., 2019, 10(5), 949-958.
[http://dx.doi.org/10.1016/j.ttbdis.2019.04.016] [PMID: 31101552]
[10]
Yahyazadeh, R.; Rahimi, V.; Yahyazadeh, A.; Mohajeri, S.A.; Askari, V.R. Promising effects of gingerol against toxins: A review article. Biofactors, 2021, 47(6), 885-913.
[http://dx.doi.org/10.1002/biof.1779] [PMID: 34418196]
[11]
Nourbakhsh, F.; Mousavi, S.H.; Rahmanian-Devin, P.; Baradaran Rahimi, V.; Rakhshandeh, H.; Askari, V.R. Topical formulation of noscapine, a benzylisoquinoline alkaloid, ameliorates imiquimod-induced psoriasis-like skin lesions. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/3707647] [PMID: 35497929]
[12]
El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 2020, 10(2), 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[13]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[14]
Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti- oxidant, immuno-modulatory and antitumor activities. J. Pharmacopuncture, 2019, 22(1), 7-15.
[http://dx.doi.org/10.3831/KPI.2019.22.001] [PMID: 30988996]
[15]
Morton, J.F.; Dowling, C.F. Fruits of warm climates; JF Morton Miami: FL, 1987.
[16]
Jung, H.A.; Su, B.N.; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem., 2006, 54(6), 2077-2082.
[http://dx.doi.org/10.1021/jf052649z] [PMID: 16536578]
[17]
Liu, Q.Y.; Wang, Y.T.; Lin, L.G. New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food Funct., 2015, 6(2), 383-393.
[http://dx.doi.org/10.1039/C4FO00758A] [PMID: 25520256]
[18]
Asasutjarit, R.; Larpmahawong, P.; Fuongfuchat, A.; Sareedenchai, V.; Veeranondha, S. Physicochemical properties and anti-Propionibacterium acnes activity of film-forming solutions containing alpha-mangostin-rich extract. AAPS PharmSciTech, 2014, 15(2), 306-316.
[http://dx.doi.org/10.1208/s12249-013-0057-8] [PMID: 24327275]
[19]
Mahabusarakam, W.; Wiriyachitra, P.; Taylor, W.C. Chemical constituents of Garcinia mangostana. J. Nat. Prod., 1987, 50(3), 474-478.
[http://dx.doi.org/10.1021/np50051a021]
[20]
Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: new insights in biological activities. Curr. Med. Chem., 2005, 12(21), 2517-2538.
[http://dx.doi.org/10.2174/092986705774370691] [PMID: 16250875]
[21]
Janardhanan, S.; Mahendra, J.; Mahendra, L.; Devarajan, N. Cytotoxic effects of mangosteen pericarp extracts on oral cancer and cervical cancer cells. Asian Pac. J. Cancer Prev., 2020, 21(9), 2577-2583.
[http://dx.doi.org/10.31557/APJCP.2020.21.9.2577] [PMID: 32986355]
[22]
Obolskiy, D.; Pischel, I.; Siriwatanametanon, N.; Heinrich, M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother. Res., 2009, 23(8), 1047-1065.
[http://dx.doi.org/10.1002/ptr.2730] [PMID: 19172667]
[23]
Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol., 2017, 109(Pt 1), 102-122.
[http://dx.doi.org/10.1016/j.fct.2017.08.021] [PMID: 28842267]
[24]
Eisvand, F.; Imenshahidi, M.; Rahbardar, M.; Tabatabaei Yazdi, S.A.; Rameshrad, M.; Razavi, B.M.; Hosseinzadeh, H. Cardioprotective effects of alpha‐mangostin on doxorubicin‐induced cardiotoxicity in rats. Phytother. Res., 2022, 36(1), 506-524.
[http://dx.doi.org/10.1002/ptr.7356] [PMID: 34962009]
[25]
Hao, X.M.; Li, L.D.; Duan, C.L.; Li, Y.J. Neuroprotective effect of α-mangostin on mitochondrial dysfunction and α-synuclein aggregation in rotenone-induced model of Parkinson’s disease in differentiated SH-SY5Y cells. J. Asian Nat. Prod. Res., 2017, 19(8), 833-845.
[http://dx.doi.org/10.1080/10286020.2017.1339349] [PMID: 28696167]
[26]
Wang, A.; Liu, Q.; Ye, Y.; Wang, Y.; Lin, L. Identification of hepatoprotective xanthones from the pericarps of Garcinia mangostana, guided with tert-butyl hydroperoxide induced oxidative injury in HL-7702 cells. Food Funct., 2015, 6(9), 3013-3021.
[http://dx.doi.org/10.1039/C5FO00573F] [PMID: 26189454]
[27]
Saraswathy, S.U.P.; Lalitha, L.C.P.; Rahim, S.; Gopinath, C.; Haleema, S.; SarojiniAmma, S.; Aboul-Enein, H.Y. A review on synthetic and pharmacological potential of compounds isolated from Garcinia mangostana linn. Phytomedicine Plus, 2022, 2(2), 100253.
[http://dx.doi.org/10.1016/j.phyplu.2022.100253]
[28]
Batiha, G.; Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (fabaceae). Biomolecules, 2020, 10(3), 352.
[http://dx.doi.org/10.3390/biom10030352] [PMID: 32106571]
[29]
Gutierrez-Orozco, F.; Failla, M. Biological activities and bioavailability of mangosteen xanthones: A critical review of the current evidence. Nutrients, 2013, 5(8), 3163-3183.
[http://dx.doi.org/10.3390/nu5083163] [PMID: 23945675]
[30]
Jiang, D.J.; Dai, Z.; Li, Y.J. Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc. Drug Rev., 2004, 22(2), 91-102.
[http://dx.doi.org/10.1111/j.1527-3466.2004.tb00133.x] [PMID: 15179447]
[31]
Peres, V.; Nagem, T.J.; de Oliveira, F.F. Tetraoxygenated naturally occurring xanthones. Phytochemistry, 2000, 55(7), 683-710.
[http://dx.doi.org/10.1016/S0031-9422(00)00303-4] [PMID: 11190384]
[32]
Vemu, B.; Nauman, M.C.; Veenstra, J.P.; Johnson, J.J. Structure activity relationship of xanthones for inhibition of Cyclin Dependent Kinase 4 from mangosteen (Garcinia mangostana L.). Int. J. Nutr., 2019, 4(4), 38-45.
[http://dx.doi.org/10.14302/issn.2379-7835.ijn-19-2845] [PMID: 31363494]
[33]
Suksamrarn, S.; Komutiban, O.; Ratananukul, P.; Chimnoi, N.; Lartpornmatulee, N.; Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull., 2006, 54(3), 301-305.
[http://dx.doi.org/10.1248/cpb.54.301] [PMID: 16508181]
[35]
Awouafack, M.D.; McGaw, L.J.; Gottfried, S.; Mbouangouere, R.; Tane, P.; Spiteller, M.; Eloff, J.N. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complement. Altern. Med., 2013, 13(1), 289.
[http://dx.doi.org/10.1186/1472-6882-13-289] [PMID: 24165199]
[36]
Srivastava, J.; Chandra, H.; Nautiyal, A.R.; Kalra, S.J. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDA(m)s) as an alternative drug line to control infections. 3 Biotech, 2014, 4(5), 451-460.
[37]
Pothitirat, W.; Chomnawang, M.T.; Gritsanapan, W. Anti-acne-inducing bacterial activity of mangosteen fruit rind extracts. Med. Princ. Pract., 2010, 19(4), 281-286.
[http://dx.doi.org/10.1159/000312714] [PMID: 20516704]
[38]
Boonnak, N.; Chantrapromma, S.; Sathirakul, K.; Kaewpiboon, C. Modified tetra-oxygenated xanthones analogues as anti-MRSA and P. aeruginosa agent and their synergism with vancomycin. Bioorg. Med. Chem. Lett., 2020, 30(20), 127494.
[http://dx.doi.org/10.1016/j.bmcl.2020.127494] [PMID: 32795625]
[39]
Boonnak, N. A better activity or less toxic: Structure modification of antibacterial Xanthones; Prince of Songkla University, 2014.
[40]
Meepagala, K.M.; Schrader, K.K. Antibacterial activity of constituents from mangosteen Garcinia mangostana fruit pericarp against several channel catfish pathogens. J. Aquat. Anim. Health, 2018, 30(3), 179-184.
[http://dx.doi.org/10.1002/aah.10021] [PMID: 29635710]
[41]
Chaiarwut, S.; Niyompanich, J.; Ekabutr, P.; Chuysinuan, P.; Pavasant, P.; Supaphol, P. Development and characterization of antibacterial hydroxyapatite coated with mangosteen extract for bone tissue engineering. Polym. Bull., 2021, 78(7), 3543-3559.
[http://dx.doi.org/10.1007/s00289-020-03284-3]
[42]
Jamila, N.; Khan, N.; Bibi, N.; Waqas, M.; Khan, S.N.; Atlas, A.; Amin, F.; Khan, F.; Saba, M. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. Chemosphere, 2021, 272, 129794.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129794] [PMID: 35534954]
[43]
Jamila, N.; Khairuddean, M.; Yaacob, N.S.; Kamal, N.N.S.N.M.; Osman, H.; Khan, S.N.; Khan, N. Cytotoxic benzophenone and triterpene from Garcinia hombroniana. Bioorg. Chem., 2014, 54, 60-67.
[http://dx.doi.org/10.1016/j.bioorg.2014.04.003] [PMID: 24813683]
[44]
Zou, H.; Koh, J.J.; Li, J.; Qiu, S.; Aung, T.T.; Lin, H.; Lakshminarayanan, R.; Dai, X.; Tang, C.; Lim, F.H.; Zhou, L.; Tan, A.L.; Verma, C.; Tan, D.T.H.; Chan, H.S.O.; Saraswathi, P.; Cao, D.; Liu, S.; Beuerman, R.W. Design and synthesis of amphiphilic xanthone-based, membrane-targeting antimicrobials with improved membrane selectivity. J. Med. Chem., 2013, 56(6), 2359-2373.
[http://dx.doi.org/10.1021/jm301683j] [PMID: 23441632]
[45]
Le, T.T.; Pandey, R.P.; Gurung, R.B.; Dhakal, D.; Sohng, J.K. Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria. Appl. Microbiol. Biotechnol., 2014, 98(20), 8527-8538.
[http://dx.doi.org/10.1007/s00253-014-5947-5] [PMID: 25038930]
[46]
World Health Organization. Global tuberculosis report 2013; World Health Organization: Geneva, 2013.
[47]
Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev., 2015, 264(1), 182-203.
[http://dx.doi.org/10.1111/imr.12266] [PMID: 25703560]
[48]
Masood, K.I.; Rottenberg, M.E.; Salahuddin, N.; Irfan, M.; Rao, N.; Carow, B.; Islam, M.; Hussain, R.; Hasan, Z. Expression of M. tuberculosis-induced suppressor of cytokine signaling (SOCS)1, SOCS3, FoxP3 and secretion of IL-6 associates with differing clinical severity of tuberculosis. BMC Infect. Dis., 2013, 13(1), 13.
[http://dx.doi.org/10.1186/1471-2334-13-13] [PMID: 23320781]
[49]
Preeti, S.; Pradeep, K.; Rachna, S.; Kumar, A.V. Futuristic scope of biomarkers in tuberculosis. Asian J. Pharm. Clin. Res., 2015, 8, 248-250.
[50]
Redford, P.S.; Murray, P.J.; O’Garra, A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol., 2011, 4(3), 261-270.
[http://dx.doi.org/10.1038/mi.2011.7] [PMID: 21451501]
[51]
Ufimtseva, E. Mycobacterium-host cell relationships in granulomatous lesions in a mouse model of latent tuberculous infection. BioMed Res. Int., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/948131] [PMID: 26064970]
[52]
Nugrahaeni, D.; Hadisaputro, S.; Suwondo, A.; Dharmana, E. The effect of alpha-mangostin in balancing the ratio of cytokines pro-and anti-inflammation-gamma (IFN-γ/il-10) and severity of the disease in mice infected with Mycobacterium tuberculosis multidrug-resistant. Asian J. Pharm. Clin. Res., 2016, 9, 273.
[http://dx.doi.org/10.22159/ajpcr.2016.v9s3.14544]
[53]
Díaz-Muñoz, M.D.; Osma-García, I.C.; Fresno, M.; Iñiguez, M.A. Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem. J., 2012, 443(2), 451-461.
[http://dx.doi.org/10.1042/BJ20111052] [PMID: 22268508]
[54]
Rada, B.; Leto, T.L. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol., 2008, 15, 164-187.
[http://dx.doi.org/10.1159/000136357] [PMID: 18511861]
[55]
Karunakaran, T.; Ee, G.C.L.; Ismail, I.S.; Mohd Nor, S.M.; Zamakshshari, N.H. Acetyl- and O -alkyl- derivatives of β-mangostin from Garcinia mangostana and their anti-inflammatory activities. Nat. Prod. Res., 2018, 32(12), 1390-1394.
[http://dx.doi.org/10.1080/14786419.2017.1350666] [PMID: 28715912]
[56]
Alamsyah, T.D.; Rizqiawan, A.; Sumarta, N.P.M.; Soesilawati, P.; Rahman, M.Z. Interleukin-1α and alkaline phosphatase gene expression towards osteoblast cell culture post alpha-mangostin exposure (an in vitro laboratory experimental study). NVEO, 2021, 1099-1107.
[57]
Chen, J.; Bian, M.; Pan, L.; Yang, H. α‐Mangostin protects lipopolysaccharide‐stimulated nucleus pulposus cells against NLRP3 inflammasome‐mediated apoptosis via the NF‐κB pathway. J. Appl. Toxicol., 2022, 42(9), 1467-1476.
[http://dx.doi.org/10.1002/jat.4306] [PMID: 35187677]
[58]
Fu, T.; Li, H.; Zhao, Y.; Cai, E.; Zhu, H.; Li, P.; Liu, J. Hepatoprotective effect of α-mangostin against lipopolysaccharide/d-galactosamine-induced acute liver failure in mice. Biomed. Pharmacother., 2018, 106, 896-901.
[http://dx.doi.org/10.1016/j.biopha.2018.07.034] [PMID: 30119260]
[59]
Falanga, M.; Tshilanda, D.; Tshibangu, D.; Mbemba, T.; Ngbolua, K.; Mpiana, P. Phytochemistry and Antiviral activities of some fruit plant species as potential resources for anti-viral agents: A review. AROIC, 2022, 3(1)
[60]
Nur’aini, A.L.; Hartati, S.; Untari, T. In ovo inhibition of avian pox virus replication by mangosteen rind and red ginger ethanolic extracts. Vet. World, 2021, 14(10), 2640-2645.
[http://dx.doi.org/10.14202/vetworld.2021.2640-2645] [PMID: 34903920]
[61]
Bernal, F.; Coy-Barrera, E. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents. Molecules, 2015, 20(7), 13165-13204.
[http://dx.doi.org/10.3390/molecules200713165] [PMID: 26197308]
[62]
Ibrahim, M.Y.; Hashim, N.M.; Mariod, A.A.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Arbab, I.A. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arab. J. Chem., 2016, 9(3), 317-329.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.011]
[63]
Nugraha, A.S.; Keller, P.A. Revealing indigenous Indonesian traditional medicine: Anti-infective agents. Nat. Prod. Commun., 2011, 6(12), 1934578X1100601.
[http://dx.doi.org/10.1177/1934578X1100601240] [PMID: 22312747]
[64]
Hidayat, S.; Ibrahim, F.M.; Pratama, K.F.; Muchtaridi, M. The interaction of alpha-mangostin and its derivatives against main protease enzyme in COVID-19 using in silico methods. J. Adv. Pharm. Technol. Res., 2021, 12(3), 285-290.
[PMID: 34345609]
[65]
Panda, K.; Alagarasu, K.; Patil, P.; Agrawal, M.; More, A.; Kumar, N.V.; Mainkar, P.S.; Parashar, D.; Cherian, S. In vitro antiviral activity of α-Mangostin against dengue virus serotype-2 (DENV-2). Molecules, 2021, 26(10), 3016.
[http://dx.doi.org/10.3390/molecules26103016] [PMID: 34069351]
[66]
Shaneyfelt, M.E.; Burke, A.D.; Graff, J.W.; Jutila, M.A.; Hardy, M.E. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay. Virol. J., 2006, 3(1), 68.
[http://dx.doi.org/10.1186/1743-422X-3-68] [PMID: 16948846]
[67]
Parasitic disease Available From: https://www.britannica.com/science/parasitic-disease.
[68]
Vivatanasesth, P.; Sornmani, S.; Schelp, F.P.; Impand, P.; Sitabutra, P.; Preuksaraj, S.; Harinasuta, C. Mass treatment of opisthorchiasis in Northeast Thailand. Southeast Asian J. Trop. Med. Public Health, 1982, 13(4), 609-613.
[PMID: 7170644]
[69]
Aukkanimart, R.; Boonmars, T.; Sriraj, P.; Songsri, J.; Laummaunwai, P.; Waraasawapati, S.; Boonyarat, C.; Rattanasuwan, P.; Boonjaraspinyo, S. Anthelmintic, anti-inflammatory and antioxidant effects of Garcinia mangostana extract in hamster opisthorchiasis. Exp. Parasitol., 2015, 154, 5-13.
[http://dx.doi.org/10.1016/j.exppara.2015.03.007] [PMID: 25836376]
[70]
Bullangpoti, V.; Visetson, S.; Milne, J.; Milne, M.; Sudthongkong, C.; Pronbanlualap, S. Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: Toxicity and detoxification mechanism. Commun. Agric. Appl. Biol. Sci., 2007, 72(3), 431-441.
[PMID: 18399471]
[71]
Bullangpoti, V.; Visetson, S.; Milne, M.; Milne, J.; Pornbanlualap, S.; Sudthongkongs, C.; Tayapat, S. The novel botanical insecticide for the control brown planthopper (Nilaparvata lugens Stal.). Commun. Agric. Appl. Biol. Sci., 2006, 71(2 Pt B), 475-481.
[PMID: 17385515]
[72]
Turkson, B.K.; Agyemang, A.O.; Nkrumah, D.; Nketia, R.I.; Baidoo, M.F.; Mensah, M.L.K. Treatment of malaria infection and drug resistance. Plasmodium Species and Drug Resistance; IntechOpen, 2021.
[http://dx.doi.org/10.5772/intechopen.98373]
[73]
Phillips, M.A.; Burrows, J.N.; Manyando, C.; van Huijsduijnen, R.H.; Van Voorhis, W.C.; Wells, T.N.C. Malaria. Nat. Rev. Dis. Primers, 2017, 3(1), 17050.
[http://dx.doi.org/10.1038/nrdp.2017.50] [PMID: 28770814]
[74]
Ignatushchenko, M.V.; Winter, R.W.; Bächinger, H.P.; Hinrichs, D.J.; Riscoe, M.K. Xanthones as antimalarial agents; studies of a possible mode of action. FEBS Lett., 1997, 409(1), 67-73.
[http://dx.doi.org/10.1016/S0014-5793(97)00405-5] [PMID: 9199506]
[75]
Riscoe, M.; Kelly, J.X.; Winter, R. Xanthones as antimalarial agents: Discovery, mode of action, and optimization. Curr. Med. Chem., 2005, 12(21), 2539-2549.
[http://dx.doi.org/10.2174/092986705774370709] [PMID: 16250876]
[76]
Chaijaroenkul, W.; Na-Bangchang, K. The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and α-mangostin with mefloquine/artesunate. Acta Parasitol., 2014, 60(1), 105-111.
[http://dx.doi.org/10.1515/ap-2015-0013] [PMID: 26204026]
[77]
Bunyong, R.; Chaijaroenkul, W.; Plengsuriyakarn, T.; Na-Bangchang, K. Antimalarial activity and toxicity of Garcinia mangostana Linn. Asian Pac. J. Trop. Med., 2014, 7(9), 693-698.
[http://dx.doi.org/10.1016/S1995-7645(14)60118-8]
[78]
Markowicz, J.; Uram, Ł.; Sobich, J.; Mangiardi, L.; Maj, P.; Rode, W. Antitumor and anti-nematode activities of α-mangostin. Eur. J. Pharmacol., 2019, 863, 172678.
[http://dx.doi.org/10.1016/j.ejphar.2019.172678] [PMID: 31542481]
[79]
Kaomongkolgit, R.; Jamdee, K. Inhibitory effect of alpha-Mangostin on adhesion of Candida albicans to denture acrylic. Open Dent. J., 2015, 9, 388-392.
[http://dx.doi.org/10.2174/1874210601509010388] [PMID: 26962371]
[80]
Ye, H.; Wang, Q.; Zhu, F.; Feng, G.; Yan, C.; Zhang, J. Antifungal activity of alpha-mangostin against Colletotrichum gloeosporioidesin vitro and in vivo. Molecules, 2020, 25(22), 5335.
[http://dx.doi.org/10.3390/molecules25225335] [PMID: 33207599]
[81]
Tandel, R.S.; Chadha, N.K.; Dash, P.; Sawant, P.B.; Pandey, N.N.; Chandra, S.; Bhat, R.A.H.; Thakuaria, D. An in vitro study of Himalayan plant extracts against oomycetes disease Saprolegniasis in rainbow trout (Oncorhynchus mykiss). J. Environ. Biol., 2021, 42(4), 1008-1018.
[http://dx.doi.org/10.22438/jeb/42/4/MRN-1623]
[82]
Jaichuen, C.; Panase, A.; Hatai, K.; Rojtinnakorn, J. Novel biosubstances, α-mangostin and gartanin, from mangosteen (Garcinia mangostana L.) candidate for anti-saprolegniasis agent. Symposium Proceedings, 2017.
[83]
Askari, V.R.; Baradaran Rahimi, V.; Assaran, A.; Iranshahi, M.; Boskabady, M.H. Evaluation of the anti-oxidant and anti-inflammatory effects of the methanolic extract of Ferula szowitsiana root on PHA-induced inflammation in human lymphocytes. Drug. Chem. Toxicol., 2020, 43(4), 353-360.
[http://dx.doi.org/10.1080/01480545.2019.1572182]
[84]
Soujanya, P.; Sekhar, J.; Kumar, P. Maize grain losses due to Sitophilus oryzae (L). and Sitotroga cerealella (Oliv.) infestation during storage. Maize Journal, 2013, 2, 57-59.
[85]
Vijay, S.; Bhuvaneswari, K.; Gajendran, G. Assessment of grain damage and weight loss caused by Sitophilus oryzae (L.) feeding on split pulses. Agric. Sci. Dig., 2015, 35(2), 111-115.
[http://dx.doi.org/10.5958/0976-0547.2015.00019.1]
[86]
Bullangpoti, V.; Visetson, S.; Milne, J.; Pornbanlualap, S. Effects of mangosteen’s peels and rambutan’s seeds on toxicity, esterase and glutathione-S-transferase in rice weevil (Sitophilus oryzae L.). Agric. Nat. Resour. (Bangk.), 2004, 38(5), 84-89.
[87]
Safaei, R.; Sakhaee, K.; Saberifar, M.; Fadaei, M.S.; EdalatJoo, S.; Fadaei, M.R.; Rahimi, V.B.; Askari, R. Mechanistic insights into the xanthones present in mangosteen fruit (Garcinia mangostana) and their applications in diabetes and related complications. J. Food Biochem., 2023, 2023, 5334312.
[http://dx.doi.org/10.1155/2023/5334312]
[88]
Yahyapour, R.; Shabeeb, D.; Cheki, M.; Musa, A.E.; Farhood, B.; Rezaeyan, A.; Amini, P.; Fallah, H.; Najafi, M. Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Curr. Mol. Pharmacol., 2018, 11(4), 285-304.
[http://dx.doi.org/10.2174/1874467211666180619125653] [PMID: 29921213]
[89]
Thabet, N.M.; Moustafa, E.M. Synergistic effect of Ebselen and gamma radiation on breast cancer cells. Int. J. Radiat. Biol., 2017, 93(8), 784-792.
[http://dx.doi.org/10.1080/09553002.2017.1325024] [PMID: 28463038]
[90]
Campo, J.A.D.; Gallego, P.; Grande, L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J. Hepatol., 2018, 10(1), 1-7.
[http://dx.doi.org/10.4254/wjh.v10.i1.1] [PMID: 29399273]
[91]
Hassan, A.A.; Moustafa, E.M. EL-Khashab, I.H.; Mansour, S.Z. Mangosteen hinders gamma radiation-mediated oxidative stress and liver injury by down-regulating TNF-α/NF-κB and pro-fibrotic factor TGF-β1 inducing inflammatory signaling. Dose Response, 2021, 19(2)
[http://dx.doi.org/10.1177/15593258211025190] [PMID: 34220386]
[92]
Lam, E.; Kato, N.; Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 2001, 411(6839), 848-853.
[http://dx.doi.org/10.1038/35081184] [PMID: 11459068]
[93]
Gechev, T.S.; Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol., 2005, 168(1), 17-20.
[http://dx.doi.org/10.1083/jcb.200409170] [PMID: 15631987]
[94]
Logan, D.C. The mitochondrial compartment. J. Exp. Bot., 2007, 58(1), 1225-1243.
[PMID: 17269154]
[95]
González-Pacheco, F.R.; Deudero, J.J.P.; Castellanos, M.C.; Castilla, M.A.; Álvarez-Arroyo, M.V.; Yagüe, S.; Caramelo, C. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(3), H1395-H1401.
[http://dx.doi.org/10.1152/ajpheart.01277.2005] [PMID: 16899768]
[96]
Carvalho-Silva, R.; Pereira, A.C.F.; Santos Alves, R.P.d.; Guecheva, T.N.; Henriques, J.A.; Brendel, M.; Pungartnik, C.; Rios-Santos, F. DNA protection against oxidative damage using the hydroalcoholic extract of Garcinia mangostana and alpha-mangostin. Evid. Based Complementary Altern. Med., 2016, 2016
[97]
Buravlev, E.V.; Shevchenko, O.G.; Kutchin, A.V. Synthesis and membrane-protective activity of novel derivatives of α-mangostin at the C-4 position. Bioorg. Med. Chem. Lett., 2015, 25(4), 826-829.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.075] [PMID: 25592715]
[98]
Jittiporn, K.; Moongkarndi, P.; Samer, J.; Kumphune, S.; Suvitayavat, W. Water extract of mangosteen suppresses H2O2-induced endothelial apoptosis by inhibiting oxidative stress. J. Appl. Pharm. Sci., 2019, 9(9), 10-16.
[http://dx.doi.org/10.7324/JAPS.2019.90902]
[99]
Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[100]
Boulikas, T.; Vougiouka, M. Cisplatin and platinum drugs at the molecular level (Review). Oncol. Rep., 2003, 10(6), 1663-1682.
[http://dx.doi.org/10.3892/or.10.6.1663] [PMID: 14534679]
[101]
Aisha, A.F.A.; Abu-Salah, K.M.; Ismail, Z.; Majid, A.M.S.A. α-Mangostin enhances betulinic acid cytotoxicity and inhibits cisplatin cytotoxicity on HCT 116 colorectal carcinoma cells. Molecules, 2012, 17(3), 2939-2954.
[http://dx.doi.org/10.3390/molecules17032939] [PMID: 22402764]
[102]
Pérez-Rojas, J.M.; Cruz, C.; García-López, P.; Sánchez-González, D.J.; Martínez-Martínez, C.M.; Ceballos, G.; Espinosa, M.; Meléndez-Zajgla, J.; Pedraza-Chaverri, J. Renoprotection by α-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radic. Res., 2009, 43(11), 1122-1132.
[http://dx.doi.org/10.1080/10715760903214447] [PMID: 19863372]
[103]
Pérez-Rojas, J.M.; González-Macías, R.; González-Cortes, J.; Jurado, R.; Pedraza-Chaverri, J.; García-López, P. Synergic effect of α-mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid. Med. Cell. Longev., 2016, 2016, 1-13.
[http://dx.doi.org/10.1155/2016/7981397] [PMID: 28053694]
[104]
Chien, H.J.; Ying, T.H.; Hsieh, S.C.; Lin, C.L.; Yu, Y.L.; Kao, S.H.; Hsieh, Y.H. α‐Mangostin attenuates stemness and enhances cisplatin‐induced cell death in cervical cancer stem‐like cells through induction of mitochondrial‐mediated apoptosis. J. Cell. Physiol., 2020, 235(7-8), 5590-5601.
[http://dx.doi.org/10.1002/jcp.29489] [PMID: 31960449]
[105]
Brentjens, R.; Saltz, L. Islet cell tumors of the pancreas: The medical oncologist’s perspective. Surg. Clin. North Am., 2001, 81(3), 527-542.
[http://dx.doi.org/10.1016/S0039-6109(05)70141-9] [PMID: 11459269]
[106]
Rossini, A.A.; Like, A.A.; Chick, W.L.; Appel, M.C.; Cahill, G.F., Jr Studies of streptozotocin-induced insulitis and diabetes. Proc. Natl. Acad. Sci. USA, 1977, 74(6), 2485-2489.
[http://dx.doi.org/10.1073/pnas.74.6.2485] [PMID: 142253]
[107]
Costa, M.; Bernardi, J.; Fiuza, T.; Costa, L.; Brandão, R.; Pereira, M.E. N-acetylcysteine protects memory decline induced by streptozotocin in mice. Chem. Biol. Interact., 2016, 253, 10-17.
[http://dx.doi.org/10.1016/j.cbi.2016.04.026] [PMID: 27087133]
[108]
Wang, Z.; Gleichmann, H. GLUT2 in pancreatic islets: Crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes, 1998, 47(1), 50-56.
[http://dx.doi.org/10.2337/diab.47.1.50] [PMID: 9421374]
[109]
Schnedl, W.J.; Ferber, S.; Johnson, J.H.; Newgard, C.B. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes, 1994, 43(11), 1326-1333.
[http://dx.doi.org/10.2337/diab.43.11.1326] [PMID: 7926307]
[110]
Tacharina, M.R.; Ansori, A.N.M.; Plumeriastuti, H.; Kurnijasanti, R.; Hestianah, E.P. Beneficial effect of grinting grass (Cynodon dactylon) on the streptozotocin induced diabetes mellitus in the mice. Indian Vet. J., 2020, 97(4), 35-38.
[111]
Hayaza, S.; Istiqomah, S.; Susilo, R.J.K.; Inayatillah, B.; Ansori, A.N.M.; Winarni, D.; Husen, S.A.; Darmanto, W. Antidiabetic activity of ketapang (Terminalia catappa L.) leaves extract in streptozotocin-induced diabetic mice. Indian Vet. J., 2019, 96(12), 11-13.
[112]
Husen, S.; Winarni, D.; Ansori, A.; Susilo, R.; Hayaza, S. Hepatoprotective effect of gamma-mangostin for amelioration of impaired liver structure and function in streptozotocin-induced diabetic mice. IOP Conf. Ser. Earth Environ. Sci., 2018, 217, 012031.
[113]
Husen, S.A.; Ansori, M.; Nur, A.; Hayaza, S.; Susilo, K.; Joko, R.; Winarni, D.; Darmanto, W. Renal protective effects of gamma-mangostin in streptozotocin-induced diabetic mice. Indian J. Forensic Med. Toxicol., 2020, 14(3)
[114]
Husen, S.A.; Winarni, D.; Khaleyla, F.; Kalqutny, S.H.; Ansori, A.N.M. Activity assay of mangosteen (Garcinia mangostana L.) pericarp extract for decreasing fasting blood cholesterol level and lipid peroxidation in type-2 diabetic mice. AIP Conf. Proc., 2017, 1888, 020026.
[115]
al-Saleh, I.A. Effect of inlet configuration on hydrocyclone performance. J. Environ, 1994, 13(3), 151-161.
[116]
Campbell, W.C.; Fisher, M.H.; Stapley, E.O.; Albers-Schönberg, G.; Jacob, T.A. Ivermectin: A potent new antiparasitic agent. Science, 1983, 221(4613), 823-828.
[http://dx.doi.org/10.1126/science.6308762] [PMID: 6308762]
[117]
Cully, D.F.; Vassilatis, D.K.; Liu, K.K.; Paress, P.S.; Van der Ploeg, L.H.T.; Schaeffer, J.M.; Arena, J.P. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, 1994, 371(6499), 707-711.
[http://dx.doi.org/10.1038/371707a0] [PMID: 7935817]
[118]
Ibrahim, K.A.; Eleyan, M.; Khwanes, S.A.; Mohamed, R.A.; Ayesh, B.M. Alpha-mangostin attenuates the apoptotic pathway of abamectin in the fetal rats’ brain by targeting pro-oxidant stimulus, catecholaminergic neurotransmitters, and transcriptional regulation of reelin and nestin. Drug Chem. Toxicol., 2022, 45, 2496-2508.
[PMID: 34338122]
[119]
Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; Comyns, K.; Richards, M.B.; Meng, C.; Priestley, B.; Fernandez, H.H.; Cambi, F.; Umbach, D.M.; Blair, A.; Sandler, D.P.; Langston, J.W. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect., 2011, 119(6), 866-872.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[120]
Fang, Y.; Su, T.; Qiu, X.; Mao, P.; Xu, Y.; Hu, Z.; Zhang, Y.; Zheng, X.; Xie, P.; Liu, Q. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death. Sci. Rep., 2016, 6(1), 21018.
[http://dx.doi.org/10.1038/srep21018] [PMID: 26888416]
[121]
Erekat, N.S. Apoptosis and its role in Parkinson’s disease. Stroker TB, Greenland Jc Ed., 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch4]
[122]
Parekh, P.; Sharma, N.; Gadepalli, A.; Sharma, M.; Chatterjee, S.; Kate, A.; Khairnar, A. Alpha mangostin confers neuroprotection against rotenone-induced parkinson’s disease via modulating autophagy and AMPK signaling. Mapping Intimacies, 2021, 2021
[http://dx.doi.org/10.21203/rs.3.rs-796849/v1]
[123]
Parkhe, A.; Parekh, P.; Nalla, L.V.; Sharma, N.; Sharma, M.; Gadepalli, A.; Kate, A.; Khairnar, A. Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson’s disease. Neurosci. Lett., 2020, 716, 134652.
[http://dx.doi.org/10.1016/j.neulet.2019.134652] [PMID: 31778768]
[124]
Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446.
[http://dx.doi.org/10.2174/092986705774370682] [PMID: 16250871]
[125]
Ghasemzadeh, A.; Jaafar, H.; Baghdadi, A.; Tayebi-Meigooni, A. Alpha-mangostin-rich extracts from mangosteen pericarp: optimization of green extraction protocol and evaluation of biological activity. Molecules, 2018, 23(8), 1852.
[http://dx.doi.org/10.3390/molecules23081852] [PMID: 30044450]
[126]
Nauman, M.C.; Johnson, J.J. The purple mangosteen (Garcinia mangostana): Defining the anticancer potential of selected xanthones. Pharmacol. Res., 2022, 175, 106032.
[http://dx.doi.org/10.1016/j.phrs.2021.106032] [PMID: 34896543]
[127]
Kong, C.; Jia, L.; Jia, J. γ-mangostin attenuates amyloid-β42-induced neuroinflammation and oxidative stress in microglia-like BV2 cells via the mitogen-activated protein kinases signaling pathway. Eur. J. Pharmacol., 2022, 917, 174744.
[http://dx.doi.org/10.1016/j.ejphar.2022.174744] [PMID: 34998794]
[128]
Yu, L.; Zhao, M.; Yang, B.; Zhao, Q.; Jiang, Y. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem., 2007, 104(1), 176-181.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.018] [PMID: 26054279]
[129]
Asai, F.; Tosa, H.; Tanaka, T.; Iinuma, M. A xanthone from pericarps of Garcinia mangostana. Phytochemistry, 1995, 39(4), 943-944.
[http://dx.doi.org/10.1016/0031-9422(95)00042-6]
[130]
Farnsworth, R.; Bunyapraphatsara, N. Garcinia mangostana Linn; Thai Medicinal Plants. Prachachon Co., Ltd.: Bangkok, 1992, pp. 160-162.
[131]
Suksamrarn, S.; Suwannapoch, N.; Phakhodee, W.; Thanuhiranlert, J.; Ratananukul, P.; Chimnoi, N.; Suksamrarn, A. Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 857-859.
[http://dx.doi.org/10.1248/cpb.51.857] [PMID: 12843596]
[132]
Huang, Y.L.; Chen, C.C.; Chen, Y.J.; Huang, R.L.; Shieh, B.J. Three xanthones and a benzophenone from Garcinia mangostana. J. Nat. Prod., 2001, 64(7), 903-906.
[http://dx.doi.org/10.1021/np000583q] [PMID: 11473420]
[133]
Suksamrarn, S.; Suwannapoch, N.; Ratananukul, P.; Aroonlerk, N.; Suksamrarn, A. Xanthones from the green fruit hulls of Garcinia mangostana. J. Nat. Prod., 2002, 65(5), 761-763.
[http://dx.doi.org/10.1021/np010566g] [PMID: 12027762]
[134]
Chiu, Y.S.; Wu, J.L.; Yeh, C.T.; Yadav, V.K.; Huang, H.S.; Wang, L.S. γ-Mangostin isolated from Garcinia mangostana L. suppresses inflammation and alleviates symptoms of osteoarthritis via modulating miR-124-3p/IL-6/NF-κB signaling. Aging (Albany NY), 2020, 12(8), 6630-6643.
[http://dx.doi.org/10.18632/aging.103003] [PMID: 32302289]
[135]
Chin, Y.W.; Jung, H.A.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry, 2008, 69(3), 754-758.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.023] [PMID: 17991497]
[136]
Han, A.R.; Kim, J.A.; Lantvit, D.D.; Kardono, L.B.S.; Riswan, S.; Chai, H.; Carcache de Blanco, E.J.; Farnsworth, N.R.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic xanthone constituents of the stem bark of Garcinia mangostana (mangosteen). J. Nat. Prod., 2009, 72(11), 2028-2031.
[http://dx.doi.org/10.1021/np900517h] [PMID: 19839614]
[137]
Ee, G.C.L.; Daud, S.; Taufiq-Yap, Y.H.; Ismail, N.H.; Rahmani, M. Xanthones from Garcinia mangostana (Guttiferae). Nat. Prod. Res., 2006, 20(12), 1067-1073.
[http://dx.doi.org/10.1080/14786410500463114] [PMID: 17127660]
[138]
Nilar, L.; Harrison, L.J. Xanthones from the heartwood of Garcinia mangostana. Phytochemistry, 2002, 60(5), 541-548.
[http://dx.doi.org/10.1016/S0031-9422(02)00142-5] [PMID: 12052521]
[139]
Hawkins, D.J.; Kridl, J.C. Characterization of acyl‐ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J., 1998, 13(6), 743-752.
[http://dx.doi.org/10.1046/j.1365-313X.1998.00073.x] [PMID: 9681015]
[140]
Ahmad, M.I.; Keach, J.E.; Behl, T.; Panichayupakaranant, P. Synergistic effect of α-mangostin on antibacterial activity of tetracycline, erythromycin, and clindamycin against acne involved bacteria. Chin. Herb. Med., 2019, 11(4), 412-416.
[http://dx.doi.org/10.1016/j.chmed.2019.03.013]
[141]
Sivaranjani, M.; Prakash, M.; Gowrishankar, S.; Rathna, J.; Pandian, S.K.; Ravi, A.V. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl. Microbiol. Biotechnol., 2017, 101(8), 3349-3359.
[http://dx.doi.org/10.1007/s00253-017-8231-7] [PMID: 28343241]
[142]
Al-Massarani, S.; El Gamal, A.; Al-Musayeib, N.; Mothana, R.; Basudan, O.; Al-Rehaily, A.; Farag, M.; Assaf, M.; El Tahir, K.; Maes, L. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative. Molecules, 2013, 18(9), 10599-10608.
[http://dx.doi.org/10.3390/molecules180910599] [PMID: 24002136]
[143]
Guzmán-Beltrán, S.; Rubio-Badillo, M.Á.; Juárez, E.; Hernández-Sánchez, F.; Torres, M. Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. Int. Immunopharmacol., 2016, 31, 149-157.
[http://dx.doi.org/10.1016/j.intimp.2015.12.027] [PMID: 26735610]
[144]
Asasutjarit, R.; Meesomboon, T.; Adulheem, P.; Kittiwisut, S.; Sookdee, P.; Samosornsuk, W.; Fuongfuchat, A. Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon, 2019, 5(9), e02465.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02465] [PMID: 31538120]
[145]
Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol., 2005, 101(1-3), 330-333.
[http://dx.doi.org/10.1016/j.jep.2005.04.038] [PMID: 16009519]
[146]
Kim, W.; Fricke, N.; Conery, A.L.; Fuchs, B.B.; Rajamuthiah, R.; Jayamani, E.; Vlahovska, P.M.; Ausubel, F.M.; Mylonakis, E. NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med. Chem., 2016, 8(3), 257-269.
[http://dx.doi.org/10.4155/fmc.15.189] [PMID: 26910612]
[147]
Iinuma, M.; Tosa, H.; Tanaka, T.; Asai, F.; Kobayashl, Y.; Shimano, R.; Miyauchi, K.I. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol., 2011, 48(8), 861-865.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb03988.x] [PMID: 8887739]
[148]
Juntavee, A.; Ratanathongkam, A.; Chatchiwiwattana, S.; Peerapattana, J.; Nualkaew, N.; Treesuwan, P. The antibacterial effects of apacaries gel on Streptococcus mutans: An in vitro Study. Int. J. Clin. Pediatr. Dent., 2014, 7(2), 77-81.
[http://dx.doi.org/10.5005/jp-journals-10005-1241] [PMID: 25356004]
[149]
Kaomongkolgit, R.; Jamdee, K.; Pumklin, J.; Pavasant, P. Laboratory evaluation of the antibacterial and cytotoxic effect of alpha-mangostin when used as a root canal irrigant. Indian J. Dent., 2013, 4(1), 12-17.
[http://dx.doi.org/10.1016/j.ijd.2012.12.006]
[150]
Karunakaran, T.; Ismail, I.; Ee, G. Anti-Bacillus and nitric oxide inhibitory activities of Malaysian Garcinia mangostana extracts and their major constituents. Int. Food Res. J., 2019, 26(2)
[151]
Leelapornpisid, W.; Novak-Frazer, L.; Qualtrough, A.; Rautemaa-Richardson, R. Effectiveness of D,L‐2‐hydroxyisocaproic acid (HICA) and alpha‐mangostin against endodontopathogenic microorganisms in a multispecies bacterial-fungal biofilm in an ex vivo tooth model. Int. Endod. J., 2021, 54(12), 2243-2255.
[http://dx.doi.org/10.1111/iej.13623] [PMID: 34473354]
[152]
Lin, S.; Zhu, C.; Li, H.; Chen, Y.; Liu, S. Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against gram-positive bacteria with destructive effect on bacterial membrane. Biochim. Biophys. Acta Biomembr., 2020, 1862(9), 183353.
[http://dx.doi.org/10.1016/j.bbamem.2020.183353] [PMID: 32407778]
[153]
Phumlek, K.; Itharat, A.; Pongcharoen, P.; Chakkavittumrong, P.; Lee, H.-Y.; Moon, G.-S.; Han, M.-H.; Panthong, S.; Ketjinda, W.; Davies, N.M. Garcinia mangostana hydrogel patch: bactericidal activity and clinical safety for acne vulgaris treatment. Res. Pharm. Sci., 2022, 17(5), 457-467.
[http://dx.doi.org/10.4103/1735-5362.355195] [PMID: 36386483]
[154]
Meah, M.S.; Lertcanawanichakul, M.; Pedpradab, P.; Lin, W.; Zhu, K.; Li, G.; Panichayupakaranant, P. Synergistic effect on anti‐methicillin‐resistant Staphylococcus aureus among combinations of α‐mangostin‐rich extract, lawsone methyl ether and ampicillin. Lett. Appl. Microbiol., 2020, 71(5), 510-519.
[http://dx.doi.org/10.1111/lam.13369] [PMID: 32770753]
[155]
Mekseepralard, C.; Seesom, W.; Suksumran, S.; Ratananukul, P.; Kammee, T.; Sukhumsirichart, W. PP239—Susceptibility of leptospira to xanthones and synergistic effects with antibiotics. Clin. Ther., 2013, 35(8), e94.
[http://dx.doi.org/10.1016/j.clinthera.2013.07.277]
[156]
Seesom, W.; Jaratrungtawee, A.; Suksamrarn, S.; Mekseepralard, C.; Ratananukul, P.; Sukhumsirichart, W. Antileptospiral activity of xanthones from Garcinia mangostanaand synergy of gamma-mangostin with penicillin G. BMC Complement. Altern. Med., 2013, 13(1), 182.
[http://dx.doi.org/10.1186/1472-6882-13-182] [PMID: 23866810]
[157]
Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.; Majdalawieh, A.; Rethavathi, J.; Das, P.; Poltronieri, P. Anti-bacterial and anti-fungal activity of xanthones obtained via semi-synthetic modification of α-mangostin from Garcinia mangostana. Molecules, 2017, 22(2), 275.
[http://dx.doi.org/10.3390/molecules22020275] [PMID: 28208680]
[158]
Narasimhan, S.; Maheshwaran, S.; Poltronieri, P.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E. Potential application of modified α-mangostin xanthones from Garcinia mangostana as antibacterial agents in food packaging. Preprints, 2016, 2016080013.
[http://dx.doi.org/10.20944/preprints201608.0013.v1]
[159]
Nguyen, P.T.M.; Falsetta, M.L.; Hwang, G.; Gonzalez-Begne, M.; Koo, H. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS One, 2014, 9(10), e111312.
[http://dx.doi.org/10.1371/journal.pone.0111312] [PMID: 25350668]
[160]
Nguyen, P.T.M.; Marquis, R.E. Antimicrobial actions of α-mangostin against oral streptococci. Can. J. Microbiol., 2011, 57(3), 217-225.
[http://dx.doi.org/10.1139/W10-122] [PMID: 21358763]
[161]
Nguyen, P.T.M.; Nguyen, M.T.H.; Bolhuis, A. Inhibition of biofilm formation by alpha-mangostin loaded nanoparticles against Staphylococcus aureus. Saudi J. Biol. Sci., 2021, 28(3), 1615-1621.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.061] [PMID: 33732047]
[162]
Nguyen, P.M.; Nguyen, M.H.; Quach, L.; Nguyen, P.M.; Nguyen, L.L.; Quyen, D.V. Antibiofilm activity of alpha-mangostin loaded nanoparticles against Streptococcus mutans. Asian Pac. J. Trop. Biomed., 2020, 10(7), 325.
[http://dx.doi.org/10.4103/2221-1691.284947]
[163]
Torrungruang, K.; Vichienroj, P.; Chutimaworapan, S. Antibacterial activity of mangosteen pericarp extract against cariogenic Streptococcus mutans. 2013.
[164]
Widyarman, A.; Lay, S.; Wendhita, I.; Tjakra, E.; Murdono, F.; Binartha, C.O. Indonesian mangosteen fruit (Garcinia mangostana L.) peel extract inhibits Streptococcus mutans and Porphyromonas gingivalis in Biofilms In vitro. Contemp. Clin. Dent., 2019, 10(1), 123-128.
[http://dx.doi.org/10.4103/ccd.ccd_758_18] [PMID: 32015654]
[165]
Nguyen, P.T.M.; Vo, B.H.; Tran, N.T.; Van, Q.D. Anti-biofilm activity of α-mangostin isolated from Garcinia mangostana L. Z. Naturforsch. C J. Biosci., 2015, 70(11-12), 313-318.
[http://dx.doi.org/10.1515/znc-2015-0187] [PMID: 26618571]
[166]
Park, S.Y.; Lee, J.H.; Ko, S.Y.; Kim, N.; Kim, S.Y. Antimicrobial activity of α-mangostin against Staphylococcus species from companion animals in vitro and therapeutic potential of α-mangostin in skin diseases caused by S. pseudintermedius. Front. Cell. Infect. Microbiol., 2023, 13, 1203663.
[http://dx.doi.org/10.3389/fcimb.2023.1203663] [PMID: 37305406]
[167]
Phuong, N.T.M.; Van Quang, N.; Mai, T.T.; Anh, N.V.; Kuhakarn, C.; Reutrakul, V.; Bolhuis, A. Antibiofilm activity of α-mangostin extracted from Garcinia mangostana L. against Staphylococcus aureus. Asian Pac. J. Trop. Med., 2017, 10(12), 1154-1160.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.022] [PMID: 29268971]
[168]
Nguyen, T.H.; Nguyen, T.C.; Nguyen, T.M.T.; Hoang, D.H.; Tran, D.M.T.; Tran, D.T.; Hoang, P.T.; Le, V.T.; Tran, T.K.N.; Thai, H. Characteristics and bioactivities of carrageenan/chitosan microparticles loading α-mangostin. J. Polym. Environ., 2022, 30(2), 631-643.
[http://dx.doi.org/10.1007/s10924-021-02230-2]
[169]
Park, T.Y.; Lim, Y.K.; Kim, J.H.; Lee, D.S.; Kook, J.K. The antibacterial effect of Endoseal TCS mixed with water-soluble mangostin derivatives of Garcinia mangostana L. ethanol extract against Enterococcus faecalis and Staphylococcus aureus. Int. J. Oral Biol., 2021, 46(1), 45-50.
[http://dx.doi.org/10.11620/IJOB.2021.46.1.45]
[170]
Phitaktim, S. Antibacterial activity of α-mangostin from the pericarp extract of Garcinia Mangostana L. against drug resistant bacteria; School of Biology Institute of Science Suranaree University of Technology, 2012.
[171]
Phitaktim, S.; Chomnawang, M.; Sirichaiwetchakoon, K.; Dunkhunthod, B.; Hobbs, G.; Eumkeb, G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol., 2016, 16(1), 195.
[http://dx.doi.org/10.1186/s12866-016-0814-4] [PMID: 27566110]
[172]
Phunpee, S.; Suktham, K.; Surassmo, S.; Jarussophon, S.; Rungnim, C.; Soottitantawat, A.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int. J. Pharm., 2018, 538(1-2), 21-29.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.016] [PMID: 29225100]
[173]
Vichienroj, D.; Pharm, S.C.B. Antibacterial activity of mangosteen pericarp extract against cariogenic Streptococcus mutans.
[174]
Sidahmed, H.; Mohd Hashim, N.; Abdelwahab, S.; Taha, M.; Dehghan, F.; Loke, M.F.; Vadivelu, J.; Mohd Hashim, N.; Yahayu, M.; Syam, M. Evidence of the gastroprotective and anti-Helicobacter pylori activities of β-mangostin isolated from Cratoxylum arborescens (vahl) blume. Drug Des. Devel. Ther., 2016, 10, 297-313.
[http://dx.doi.org/10.2147/DDDT.S80625] [PMID: 26834460]
[175]
Sidahmed, H.; Abdelwahab, S.I.; Mohan, S.; Abdulla, M.A.; Mohamed, E.T.M.; Hashim, N.M.; Hadi, A.H.A.; Vadivelu, J.; Loke Fai, M.; Rahmani, M. α-mangostin from cratoxylum arborescens (vahl) blume demonstrates anti-ulcerogenic property: A mechanistic study. Evid. Based Complement. Alternat. Med., 2013, 2013
[176]
Taher, M.; Susanti, D.; Rezali, M.F.; Zohri, F.S.A.; Ichwan, S.J.A.; Alkhamaiseh, S.I.; Ahmad, F. Apoptosis, antimicrobial and antioxidant activities of phytochemicals from Garcinia malaccensis Hk.f. Asian Pac. J. Trop. Med., 2012, 5(2), 136-141.
[http://dx.doi.org/10.1016/S1995-7645(12)60012-1] [PMID: 22221758]
[177]
Taokaew, S.; Chiaoprakobkij, N.; Siripong, P.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of Garcinia mangostana peel. Mater. Sci. Eng. C, 2021, 120, 111783.
[http://dx.doi.org/10.1016/j.msec.2020.111783] [PMID: 33545910]
[178]
Ge, Y.; Xu, X.; Liang, Q.; Xu, Y.; Huang, M. α-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLP-induced sepsis in mice. Inflamm. Res., 2019, 68(6), 471-479.
[http://dx.doi.org/10.1007/s00011-019-01232-0] [PMID: 30927050]
[179]
Guan, H.; Li, J.; Tan, X.; Luo, S.; Liu, Y.; Meng, Y.; Wu, B.; Zhou, Y.; Yang, Y.; Chen, H.; Hou, L.; Qiu, Y.; Li, J. Natural xanthone α‐mangostin inhibits LPS‐induced microglial inflammatory responses and memory impairment by blocking the tak1/nf‐κb signaling pathway. Mol. Nutr. Food Res., 2020, 64(14), 2000096.
[http://dx.doi.org/10.1002/mnfr.202000096] [PMID: 32506806]
[180]
Lotter, J.; Möller, M.; Dean, O.; Berk, M.; Harvey, B.H. Studies on haloperidol and adjunctive α-mangostin or raw Garcinia mangostana linn pericarp on bio-behavioral markers in an immune-inflammatory model of schizophrenia in male rats. Front. Psychiatry, 2020, 11, 121.
[http://dx.doi.org/10.3389/fpsyt.2020.00121] [PMID: 32296347]
[181]
Nava Catorce, M.; Acero, G.; Pedraza-Chaverri, J.; Fragoso, G.; Govezensky, T.; Gevorkian, G. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J. Neuroimmunol., 2016, 297, 20-27.
[http://dx.doi.org/10.1016/j.jneuroim.2016.05.008] [PMID: 27397072]
[182]
Syam, S.; Bustamam, A.; Abdullah, R.; Sukari, M.A.; Hashim, N.M.; Mohan, S.; Looi, C.Y.; Wong, W.F.; Yahayu, M.A.; Abdelwahab, S.I. β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo. J. Ethnopharmacol., 2014, 153(2), 435-445.
[http://dx.doi.org/10.1016/j.jep.2014.02.051] [PMID: 24607509]
[183]
Bumrungpert, A.; Kalpravidh, R.W.; Chitchumroonchokchai, C.; Chuang, C.C.; West, T.; Kennedy, A.; McIntosh, M. Xanthones from mangosteen prevent lipopolysaccharide-mediated inflammation and insulin resistance in primary cultures of human adipocytes. J. Nutr., 2009, 139(6), 1185-1191.
[http://dx.doi.org/10.3945/jn.109.106617] [PMID: 19403722]
[184]
Widowati, W.; Darsono, L.; Suherman, J.; Fauziah, N.; Maesaroh, M.; Erawijantari, P.P. Anti-inflammatory effect of mangosteen (Garcinia mangostana L.) peel extract and its compounds in LPS-induced RAW264. 7 cells. Nat. Prod. Sci., 2016, 22(3), 147-153.
[http://dx.doi.org/10.20307/nps.2016.22.3.147]
[185]
Yostawonkul, J.; Surassmo, S.; Namdee, K.; Khongkow, M.; Boonthum, C.; Pagseesing, S.; Saengkrit, N.; Ruktanonchai, U.R.; Chatdarong, K.; Ponglowhapan, S.; Yata, T. Nanocarrier-mediated delivery of α-mangostin for non-surgical castration of male animals. Sci. Rep., 2017, 7(1), 16234.
[http://dx.doi.org/10.1038/s41598-017-16563-3] [PMID: 29176590]
[186]
Zhang, W.; Jiang, G.; Zhou, X.; Huang, L.; Meng, J.; He, B.; Qi, Y. α-Mangostin inhibits LPS-induced bone resorption by restricting osteoclastogenesis via NF-κB and MAPK signaling. Chin. Med., 2022, 17(1), 34.
[http://dx.doi.org/10.1186/s13020-022-00589-5] [PMID: 34980192]
[187]
Sugiyanto, Z.; Yohan, B.; Hadisaputro, S.; Dharmana, E.; Suharti, C.; Winarto; Djamiatun, K.; Rahmi, F.L.; Sasmono, R.T. Inhibitory effect of alpha-mangostin to dengue virus replication and cytokines expression in human peripheral blood mononuclear cells. Nat. Prod. Bioprospect., 2019, 9(5), 345-349.
[http://dx.doi.org/10.1007/s13659-019-00218-z] [PMID: 31538308]
[188]
Tarasuk, M.; Songprakhon, P.; Chimma, P.; Sratongno, P.; Na-Bangchang, K.; Yenchitsomanus, P. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression. Virus Res., 2017, 240, 180-189.
[http://dx.doi.org/10.1016/j.virusres.2017.08.011] [PMID: 28864423]
[189]
Yongpitakwattana, P.; Morchang, A.; Panya, A.; Sawasdee, N.; Yenchitsomanus, P. Alpha-mangostin inhibits dengue virus production and pro-inflammatory cytokine/chemokine expression in dendritic cells. Arch. Virol., 2021, 166(6), 1623-1632.
[http://dx.doi.org/10.1007/s00705-021-05017-x] [PMID: 33782775]
[190]
Choi, M.; Kim, Y.M.; Lee, S.; Chin, Y.W.; Lee, C. Mangosteen xanthones suppress hepatitis C virus genome replication. Virus Genes, 2014, 49(2), 208-222.
[http://dx.doi.org/10.1007/s11262-014-1098-0] [PMID: 24986787]
[191]
Ibraheem, Z.; Basir, R.; Majid, R.A.; Alapid, A.; Sedik, H.M.; Sabariah, M.N.; Faruq, M.; Chin, V.K. In vitro antiplasmodium and chloroquine resistance reversal effects of mangostin. Pharmacogn. Mag., 2020, 16(70), 276.
[http://dx.doi.org/10.4103/pm.pm_510_19]
[192]
Kuncoro, H. A-mangostin effect on inhibition development stadium and globin accumulation against Plasmodium falciparum. Pharmacolog. J., 2018, 10, 783-788.
[193]
Mahabusarakam, W.; Kuaha, K.; Wilairat, P.; Taylor, W. Prenylated xanthones as potential antiplasmodial substances. Planta Med., 2006, 72(10), 912-916.
[http://dx.doi.org/10.1055/s-2006-947190] [PMID: 16902859]
[194]
Upegui, Y.; Robledo, S.M.; Gil Romero, J.F.; Quiñones, W.; Archbold, R.; Torres, F.; Escobar, G.; Nariño, B.; Echeverri, F. In vivo antimalarial activity of α-mangostin and the new xanthone δ-mangostin. Phytother. Res., 2015, 29(8), 1195-1201.
[http://dx.doi.org/10.1002/ptr.5362] [PMID: 25943035]
[195]
Markowicz, J.; Uram, Ł.; Wołowiec, S.; Rode, W. Biotin Transport-targeting polysaccharide-modified PAMAM G3 dendrimer as system delivering α-mangostin into cancer cells and C. elegans worms. Int. J. Mol. Sci., 2021, 22(23), 12925.
[http://dx.doi.org/10.3390/ijms222312925] [PMID: 34884739]
[196]
Markowicz, J.; Wołowiec, S.; Rode, W.; Uram, Ł. Synthesis and properties of α-mangostin and vadimezan conjugates with glucoheptoamidated and biotinylated 3rd generation poly(amidoamine) dendrimer, and conjugation effect on their anticancer and anti-nematode activities. Pharmaceutics, 2022, 14(3), 606.
[http://dx.doi.org/10.3390/pharmaceutics14030606] [PMID: 35335982]
[197]
Sangkanu, S.; Mitsuwan, W.; Mahabusarakam, W.; Jimoh, T.O.; Wilairatana, P.; Girol, A.P.; Verma, A.K.; de Lourdes Pereira, M.; Rahmatullah, M.; Wiart, C.; Siyadatpanah, A.; Norouzi, R.; Mutombo, P.N.; Nissapatorn, V. Anti-acanthamoeba synergistic effect of chlorhexidine and Garcinia mangostana extract or α-mangostin against Acanthamoeba triangularis trophozoite and cyst forms. Sci. Rep., 2021, 11(1), 8053.
[http://dx.doi.org/10.1038/s41598-021-87381-x] [PMID: 33850179]
[198]
Sangkanu, S.; Mitsuwan, W.; Mahboob, T.; Mahabusarakam, W.; Chewchanwuttiwong, S.; Siphakdi, P.; Jimoh, T.O.; Wilairatana, P.; Dolma, K.G.; Pereira, M.L.; Rahmatullah, M.; Wiart, C.; Norouzi, R.; Siyadatpanah, A.; Mutombo, P.N.; Nissapatorn, V. Phytochemical, anti-Acanthamoeba, and anti-adhesion properties of Garcinia mangostana flower as preventive contact lens solution. Acta Trop., 2022, 226, 106266.
[http://dx.doi.org/10.1016/j.actatropica.2021.106266] [PMID: 34890540]
[199]
Thammawong, N.; Takahashi, H.; Sugawara, T.; Sakamoto, K. α-mangostin promotes DAF-16-mediated thermotolerance in Caenorhabditis elegans. Food Nutr. Sci., 2018, 9(6), 693-702.
[http://dx.doi.org/10.4236/fns.2018.96053]
[200]
Kaomongkolgit, R.; Jamdee, K.; Chaisomboon, N. Antifungal activity of alpha-mangostin against Candida albicans. J. Oral Sci., 2009, 51(3), 401-406.
[http://dx.doi.org/10.2334/josnusd.51.401] [PMID: 19776506]
[201]
Rahmayanti, F.; Suniarti, D.F. Mas’ ud, Z.A.; Bachtiar, B.; Wimardhani, Y.S.; Subita, G. Ethyl acetate fraction of Garcinia mangostana-Linn pericarp extract: Anti Candida albicans and epithelial cytotoxicity. Asian J. Pharm. Clin. Res., 2016, 9(1), 357-360.
[202]
Pedraza-Chaverrí, J.; Reyes-Fermín, L.M.; Nolasco-Amaya, E.G.; Orozco-Ibarra, M.; Medina-Campos, O.N.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol., 2009, 61(5), 491-501.
[http://dx.doi.org/10.1016/j.etp.2008.11.002] [PMID: 19108999]
[203]
Kim, M.S.; Lan, Q. Larvicidal activity of. ALPHA.-mangostin in the Colorado potato beetle, Leptinotarsa decemlineata. J. Pestic. Sci., 2011, 36(3), 370-375.
[http://dx.doi.org/10.1584/jpestics.G11-09]
[204]
Torres, R.; Garbo, A.; Walde, R. Larvicidal activity of Garcinia mangostana fruit wastes against dengue vector Aedes aegypti. J. Anim. Plant Sci., 2015, 25, 1187-1190.
[205]
Larson, R.T.; Lorch, J.M.; Pridgeon, J.W.; Becnel, J.J.; Clark, G.G.; Lan, Q. The biological activity of alpha-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J. Med. Entomol., 2010, 47(2), 249-257.
[PMID: 20380307]
[206]
Lee, Y.; Kim, S.; Oh, Y.; Kim, Y.M.; Chin, Y.W.; Cho, J. Inhibition of oxidative neurotoxicity and scopolamine-induced memory impairment by γ-mangostin: In vitro and in vivo evidence. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/3640753] [PMID: 31019651]
[207]
Ruankham, W.; Suwanjang, W.; Phopin, K.; Songtawee, N.; Prachayasittikul, V.; Prachayasittikul, S. Modulatory effects of alpha-mangostin mediated by SIRT1/3-FOXO3a pathway in oxidative stress-induced neuronal cells. Front. Nutr., 2022, 8, 714463-714463.
[http://dx.doi.org/10.3389/fnut.2021.714463] [PMID: 35155508]
[208]
Weecharangsan, W.; Opanasopit, P.; Sukma, M.; Ngawhirunpat, T.; Sotanaphun, U.; Siripong, P. Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Med. Princ. Pract., 2006, 15(4), 281-287.
[http://dx.doi.org/10.1159/000092991] [PMID: 16763395]
[209]
Ngawhirunpat, T.; Opanasopi, P.; Sukma, M.; Sittisombut, C.; Kat, A.; Adachi, I. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharm. Biol., 2010, 48(1), 55-62.
[http://dx.doi.org/10.3109/13880200903046138] [PMID: 20645756]
[210]
Sattayasai, J.; Chaonapan, P.; Arkaravichie, T.; Soi-ampornkul, R.; Junnu, S.; Charoensilp, P.; Samer, J.; Jantaravinid, J.; Masaratana, P.; Suktitipat, B.; Manissorn, J.; Thongboonkerd, V.; Neungton, N.; Moongkarndi, P. Protective effects of mangosteen extract on H2O2-induced cytotoxicity in SK-N-SH cells and scopolamine-induced memory impairment in mice. PLoS One, 2013, 8(12), e85053.
[http://dx.doi.org/10.1371/journal.pone.0085053] [PMID: 24386444]
[211]
Bradosty, S.W.; Hamad, S.W.; Shaikh, F.K.; Nanakali, N.M.; Shareef, S.H.; Agha, N.F.; Hussaini, J.; Al-Medhtiy, M.H.; Abdulla, M.A.; Suzergoz, F. Gamma (γ)-mangostin attenuated gastric ulcers induced by absolute alcohol in rats: Histological, immunohistochemical and biochemical investigation. 2021.
[212]
Chaeyklinthes, T.; Tiyao, V.; Roytrakul, S.; Phaonakrop, N.; Showpittapornchai, U.; Pradidarcheep, W. Proteomics study of the antifibrotic effects of α-mangostin in a rat model of renal fibrosis. Asian Biomed., 2019, 12(4), 149-160.
[http://dx.doi.org/10.1515/abm-2019-0015]
[213]
Khunvirojpanich, M.; Showpittaporchai, U.; Moongkamdi, P.; Pradidarcheep, W. Alpha-mangostin partially preserves expression of ammonia-metabolizing enzymes in thioacetamide-induced fibrotic and cirrhotic rats. J. Med. Assoc. Thai., 2015, 98(Suppl. 9), S53-S60.
[PMID: 26817210]
[214]
Tangphokhanon, W.; Pradidarcheep, W.; Lametschwandtner, A. α-mangostin preserves hepatic microvascular architecture in fibrotic rats as shown by scanning electron microscopy of vascular corrosion casts. Biomed. Rep., 2021, 14(6), 48.
[http://dx.doi.org/10.3892/br.2021.1424] [PMID: 33859819]
[215]
Rodniem, S.; Tiyao, V.; Nilbu-Nga, C.; Poonkhum, R.; Pongmayteegul, S.; Pradidarcheep, W. Protective effect of alpha-mangostin on thioacetamide-induced liver fibrosis in rats as revealed by morpho-functional analysis. Histol. Histopathol., 2019, 34(4), 419-430.
[PMID: 30306536]
[216]
Supawadee, S.; Thanet, S.; Wisut, P.; Somneuk, N.; Sirinun, N.; Ramida, W. Investigation of therapeutic effects of α-mangostin on thioacetamide-induced cirrhosis in rats. J. Med. Assoc. Thai., 2015, 98(Suppl. 9), S91-S97.
[PMID: 26817216]
[217]
Ratwita, W.; Sukandar, E.Y.; Adnyana, I.K.; Kurniati, N.F. Alpha mangostin and Xanthone activity on fasting blood glucose, insulin and langerhans Islet of langerhans in Alloxan induced diabetic mice. Pharmacogn. J., 2019, 11(1), 64-68.
[http://dx.doi.org/10.5530/pj.2019.1.12]
[218]
Wulandaria, D.D.; Ersamb, T. Study of α-mangostin compound and antidiabetic assay from fruit hull of Garcinia mangostana linn. Study of α-Mangostin Compound and Antidiabetic Assay From Fruit Hull of Garcinia Mangostana Linn. 2011.
[219]
Jamila, N.; Khan, N.; Khan, A.A.; Khan, I.; Khan, S.N.; Zakaria, Z.A.; Khairuddean, M.; Osman, H.; Su Kim, K. In vivo carbon tetrachloride-induced hepatoprotective and in vitro cytotoxic activities of Garcinia hombroniana (seashore mangosteen). Afr. J. Tradit. Complement. Altern. Med., 2017, 14(2), 374-382.
[http://dx.doi.org/10.21010/ajtcam.v14i2.38] [PMID: 28573253]
[220]
Wang, A.; Zhou, F.; Li, D.; Lu, J.J.; Wang, Y.; Lin, L. γ-Mangostin alleviates liver fibrosis through Sirtuin 3-superoxide-high mobility group box 1 signaling axis. Toxicol. Appl. Pharmacol., 2019, 363, 142-153.
[http://dx.doi.org/10.1016/j.taap.2018.11.011] [PMID: 30502394]
[221]
Nabandith, V.; Suzui, M.; Morioka, T.; Kaneshiro, T.; Kinjo, T.; Matsumoto, K.; Akao, Y.; Iinuma, M.; Yoshimi, N. Inhibitory effects of crude alpha-mangostin, a xanthone derivative, on two different categories of colon preneoplastic lesions induced by 1, 2-dimethylhydrazine in the rat. Asian Pac. J. Cancer Prev., 2004, 5(4), 433-438.
[PMID: 15546251]
[222]
Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Ethanolic Garcinia mangostana extract and α-mangostin improve dextran sulfate sodium-induced ulcerative colitis via the suppression of inflammatory and oxidative responses in ICR mice. J. Ethnopharmacol., 2021, 265, 113384.
[http://dx.doi.org/10.1016/j.jep.2020.113384] [PMID: 32927006]
[223]
Sakamula, R.; Yata, T.; Thong-asa, W. Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration. Metab. Brain Dis., 2022, 37(5), 1465-1476.
[http://dx.doi.org/10.1007/s11011-022-00967-w] [PMID: 35353275]
[224]
Tiwari, A.; Khera, R.; Rahi, S.; Mehan, S.; Makeen, H.A.; Khormi, Y.H.; Rehman, M.U.; Khan, A. Neuroprotective effect of α-mangostin in ameliorating propionic acid-induced experimental model of autism in wistar rats. Brain Sci., 2021, 11(3), 288.
[http://dx.doi.org/10.3390/brainsci11030288] [PMID: 33669120]
[225]
Fang, Z.; Luo, W.; Luo, Y. Protective effect of α-mangostin against CoCl2-induced apoptosis by suppressing oxidative stress in H9C2 rat cardiomyoblasts. Mol. Med. Rep., 2018, 17(5), 6697-6704.
[http://dx.doi.org/10.3892/mmr.2018.8680] [PMID: 29512772]
[226]
Márquez-Valadez, B.; Lugo-Huitrón, R.; Valdivia-Cerda, V.; Miranda-Ramírez, L.R.; Pérez-De La Cruz, V.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R.; Santamaría, A.; Pedraza-Chaverrí, J. The natural xanthone α-mangostin reduces oxidative damage in rat brain tissue. Nutr. Neurosci., 2009, 12(1), 35-42.
[http://dx.doi.org/10.1179/147683009X388850] [PMID: 19178790]
[227]
Márquez-Valadez, B.; Maldonado, P.D.; Galván-Arzate, S.; Méndez-Cuesta, L.A.; Pérez-De La Cruz, V.; Pedraza-Chaverrí, J.; Chánez-Cárdenas, M.E.; Santamaría, A. Alpha-mangostin induces changes in glutathione levels associated with glutathione peroxidase activity in rat brain synaptosomes. Nutr. Neurosci., 2012, 15(5), 13-19.
[http://dx.doi.org/10.1179/147683012X13327575416400] [PMID: 23232053]
[228]
Reyes-Fermín, L.M.; González-Reyes, S.; Tarco-Álvarez, N.G.; Hernández-Nava, M.; Orozco-Ibarra, M.; Pedraza-Chaverri, J. Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death. Nutr. Neurosci., 2012, 15(5), 34-41.
[http://dx.doi.org/10.1179/1476830512Y.0000000011] [PMID: 22776704]
[229]
Shih, Y.W.; Chien, S.T.; Chen, P.S.; Lee, J.H.; Wu, S.H.; Yin, L.T. α-mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via alphavbeta3 integrin/FAK/ERK and NF-kappaB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem. Biophys., 2010, 58(1), 31-44.
[http://dx.doi.org/10.1007/s12013-010-9091-2] [PMID: 20652762]
[230]
Li, Q.; Yan, X.; Zhao, L.; Ren, S.; He, Y.; Liu, W.; Wang, Z.; Li, X.D.; Jiang, S.; Li, W. α-Mangostin, a dietary xanthone, exerts protective effects on cisplatin-induced renal injury via PI3K/Akt and JNK signaling pathways in HEK293 Cells. ACS Omega, 2020, 5(32), 19960-19967.
[http://dx.doi.org/10.1021/acsomega.0c01121] [PMID: 32832750]
[231]
Reyes-Fermín, L.M.; Avila-Rojas, S.H.; Aparicio-Trejo, O.E.; Tapia, E.; Rivero, I.; Pedraza-Chaverri, J. The protective effect of alpha-mangostin against cisplatin-induced cell death in LLC-PK1 cells is associated to mitochondrial function preservation. Antioxidants, 2019, 8(5), 133.
[http://dx.doi.org/10.3390/antiox8050133] [PMID: 31096625]
[232]
Sánchez-Pérez, Y.; Morales-Bárcenas, R.; García-Cuellar, C.M.; López-Marure, R.; Calderon-Oliver, M.; Pedraza-Chaverri, J.; Chirino, Y.I. The α-mangostin prevention on cisplatin-induced apoptotic death in LLC-PK1 cells is associated to an inhibition of ROS production and p53 induction. Chem. Biol. Interact., 2010, 188(1), 144-150.
[http://dx.doi.org/10.1016/j.cbi.2010.06.014] [PMID: 20603111]
[233]
Ardakanian, A.; Ghasemzadeh Rahbardar, M.; Omidkhoda, F.; Razavi, B.M.; Hosseinzadeh, H. Effect of alpha-mangostin on olanzapine-induced metabolic disorders in rats. Iran. J. Basic Med. Sci., 2022, 25(2), 198-207.
[PMID: 35655598]
[234]
Ansori, A.N.; Kuncoroningrat, R.J.K.; Hayaza, S.; Winarni, D.; Husen, S. Renoprotection by Garcinia mangostana L. pericarp extract in streptozotocin-induced diabetic mice. Iraqi J. Vet. Sci., 2019, 33(1), 13-19.
[http://dx.doi.org/10.33899/ijvs.2019.125513.1035]
[235]
Husen, S.A.; Salamun, A.N.M.A.; Joko, R.; Susilo, K.; Hayaza, S.; Winarni, D. The Effect of alpha-mangostin in glucose level, cholesterol level and diameter of the islets of langerhans of STZ-induced diabetic mice International Conference Postgraduate School, 2018.
[http://dx.doi.org/10.5220/0007547005610566]
[236]
Kumar, V.; Bhatt, P.C.; Kaithwas, G.; Rashid, M.; Al-abbasi, F.A.; Khan, J.A.J.; Anwar, F.; Verma, A. α-Mangostin mediated pharmacological modulation of hepatic carbohydrate metabolism in diabetes induced wistar rat. Beni. Suef Univ. J. Basic Appl. Sci., 2016, 5(3), 255-276.
[http://dx.doi.org/10.1016/j.bjbas.2016.07.001]
[237]
Lazarus, G.; Alexander, S.; Kusuma, G.O.; Wijaya, K.; Soetikno, V. Antioxidative activities of alpha-mangostin in high-fat/highglucose diet and streptozotocin-induced insulin-resistant rodents. J. Appl. Pharm. Sci, 2020, 10(11), 035-039.
[238]
Lee, D.; Kim, Y.M.; Jung, K.; Chin, Y.W.; Kang, K. Alpha-mangostin improves insulin secretion and protects INS-1 cells from streptozotocin-induced damage. Int. J. Mol. Sci., 2018, 19(5), 1484.
[http://dx.doi.org/10.3390/ijms19051484] [PMID: 29772703]
[239]
Nelli, G.B.; K, A.S.; Kilari, E.K. Antidiabetic effect of α-mangostin and its protective role in sexual dysfunction of streptozotocin induced diabetic male rats. Syst Biol Reprod Med, 2013, 59(6), 319-328.
[http://dx.doi.org/10.3109/19396368.2013.820369] [PMID: 23886300]
[240]
Taher, M.; Tg Zakaria, T.M.F.S.; Susanti, D.; Zakaria, Z.A. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2016, 16(1), 135.
[http://dx.doi.org/10.1186/s12906-016-1118-9] [PMID: 27208974]
[241]
Tangpong, J.; Miriyala, S.; Noel, T.; Sinthupibulyakit, C.; Jungsuwadee, P.; St Clair, D.K. Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 2011, 175, 292-299.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.007] [PMID: 21074598]
[242]
Chuang, C.J.; Wang, M.; Yeh, J.H.; Chen, T.C.; Tsou, S.C.; Lee, Y.J.; Chang, Y.Y.; Lin, H.W. The Protective Effects of α-Mangostin attenuate sodium iodate-induced cytotoxicity and oxidative Injury via mediating SIRT-3 inactivation via the PI3K/AKT/] PGC-1α Pathway. Antioxidants, 2021, 10(12), 1870.
[http://dx.doi.org/10.3390/antiox10121870] [PMID: 34942973]
[243]
Lee, D.; Choi, Y.O.; Kim, K.H.; Chin, Y.W.; Namgung, H.; Yamabe, N.; Jung, K. Protective effect of α-mangostin against iodixanol-induced apoptotic damage in LLC-PK1 cells. Bioorg. Med. Chem. Lett., 2016, 26(15), 3806-3809.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.031] [PMID: 27293071]
[244]
Yan, X.; Sun, Y.; Ren, S.; Zhao, L.; Liu, W.; Chen, C.; Wang, Z.; Li, W. Dietary α-mangostin provides protective effects against acetaminophen-induced hepatotoxicity in Mice via Akt/mTOR-mediated inhibition of autophagy and apoptosis. Int. J. Mol. Sci., 2018, 19(5), 1335.
[http://dx.doi.org/10.3390/ijms19051335] [PMID: 29723988]
[245]
Sampath, P.D.; Kannan, V. Mitigation of mitochondrial dysfunction and regulation of eNOS expression during experimental myocardial necrosis by alpha-mangostin, a xanthonic derivative from Garcinia mangostana. Drug Chem. Toxicol., 2009, 32(4), 344-352.
[http://dx.doi.org/10.1080/01480540903159210] [PMID: 19793027]
[246]
Sampath, P.D.; Vijayaragavan, K. Ameliorative prospective of alpha-mangostin, a xanthone derivative from Garcinia mangostana against β-adrenergic cathecolamine-induced myocardial toxicity and anomalous cardiac TNF-α and COX-2 expressions in rats. Exp. Toxicol. Pathol., 2008, 60(4-5), 357-364.
[http://dx.doi.org/10.1016/j.etp.2008.02.006] [PMID: 18424012]
[247]
Lee, K.; Ryu, H.W.; Oh, S.; Park, S.; Madhi, H.; Yoo, J.; Park, K.H.; Kim, K.D. Depigmentation of α-melanocyte-stimulating hormone-treated melanoma cells by β-mangostin is mediated by selective autophagy. Exp. Dermatol., 2017, 26(7), 585-591.
[http://dx.doi.org/10.1111/exd.13233] [PMID: 27714857]
[248]
Van Oost, V. Study of alpha mangostin as a chemoprotective agent for breast cancer via activation of the p53 pathway. 2019.
[249]
Wojciechowski, A. Using α-mangostin from Garcinia mangostana to block cell death caused by Paclitaxel in proliferating BHK cells. 2017.
[250]
Li, R.; Xu, G.; Cao, J.; Liu, B.; Xie, H.; Ishii, Y.; Zhang, C. Alpha-mangostin ameliorates bleomycin-induced pulmonary fibrosis in mice partly through activating adenosine 5′-monophosphate-activated protein kinase. Front. Pharmacol., 2019, 10, 1305.
[http://dx.doi.org/10.3389/fphar.2019.01305] [PMID: 31798444]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy