Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases

In Press, (this is not the final "Version of Record"). Available online 12 February, 2024
Author(s): Yueyang Xin, Siqi Zhou, Tiantian Chu, Yaqun Zhou* and Aijun Xu*
Published on: 12 February, 2024

DOI: 10.2174/1570159X22999240209102116

Price: $95

Abstract

Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer’s disease, vascular cognitive impairment, chronic pain, and Parkinson’s disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.

[1]
Huang, X.; Zhao, X.; Li, B.; Cai, Y.; Zhang, S.; Wan, Q.; Yu, F. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. J. Sport Health Sci., 2022, 11(2), 212-223.
[http://dx.doi.org/10.1016/j.jshs.2021.05.003] [PMID: 34004389]
[2]
Pei, H.; Ma, L.; Cao, Y.; Wang, F.; Li, Z.; Liu, N.; Liu, M.; Wei, Y.; Li, H. Traditional chinese medicine for Alzheimer’s disease and other cognitive impairment: A review. Am. J. Chin. Med., 2020, 48(3), 487-511.
[http://dx.doi.org/10.1142/S0192415X20500251] [PMID: 32329645]
[3]
Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; Cummings, J.L.; de Leon, M.; Feldman, H.; Ganguli, M.; Hampel, H.; Scheltens, P.; Tierney, M.C.; Whitehouse, P.; Winblad, B. Mild cognitive impairment. Lancet, 2006, 367(9518), 1262-1270.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[4]
Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med., 2018, 131(10), 1161-1169.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022] [PMID: 29425707]
[5]
Ritchie, K.; Lovestone, S. The dementias. Lancet, 2002, 360(9347), 1759-1766.
[http://dx.doi.org/10.1016/S0140-6736(02)11667-9] [PMID: 12480441]
[6]
Jeong, S. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol. Cells, 2017, 40(9), 613-620.
[PMID: 28927263]
[7]
Rost, N.S.; Meschia, J.F.; Gottesman, R.; Wruck, L.; Helmer, K.; Greenberg, S.M.; Barrett, K.; Biffi, A.; Boden-Albala, B.; Fornage, M.; Etherton, M.; Golland, P.; Graff-Radford, J.; Hinman, J.; Jack, C., Jr; Kalpathy-Cramer, J.; Knopman, D.; Kittner, S.; Lowe, V.; Manly, J.; Mosley, T.; Petersen, R.; Rissman, R.; Schirmer, M.; Schwab, K.; Seshadri, S.; Sherman, A.; Vemuri, P.; Viswanathan, A. Cognitive impairment and dementia after stroke: Design and rationale for the discovery study. Stroke, 2021, 52(8), e499-e516.
[http://dx.doi.org/10.1161/STROKEAHA.120.031611] [PMID: 34039035]
[8]
Moriarty, O.; McGuire, B.E.; Finn, D.P. The effect of pain on cognitive function: A review of clinical and preclinical research. Prog. Neurobiol., 2011, 93(3), 385-404.
[http://dx.doi.org/10.1016/j.pneurobio.2011.01.002] [PMID: 21216272]
[9]
Aarsland, D.; Creese, B.; Politis, M.; Chaudhuri, K.R. ffytche, D.H.; Weintraub, D.; Ballard, C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol., 2017, 13(4), 217-231.
[http://dx.doi.org/10.1038/nrneurol.2017.27] [PMID: 28257128]
[10]
Qu, M.; Xing, F.; Xing, N. Mesenchymal stem cells for the treatment of cognitive impairment caused by neurological diseases. Biotechnol. Lett., 2022, 44(8), 903-916.
[http://dx.doi.org/10.1007/s10529-022-03274-7] [PMID: 35809141]
[11]
Gorelick, P.B. Prevention of cognitive impairment: scientific guidance and windows of opportunity. J. Neurochem., 2018, 144(5), 609-616.
[http://dx.doi.org/10.1111/jnc.14113] [PMID: 28677324]
[12]
Morley, J.E. An overview of cognitive impairment. Clin. Geriatr. Med., 2018, 34(4), 505-513.
[http://dx.doi.org/10.1016/j.cger.2018.06.003] [PMID: 30336985]
[13]
von Arnim, C.A.F.; Bartsch, T.; Jacobs, A.H.; Holbrook, J.; Bergmann, P.; Zieschang, T.; Polidori, M.C.; Dodel, R. Diagnosis and treatment of cognitive impairment. Z. Gerontol. Geriatr., 2019, 52(4), 309-315.
[http://dx.doi.org/10.1007/s00391-019-01560-0] [PMID: 31161337]
[14]
Farooq, M.U.; Min, J.; Goshgarian, C.; Gorelick, P.B. Pharmacotherapy for vascular cognitive impairment. CNS Drugs, 2017, 31(9), 759-776.
[http://dx.doi.org/10.1007/s40263-017-0459-3] [PMID: 28786085]
[15]
O’Brien, J.T.; Holmes, C.; Jones, M.; Jones, R.; Livingston, G.; McKeith, I.; Mittler, P.; Passmore, P.; Ritchie, C.; Robinson, L.; Sampson, E.L.; Taylor, J.P.; Thomas, A.; Burns, A. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology. J. Psychopharmacol., 2017, 31(2), 147-168.
[http://dx.doi.org/10.1177/0269881116680924] [PMID: 28103749]
[16]
Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA, 2014, 312(23), 2551-2561.
[http://dx.doi.org/10.1001/jama.2014.13806] [PMID: 25514304]
[17]
Petersson, S.D.; Philippou, E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv. Nutr., 2016, 7(5), 889-904.
[http://dx.doi.org/10.3945/an.116.012138] [PMID: 27633105]
[18]
Karssemeijer, E.G.A.E.; Aaronson, J.A.J.; Bossers, W.J.W.; Smits, T.T.; Olde Rikkert, M.G.M.M.; Kessels, R.P.C.R. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res. Rev., 2017, 40, 75-83.
[http://dx.doi.org/10.1016/j.arr.2017.09.003] [PMID: 28912076]
[19]
Demurtas, J.; Schoene, D.; Torbahn, G.; Marengoni, A.; Grande, G.; Zou, L.; Petrovic, M.; Maggi, S.; Cesari, M.; Lamb, S.; Soysal, P.; Kemmler, W.; Sieber, C.; Mueller, C.; Shenkin, S.D.; Schwingshackl, L.; Smith, L.; Veronese, N. Physical activity and exercise in mild cognitive impairment and dementia: an umbrella review of intervention and observational studies. J. Am. Med. Dir. Assoc., 2020, 21(10), 1415-1422.e6.
[http://dx.doi.org/10.1016/j.jamda.2020.08.031] [PMID: 32981668]
[20]
Acar, H.V. Acupuncture and related techniques during perioperative period: A literature review. Complement. Ther. Med., 2016, 29, 48-55.
[http://dx.doi.org/10.1016/j.ctim.2016.09.013] [PMID: 27912957]
[21]
Li, F.; He, T.; Xu, Q.; Lin, L.T.; Li, H.; Liu, Y.; Shi, G.X.; Liu, C.Z. What is the Acupoint? A preliminary review of Acupoints. Pain Med., 2015, 16(10), 1905-1915.
[http://dx.doi.org/10.1111/pme.12761] [PMID: 25975413]
[22]
Chen, T.; Zhang, W.W.; Chu, Y.X.; Wang, Y.Q. Acupuncture for pain management: Molecular mechanisms of action. Am. J. Chin. Med., 2020, 48(4), 793-811.
[http://dx.doi.org/10.1142/S0192415X20500408] [PMID: 32420752]
[23]
Zhu, J.; Li, J.; Yang, L.; Liu, S. Acupuncture, from the ancient to the current. Anat. Rec. (Hoboken), 2021, 304(11), 2365-2371.
[http://dx.doi.org/10.1002/ar.24625] [PMID: 33825344]
[24]
Song, G.; Fiocchi, C.; Achkar, J.P. Acupuncture in inflammatory bowel disease. Inflamm. Bowel Dis., 2019, 25(7), 1129-1139.
[http://dx.doi.org/10.1093/ibd/izy371] [PMID: 30535303]
[25]
Langevin, H.M.; Schnyer, R.; MacPherson, H.; Davis, R.; Harris, R.E.; Napadow, V.; Wayne, P.M.; Milley, R.J.; Lao, L.; Stener-Victorin, E.; Kong, J-T.; Hammerschlag, R. Manual and electrical needle stimulation in acupuncture research: Pitfalls and challenges of heterogeneity. J. Altern. Complement. Med., 2015, 21(3), 113-128.
[http://dx.doi.org/10.1089/acm.2014.0186] [PMID: 25710206]
[26]
Huang, L.; Yin, X.; Li, W.; Cao, Y.; Chen, Y.; Lao, L.; Zhang, Z.; Mi, Y.; Xu, S. Effects of acupuncture on vascular cognitive impairment with no dementia: a randomized controlled trial. J. Alzheimers Dis., 2021, 81(4), 1391-1401.
[http://dx.doi.org/10.3233/JAD-201353] [PMID: 33935074]
[27]
Yang, X.; Gong, W.; Ma, X.; Wang, S.; Wang, X.; Guo, T.; Guo, Z.; Sun, Y.; Li, J.; Zhao, B.; Tu, Y. Factor analysis of electroacupuncture and selective serotonin reuptake inhibitors for major depressive disorder: an 8-week controlled clinical trial. Acupunct. Med., 2020, 38(1), 45-52.
[http://dx.doi.org/10.1136/acupmed-2017-011412] [PMID: 31544488]
[28]
Zhang, Z.J.; Man, S.C.; Yam, L.L.; Yiu, C.Y.; Leung, R.C.Y.; Qin, Z.S.; Chan, K.W.S.; Lee, V.H.F.; Kwong, A.; Yeung, W.F.; So, W.K.W.; Ho, L.M.; Dong, Y.Y. Electroacupuncture trigeminal nerve stimulation plus body acupuncture for chemotherapy-induced cognitive impairment in breast cancer patients: An assessor-participant blinded, randomized controlled trial. Brain Behav. Immun., 2020, 88, 88-96.
[http://dx.doi.org/10.1016/j.bbi.2020.04.035] [PMID: 32305573]
[29]
Zhang, Z.J.; Zhao, H.; Jin, G.X.; Man, S.C.; Wang, Y.S.; Wang, Y.; Wang, H.R.; Li, M.H.; Yam, L.L.; Qin, Z.S.; Yu, K.K.T.; Wu, J.; Ng, F.L.B.; Ziea, T.C.E.; Rong, P.J. Assessor- and participant-blinded, randomized controlled trial of dense cranial electroacupuncture stimulation plus body acupuncture for neuropsychiatric sequelae of stroke. Psychiatry Clin. Neurosci., 2020, 74(3), 183-190.
[http://dx.doi.org/10.1111/pcn.12959] [PMID: 31747095]
[30]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[31]
Boccardi, V.; Murasecco, I.; Mecocci, P. Diabetes drugs in the fight against Alzheimer’s disease. Ageing Res. Rev., 2019, 54, 100936.
[http://dx.doi.org/10.1016/j.arr.2019.100936] [PMID: 31330313]
[32]
Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement., 2016, 12(6), 719-732.
[http://dx.doi.org/10.1016/j.jalz.2016.02.010] [PMID: 27179961]
[33]
Esquerda-Canals, G.; Montoliu-Gaya, L.; Güell-Bosch, J.; Villegas, S. Mouse models of Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1171-1183.
[http://dx.doi.org/10.3233/JAD-170045] [PMID: 28304309]
[34]
Liu, B.; Liu, J.; Shi, J.S. SAMP8 mice as a model of age-related cognition decline with underlying mechanisms in Alzheimer’s disease. J. Alzheimers Dis., 2020, 75(2), 385-395.
[http://dx.doi.org/10.3233/JAD-200063] [PMID: 32310176]
[35]
Xin, Y.; Wang, J.; Xu, A. Electroacupuncture ameliorates neuroinflammation in animal models. Acupunct. Med., 2022, 40(5), 474-483.
[http://dx.doi.org/10.1177/09645284221076515] [PMID: 35229660]
[36]
Wang, W.; Xie, C.; Lu, L.; Zheng, G. A systematic review and meta-analysis of Baihui (GV20)-based scalp acupuncture in experimental ischemic stroke. Sci. Rep., 2014, 4(1), 3981.
[http://dx.doi.org/10.1038/srep03981] [PMID: 24496233]
[37]
Chaochao, Y.; Li, W.; Lihong, K.; Feng, S.; Chaoyang, M.; Yanjun, D.; Hua, Z.; Du, Y.; Zhou, H.; Ma, C. Acupoint combinations used for treatment of Alzheimer’s disease: A data mining analysis. J. Tradit. Chin. Med., 2018, 38(6), 943-952.
[http://dx.doi.org/10.1016/S0254-6272(18)30995-6] [PMID: 32186143]
[38]
Su, X.T.; Wang, L.Q.; Li, J.L.; Zhang, N.; Wang, L.; Shi, G.X.; Yang, J.W.; Liu, C.Z. Acupuncture therapy for cognitive impairment: a delphi expert consensus survey. Front. Aging Neurosci., 2020, 12, 596081.
[http://dx.doi.org/10.3389/fnagi.2020.596081] [PMID: 33328975]
[39]
Oh, J.E.; Kim, S.N. Anti-inflammatory effects of acupuncture at ST36 point: a literature review in animal studies. Front. Immunol., 2022, 12, 813748.
[http://dx.doi.org/10.3389/fimmu.2021.813748] [PMID: 35095910]
[40]
Xin, Y.; Wang, J.; Chu, T.; Zhou, Y.; Liu, C.; Xu, A. Electroacupuncture alleviates neuroinflammation by inhibiting the HMGB1 signaling pathway in rats with sepsis-associated encephalopathy. Brain Sci., 2022, 12(12), 1732.
[http://dx.doi.org/10.3390/brainsci12121732] [PMID: 36552192]
[41]
Lin, Y.K.; Liao, H.Y.; Watson, K.; Yeh, T.P.; Chen, I.H. Acupressure improves cognition and quality of life among older adults with cognitive disorders in long-term care settings: a clustered randomized controlled trial. J. Am. Med. Dir. Assoc., 2023, 24(4), 548-554.
[http://dx.doi.org/10.1016/j.jamda.2023.02.011] [PMID: 36933568]
[42]
Zhu, T.; Li, H.; Jin, R.; Zheng, Z.; Luo, Y.; Ye, H.; Zhu, H. Effects of electroacupuncture combined psycho-intervention on cognitive function and event-related potentials P300 and mismatch negativity in patients with internet addiction. Chin. J. Integr. Med., 2012, 18(2), 146-151.
[http://dx.doi.org/10.1007/s11655-012-0990-5] [PMID: 22311411]
[43]
Xia, R.; Ren, J.; Wang, M.; Wan, Y.; Dai, Y.; Li, X.; Wu, Z.; Chen, S. Effect of acupuncture on brain functional networks in patients with mild cognitive impairment: an activation likelihood estimation meta-analysis. Acupunct. Med., 2023, 41(5), 259-267.
[http://dx.doi.org/10.1177/09645284221146199] [PMID: 36790017]
[44]
Lissner, L.J.; Wartchow, K.M.; Toniazzo, A.P.; Gonçalves, C.A.; Rodrigues, L. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience. Pharmacol. Biochem. Behav., 2021, 210, 173273.
[http://dx.doi.org/10.1016/j.pbb.2021.173273] [PMID: 34536480]
[45]
Hernández-Mercado, K.; Zepeda, A. Morris water maze and contextual fear conditioning tasks to evaluate cognitive functions associated with adult hippocampal neurogenesis. Front. Neurosci., 2022, 15, 782947.
[http://dx.doi.org/10.3389/fnins.2021.782947] [PMID: 35046769]
[46]
Webster, S.J.; Bachstetter, A.D.; Nelson, P.T.; Schmitt, F.A.; Van Eldik, L.J. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet., 2014, 5, 88.
[http://dx.doi.org/10.3389/fgene.2014.00088] [PMID: 24795750]
[47]
Li, X.; Guo, F.; Zhang, Q.; Huo, T.; Liu, L.; Wei, H.; Xiong, L.; Wang, Q. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice. BMC Complement. Altern. Med., 2014, 14(1), 37.
[http://dx.doi.org/10.1186/1472-6882-14-37] [PMID: 24447795]
[48]
Wang, F.; Zhong, H.; Li, X.; Peng, Y.; Kinden, R.; Liang, W.; Li, X.; Shi, M.; Liu, L.; Wang, Q.; Xiong, L. Electroacupuncture attenuates reference memory impairment associated with astrocytic NDRG2 suppression in APP/PS1 transgenic mice. Mol. Neurobiol., 2014, 50(2), 305-313.
[http://dx.doi.org/10.1007/s12035-013-8609-1] [PMID: 24390566]
[49]
Dong, W.; Guo, W.; Zheng, X.; Wang, F.; Chen, Y.; Zhang, W.; Shi, H. Electroacupuncture improves cognitive deficits associated with AMPK activation in SAMP8 mice. Metab. Brain Dis., 2015, 30(3), 777-784.
[http://dx.doi.org/10.1007/s11011-014-9641-1] [PMID: 25502012]
[50]
Guo, H.; Tian, J.; Zhu, J.; Li, L.; Sun, K.; Shao, S.; Cui, G. Electroacupuncture suppressed neuronal apoptosis and improved cognitive impairment in the AD model rats possibly via downregulation of notch signaling pathway. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/393569] [PMID: 25810743]
[51]
Guo, H.; Zhu, J.; Tian, J.; Shao, S.; Xu, Y.; Mou, F.; Han, X.; Yu, Z.; Chen, J.; Zhang, D.; Zhang, L.; Cui, G. Electroacupuncture improves memory and protects neurons by regulation of the autophagy pathway in a rat model of Alzheimer’s disease. Acupunct. Med., 2016, 34(6), 449-456.
[http://dx.doi.org/10.1136/acupmed-2015-010894] [PMID: 26895770]
[52]
Lin, R.; Chen, J.; Li, X.; Mao, J.; Wu, Y.; Zhuo, P.; Zhang, Y.; Liu, W.; Huang, J.; Tao, J.; Chen, L.D. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol. Med. Rep., 2016, 13(2), 1611-1617.
[http://dx.doi.org/10.3892/mmr.2015.4751] [PMID: 26739187]
[53]
Liu, W.; Zhuo, P.; Li, L.; Jin, H.; Lin, B.; Zhang, Y.; Liang, S.; Wu, J.; Huang, J.; Wang, Z.; Lin, R.; Chen, L.; Tao, J. Activation of brain glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture. Free Radic. Biol. Med., 2017, 112, 174-190.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.024] [PMID: 28756309]
[54]
Zhang, M.; Xv, G.H.; Wang, W.X.; Meng, D.J.; Ji, Y. Electroacupuncture improves cognitive deficits and activates PPAR-γ in a rat model of Alzheimer’s disease. Acupunct. Med., 2017, 35(1), 44-51.
[http://dx.doi.org/10.1136/acupmed-2015-010972] [PMID: 27401747]
[55]
Lin, R.; Li, L.; Zhang, Y.; Huang, S.; Chen, S.; Shi, J.; Zhuo, P.; Jin, H.; Li, Z.; Liu, W.; Wang, Z.; Chen, L.; Tao, J. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biol. Res., 2018, 51(1), 21.
[http://dx.doi.org/10.1186/s40659-018-0166-7] [PMID: 29980225]
[56]
Kong, L-H.; Yu, C-C.; Wang, Y.; Shen, F.; Wang, Y.W.; Zhou, H.; Tang, L. High-frequency (50 Hz) electroacupuncture ameliorates cognitive impairment in rats with amyloid beta 1-42-induced Alzheimer’s disease. Neural Regen. Res., 2018, 13(10), 1833-1841.
[http://dx.doi.org/10.4103/1673-5374.238620] [PMID: 30136700]
[57]
Tang, Y.; Shao, S.; Guo, Y.; Zhou, Y.; Cao, J.; Xu, A.; Wu, J.; Li, Z.; Xiang, D. Electroacupuncture mitigates hippocampal cognitive impairments by reducing BACE1 deposition and activating PKA in APP/PS1 double transgenic mice. Neural Plast., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/2823679] [PMID: 31223308]
[58]
Hou, Z.; Qiu, R.; Wei, Q.; Liu, Y.; Wang, M.; Mei, T.; Zhang, Y.; Song, L.; Shao, X.; Shang, H.; Chen, J.; Sun, Z. Electroacupuncture improves cognitive function in senescence-accelerated P8 (SAMP8) mice via the NLRP3/caspase-1 pathway. Neural Plast., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8853720] [PMID: 33204250]
[59]
Huang, X.; Huang, K.; Li, Z.; Bai, D.; Hao, Y.; Wu, Q.; Yi, W.; Xu, N.; Pan, Y.; Zhang, L. Electroacupuncture improves cognitive deficits and insulin resistance in an OLETF rat model of Al/D-gal induced aging model via the PI3K/Akt signaling pathway. Brain Res., 2020, 1740, 146834.
[http://dx.doi.org/10.1016/j.brainres.2020.146834] [PMID: 32304687]
[60]
Tang, Y.; Xu, A.; Shao, S.; Zhou, Y.; Xiong, B.; Li, Z. Electroacupuncture ameliorates cognitive impairment by inhibiting the JNK signaling pathway in a mouse model of Alzheimer’s disease. Front. Aging Neurosci., 2020, 12, 23.
[http://dx.doi.org/10.3389/fnagi.2020.00023] [PMID: 32116652]
[61]
Xu, A.; Tang, Y.; Zeng, Q.; Wang, X.; Tian, H.; Zhou, Y.; Li, Z. Electroacupuncture enhances cognition by promoting brain glucose metabolism and inhibiting inflammation in the APP/PS1 mouse model of Alzheimer’s disease: A pilot study. J. Alzheimers Dis., 2020, 77(1), 387-400.
[http://dx.doi.org/10.3233/JAD-200242] [PMID: 32741819]
[62]
Xu, A.; Zeng, Q.; Tang, Y.; Wang, X.; Yuan, X.; Zhou, Y.; Li, Z. Electroacupuncture protects cognition by regulating tau phosphorylation and glucose metabolism via the AKT/GSK3β signaling Pathway in Alzheimer’s disease model mice. Front. Neurosci., 2020, 14, 585476.
[http://dx.doi.org/10.3389/fnins.2020.585476] [PMID: 33328854]
[63]
Yang, Y.; Hu, S.; Lin, H.; He, J.; Tang, C. Electroacupuncture at GV24 and bilateral GB13 improves cognitive ability via influences the levels of Aβ, p-tau (s396) and p-tau (s404) in the hippocampus of Alzheimer’s disease model rats. Neuroreport, 2020, 31(15), 1072-1083.
[http://dx.doi.org/10.1097/WNR.0000000000001518] [PMID: 32881772]
[64]
Jiang, J.; Liu, H.; Wang, Z.; Tian, H.; Wang, S.; Yang, J.; Ren, J. Electroacupuncture could balance the gut microbiota and improve the learning and memory abilities of Alzheimer’s disease animal model. PLoS One, 2021, 16(11), e0259530.
[http://dx.doi.org/10.1371/journal.pone.0259530] [PMID: 34748592]
[65]
Li, J.; Zhang, B.; Jia, W.; Yang, M.; Zhang, Y.; Zhang, J.; Li, L.; Jin, T.; Wang, Z.; Tao, J.; Chen, L.; Liang, S.; Liu, W. Activation of adenosine monophosphate-activated protein kinase drives the aerobic glycolysis in hippocampus for delaying cognitive decline following electroacupuncture treatment in APP/PS1 mice. Front. Cell. Neurosci., 2021, 15, 774569.
[http://dx.doi.org/10.3389/fncel.2021.774569] [PMID: 34867206]
[66]
Li, K.; Shi, G.; Zhao, Y.; Chen, Y.; Gao, J.; Yao, L.; Zhao, J.; Li, H.; Xu, Y.; Chen, Y. Electroacupuncture ameliorates neuroinflammation-mediated cognitive deficits through inhibition of NLRP3 in presenilin1/2 conditional double knockout mice. Neural Plast., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/8814616] [PMID: 33505459]
[67]
Liang, P.; Li, L.; Zhang, Y.; Shen, Y.; Zhang, L.; Zhou, J.; Wang, Z.; Wang, S.; Yang, S. Electroacupuncture improves clearance of amyloid-β through the glymphatic system in the SAMP8 mouse model of Alzheimer’s disease. Neural Plast., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/9960304] [PMID: 34484327]
[68]
Sun, R.Q.; Wang, Z.D.; Zhao, J.; Wang, S.; Liu, Y.Z.; Liu, S.Y.; Li, Z.G.; Wang, X. Improvement of electroacupuncture on APP/PS1 transgenic mice in behavioral probably due to reducing deposition of Aβ in hippocampus. Anat. Rec. (Hoboken), 2021, 304(11), 2521-2530.
[http://dx.doi.org/10.1002/ar.24737] [PMID: 34469051]
[69]
Kong, L-H.; Yu, C-C.; He, C.; Du, Y-J.; Gao, S.; Lin, Y-F.; Wang, S.Q.; Wang, L.; Wang, J.; Wang, X-S.; Jiang, T. Preventive electroacupuncture reduces cognitive deficits in a rat model of D-galactose-induced aging. Neural Regen. Res., 2021, 16(5), 916-923.
[http://dx.doi.org/10.4103/1673-5374.297090] [PMID: 33229729]
[70]
Zheng, X.; Lin, W.; Jiang, Y.; Lu, K.; Wei, W.; Huo, Q.; Cui, S.; Yang, X.; Li, M.; Xu, N.; Tang, C.; Song, J.X. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy, 2021, 17(11), 3833-3847.
[http://dx.doi.org/10.1080/15548627.2021.1886720] [PMID: 33622188]
[71]
Hou, Z.; Yang, X.; Li, Y.; Chen, J.; Shang, H. Electroacupuncture enhances neuroplasticity by regulating the orexin A-mediated cAMP/PKA/CREB signaling pathway in senescence-accelerated mouse prone 8 (SAMP8) mice. Oxid. Med. Cell. Longev., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/8694462] [PMID: 35154573]
[72]
Shao, S.M.; Park, K.H.; Yuan, Y.; Zhang, Z.; You, Y.; Zhang, Z.; Hao, L. Electroacupuncture attenuates learning and memory impairment via PI3K/Akt pathway in an amyloid β25-35-induced Alzheimer’s disease mouse model. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/3849441] [PMID: 35463064]
[73]
Maturana, W.; Lobo, I.; Landeira-Fernandez, J.; Mograbi, D.C. Nondeclarative associative learning in Alzheimer’s disease: An overview of eyeblink, fear, and other emotion-based conditioning. Physiol. Behav., 2023, 268, 114250.
[http://dx.doi.org/10.1016/j.physbeh.2023.114250] [PMID: 37224936]
[74]
Li, L.; Li, J.; Dai, Y.; Yang, M.; Liang, S.; Wang, Z.; Liu, W.; Chen, L.; Tao, J. Electro-acupuncture improve the early pattern separation in Alzheimer’s disease mice via basal forebrain-hippocampus cholinergic neural circuit. Front. Aging Neurosci., 2022, 13, 770948.
[http://dx.doi.org/10.3389/fnagi.2021.770948] [PMID: 35185516]
[75]
Oomen, C.A.; Hvoslef-Eide, M.; Heath, C.J.; Mar, A.C.; Horner, A.E.; Bussey, T.J.; Saksida, L.M. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc., 2013, 8(10), 2006-2021.
[http://dx.doi.org/10.1038/nprot.2013.124] [PMID: 24051961]
[76]
Ghafarimoghadam, M.; Mashayekh, R.; Gholami, M.; Fereydani, P.; Shelley-Tremblay, J.; Kandezi, N.; Sabouri, E.; Motaghinejad, M. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition. Physiol. Behav., 2022, 244, 113652.
[http://dx.doi.org/10.1016/j.physbeh.2021.113652] [PMID: 34801559]
[77]
Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2020, 15(1), 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[78]
Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; Puzzo, D.; Arancio, O. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimers Dis., 2018, 64(s1), S611-S631.
[http://dx.doi.org/10.3233/JAD-179935] [PMID: 29865055]
[79]
Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[80]
Puzzo, D.; Gulisano, W.; Arancio, O.; Palmeri, A. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology. Neuroscience, 2015, 307, 26-36.
[http://dx.doi.org/10.1016/j.neuroscience.2015.08.039] [PMID: 26314631]
[81]
Lyman, M.; Lloyd, D.G.; Ji, X.; Vizcaychipi, M.P.; Ma, D. Neuroinflammation: The role and consequences. Neurosci. Res., 2014, 79, 1-12.
[http://dx.doi.org/10.1016/j.neures.2013.10.004] [PMID: 24144733]
[82]
Tapia-Rojas, C.; Cabezas-Opazo, F.; Deaton, C.A.; Vergara, E.H.; Johnson, G.V.W.; Quintanilla, R.A. It’s all about tau. Prog. Neurobiol., 2019, 175, 54-76.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.005] [PMID: 30605723]
[83]
Naseri, N.N.; Wang, H.; Guo, J.; Sharma, M.; Luo, W. The complexity of tau in Alzheimer’s disease. Neurosci. Lett., 2019, 705, 183-194.
[http://dx.doi.org/10.1016/j.neulet.2019.04.022] [PMID: 31028844]
[84]
Trushina, N.I.; Bakota, L.; Mulkidjanian, A.Y.; Brandt, R. The evolution of tau phosphorylation and interactions. Front. Aging Neurosci., 2019, 11, 256.
[http://dx.doi.org/10.3389/fnagi.2019.00256] [PMID: 31619983]
[85]
Sinsky, J.; Pichlerova, K.; Hanes, J. Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci., 2021, 22(17), 9207.
[http://dx.doi.org/10.3390/ijms22179207] [PMID: 34502116]
[86]
Yang, J.; Wise, L.; Fukuchi, K. TLR4 Cross-talk With NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease. Front. Immunol., 2020, 11, 724.
[http://dx.doi.org/10.3389/fimmu.2020.00724] [PMID: 32391019]
[87]
Saroja, S.R.; Sharma, A.; Hof, P.R.; Pereira, A.C. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease. Alzheimers Dement., 2022, 18(9), 1602-1615.
[http://dx.doi.org/10.1002/alz.12518] [PMID: 34873815]
[88]
Cai, M.; Lee, J.H.; Yang, E.J. Electroacupuncture attenuates cognition impairment via anti-neuroinflammation in an Alzheimer’s disease animal model. J. Neuroinflammation, 2019, 16(1), 264.
[http://dx.doi.org/10.1186/s12974-019-1665-3] [PMID: 31836020]
[89]
Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol., 2021, 20(1), 68-80.
[http://dx.doi.org/10.1016/S1474-4422(20)30412-9] [PMID: 33340485]
[90]
Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science, 2020, 370(6512), 50-56.
[http://dx.doi.org/10.1126/science.abb8739] [PMID: 33004510]
[91]
Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol., 2018, 17(11), 1016-1024.
[http://dx.doi.org/10.1016/S1474-4422(18)30318-1] [PMID: 30353860]
[92]
Kitagishi, Y.; Nakanishi, A.; Ogura, Y.; Matsuda, S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(3), 35.
[http://dx.doi.org/10.1186/alzrt265] [PMID: 25031641]
[93]
Su, H.C.; Ma, C.T.; Yu, B.C.; Chien, Y.C.; Tsai, C.C.; Huang, W.C.; Lin, C.F.; Chuang, Y.H.; Young, K.C.; Wang, J.N.; Tsao, C.W. Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine. Int. Immunopharmacol., 2012, 14(2), 150-156.
[http://dx.doi.org/10.1016/j.intimp.2012.06.015] [PMID: 22749848]
[94]
Yang, W.; Liu, Y.; Xu, Q.Q.; Xian, Y.F.; Lin, Z.X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 β pathway in experimental models of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2020, 2020, 1-17.
[http://dx.doi.org/10.1155/2020/4754195] [PMID: 32963694]
[95]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[96]
Ozben, T.; Ozben, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin. Biochem., 2019, 72, 87-89.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.001] [PMID: 30954437]
[97]
Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol., 2021, 267, 113468.
[http://dx.doi.org/10.1016/j.jep.2020.113468] [PMID: 33049345]
[98]
Awasthi, A.; Raju, M.B.; Rahman, M.A. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation. Med. Chem., 2021, 17(6), 555-575.
[http://dx.doi.org/10.2174/18756638MTA0CODg72] [PMID: 32106802]
[99]
Liu, Q.; Zhang, Y.; Liu, S.; Liu, Y.; Yang, X.; Liu, G.; Shimizu, T.; Ikenaka, K.; Fan, K.; Ma, J. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca2+-dependent PKC/p38MAPK/NF-κB pathway. J. Neuroinflammation, 2019, 16(1), 10.
[http://dx.doi.org/10.1186/s12974-019-1398-3] [PMID: 30651105]
[100]
Shen, Y.; Zhang, Y.; Du, J.; Jiang, B.; Shan, T.; Li, H.; Bao, H.; Si, Y. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway. J. Neuroinflammation, 2021, 18(1), 246.
[http://dx.doi.org/10.1186/s12974-021-02300-1] [PMID: 34711216]
[101]
McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery cell death: Pyroptosis in the central nervous system. Trends Neurosci., 2020, 43(1), 55-73.
[http://dx.doi.org/10.1016/j.tins.2019.11.005] [PMID: 31843293]
[102]
Milner, M.T.; Maddugoda, M.; Götz, J.; Burgener, S.S.; Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol., 2021, 68, 116-124.
[http://dx.doi.org/10.1016/j.coi.2020.10.011] [PMID: 33181351]
[103]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[104]
Hu, X.; Wang, T.; Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci., 2016, 59(10), 1006-1023.
[http://dx.doi.org/10.1007/s11427-016-5083-9] [PMID: 27566465]
[105]
Megur, A.; Baltriukienė, D.; Bukelskienė, V.; Burokas, A. The microbiota-gut-brain axis and Alzheimer’s disease: Neuroinflammation is to blame? Nutrients, 2020, 13(1), 37.
[http://dx.doi.org/10.3390/nu13010037] [PMID: 33374235]
[106]
Zheng, J.H.; Viacava, F.A.; Kriwacki, R.W.; Moldoveanu, T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J., 2016, 283(14), 2690-2700.
[http://dx.doi.org/10.1111/febs.13527] [PMID: 26411300]
[107]
Spitz, A.Z.; Gavathiotis, E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci., 2022, 43(3), 206-220.
[http://dx.doi.org/10.1016/j.tips.2021.11.001] [PMID: 34848097]
[108]
Green, D.R.; Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a006080.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[109]
Takuma, K.; Yan, S.S.; Stern, D.M.; Yamada, K. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease. J. Pharmacol. Sci., 2005, 97(3), 312-316.
[http://dx.doi.org/10.1254/jphs.CPJ04006X] [PMID: 15750290]
[110]
Bamberger, M.E.; Landreth, G.E. Inflammation, apoptosis, and Alzheimer’s disease. Neuroscientist, 2002, 8(3), 276-283.
[PMID: 12061507]
[111]
Jazvinšćak Jembrek, M.; Hof, P.R.; Šimić, G. Ceramides in Alzheimer’s disease: Key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid. Med. Cell. Longev., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/346783] [PMID: 26090071]
[112]
Sharma, V.K.; Singh, T.G.; Singh, S.; Garg, N.; Dhiman, S. Apoptotic pathways and Alzheimer’s disease: Probing therapeutic potential. Neurochem. Res., 2021, 46(12), 3103-3122.
[http://dx.doi.org/10.1007/s11064-021-03418-7] [PMID: 34386919]
[113]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[114]
Yang, J.; Harte-Hargrove, L.C.; Siao, C.J.; Marinic, T.; Clarke, R.; Ma, Q.; Jing, D.; LaFrancois, J.J.; Bath, K.G.; Mark, W.; Ballon, D.; Lee, F.S.; Scharfman, H.E.; Hempstead, B.L. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep., 2014, 7(3), 796-806.
[http://dx.doi.org/10.1016/j.celrep.2014.03.040] [PMID: 24746813]
[115]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[116]
Berger, T.; Lee, H.; Young, A.H.; Aarsland, D.; Thuret, S. Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol. Med., 2020, 26(9), 803-818.
[http://dx.doi.org/10.1016/j.molmed.2020.03.010] [PMID: 32418723]
[117]
Babcock, K.R.; Page, J.S.; Fallon, J.R.; Webb, A.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports, 2021, 16(4), 681-693.
[http://dx.doi.org/10.1016/j.stemcr.2021.01.019] [PMID: 33636114]
[118]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[119]
Mu, Y.; Gage, F.H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener., 2011, 6(1), 85.
[http://dx.doi.org/10.1186/1750-1326-6-85] [PMID: 22192775]
[120]
Clelland, C.D.; Choi, M.; Romberg, C.; Clemenson, G.D., Jr; Fragniere, A.; Tyers, P.; Jessberger, S.; Saksida, L.M.; Barker, R.A.; Gage, F.H.; Bussey, T.J. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 2009, 325(5937), 210-213.
[http://dx.doi.org/10.1126/science.1173215] [PMID: 19590004]
[121]
Walgrave, H.; Balusu, S.; Snoeck, S.; Vanden Eynden, E.; Craessaerts, K.; Thrupp, N.; Wolfs, L.; Horré, K.; Fourne, Y.; Ronisz, A.; Silajdžić, E.; Penning, A.; Tosoni, G.; Callaerts-Vegh, Z.; D’Hooge, R.; Thal, D.R.; Zetterberg, H.; Thuret, S.; Fiers, M.; Frigerio, C.S.; De Strooper, B.; Salta, E. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell, 2021, 28(10), 1805-1821.e8.
[http://dx.doi.org/10.1016/j.stem.2021.05.001] [PMID: 34033742]
[122]
Morello, M.; Landel, V.; Lacassagne, E.; Baranger, K.; Annweiler, C.; Féron, F.; Millet, P. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(8), 6463-6479.
[http://dx.doi.org/10.1007/s12035-017-0839-1] [PMID: 29318446]
[123]
Li, Q.; Liu, Y.; Sun, M. Autophagy and Alzheimer’s disease. Cell. Mol. Neurobiol., 2017, 37(3), 377-388.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[124]
Zhang, Z.; Yang, X.; Song, Y.Q.; Tu, J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res. Rev., 2021, 72, 101464.
[http://dx.doi.org/10.1016/j.arr.2021.101464] [PMID: 34551326]
[125]
Salminen, A.; Kaarniranta, K.; Kauppinen, A.; Ojala, J.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog. Neurobiol., 2013, 106-107, 33-54.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.002] [PMID: 23827971]
[126]
Luo, R.; Su, L.Y.; Li, G.; Yang, J.; Liu, Q.; Yang, L.X.; Zhang, D.F.; Zhou, H.; Xu, M.; Fan, Y.; Li, J.; Yao, Y.G. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy, 2020, 16(1), 52-69.
[http://dx.doi.org/10.1080/15548627.2019.1596488] [PMID: 30898012]
[127]
Chen, M.L.; Hong, C.G.; Yue, T.; Li, H.M.; Duan, R.; Hu, W.B.; Cao, J.; Wang, Z.X.; Chen, C.Y.; Hu, X.K.; Wu, B.; Liu, H.M.; Tan, Y.J.; Liu, J.H.; Luo, Z.W.; Zhang, Y.; Rao, S.S.; Luo, M.J.; Yin, H.; Wang, Y.Y.; Xia, K.; Tang, S.Y.; Xie, H.; Liu, Z.Z. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics, 2021, 11(5), 2395-2409.
[http://dx.doi.org/10.7150/thno.47408] [PMID: 33500732]
[128]
Martini-Stoica, H.; Xu, Y.; Ballabio, A.; Zheng, H. The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective. Trends Neurosci., 2016, 39(4), 221-234.
[http://dx.doi.org/10.1016/j.tins.2016.02.002] [PMID: 26968346]
[129]
King, K.E.; Losier, T.T.; Russell, R.C. Regulation of autophagy enzymes by nutrient signaling. Trends Biochem. Sci., 2021, 46(8), 687-700.
[http://dx.doi.org/10.1016/j.tibs.2021.01.006] [PMID: 33593593]
[130]
Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Prog. Neurobiol., 2013, 108, 21-43.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.004] [PMID: 23850509]
[131]
Kumar, V.; Kim, S.H.; Bishayee, K. Dysfunctional glucose metabolism in Alzheimer’s disease onset and potential pharmacological interventions. Int. J. Mol. Sci., 2022, 23(17), 9540.
[http://dx.doi.org/10.3390/ijms23179540] [PMID: 36076944]
[132]
Muraleedharan, R.; Dasgupta, B. AMPK in the brain: Its roles in glucose and neural metabolism. FEBS J., 2022, 289(8), 2247-2262.
[http://dx.doi.org/10.1111/febs.16151] [PMID: 34355526]
[133]
Sun, Y.; Ma, C.; Sun, H.; Wang, H.; Peng, W.; Zhou, Z.; Wang, H.; Pi, C.; Shi, Y.; He, X. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease. J. Diabetes Res., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/4981814] [PMID: 32083135]
[134]
Manczak, M.; Calkins, M.J.; Reddy, P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet., 2011, 20(13), 2495-2509.
[http://dx.doi.org/10.1093/hmg/ddr139] [PMID: 21459773]
[135]
Calkins, M.J.; Manczak, M.; Mao, P.; Shirendeb, U.; Reddy, P.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum. Mol. Genet., 2011, 20(23), 4515-4529.
[http://dx.doi.org/10.1093/hmg/ddr381] [PMID: 21873260]
[136]
Bernardo, T.C.; Marques-Aleixo, I.; Beleza, J.; Oliveira, P.J.; Ascensão, A.; Magalhães, J. Physical exercise and brain mitochondrial fitness: The possible role against A lzheimer’s disease. Brain Pathol., 2016, 26(5), 648-663.
[http://dx.doi.org/10.1111/bpa.12403] [PMID: 27328058]
[137]
Cuestas Torres, D.M.; Cardenas, F.P. Synaptic plasticity in Alzheimer’s disease and healthy aging. Rev. Neurosci., 2020, 31(3), 245-268.
[http://dx.doi.org/10.1515/revneuro-2019-0058] [PMID: 32250284]
[138]
Benarroch, E.E. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease. Neurology, 2018, 91(3), 125-132.
[http://dx.doi.org/10.1212/WNL.0000000000005807] [PMID: 29898976]
[139]
Matynia, A.; Kushner, S.A.; Silva, A.J. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu. Rev. Genet., 2002, 36(1), 687-720.
[http://dx.doi.org/10.1146/annurev.genet.36.062802.091007] [PMID: 12429705]
[140]
Peineau, S.; Rabiant, K.; Pierrefiche, O.; Potier, B. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer’s disease. Pharmacol. Res., 2018, 130, 385-401.
[http://dx.doi.org/10.1016/j.phrs.2018.01.018] [PMID: 29425728]
[141]
Styr, B.; Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat. Neurosci., 2018, 21(4), 463-473.
[http://dx.doi.org/10.1038/s41593-018-0080-x] [PMID: 29403035]
[142]
Abel, T.; Nguyen, P.V.; Barad, M.; Deuel, T.A.S.; Kandel, E.R.; Bourtchouladze, R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 1997, 88(5), 615-626.
[http://dx.doi.org/10.1016/S0092-8674(00)81904-2] [PMID: 9054501]
[143]
Lu, G.L.; Lee, M.T.; Chiou, L.C. Orexin-mediated restoration of hippocampal synaptic potentiation in mice with established cocaine-conditioned place preference. Addict. Biol., 2019, 24(6), 1153-1166.
[http://dx.doi.org/10.1111/adb.12672] [PMID: 30276922]
[144]
Alberi, L.; Hoey, S.E.; Brai, E.; Scotti, A.L.; Marathe, S. Notch signaling in the brain: In good and bad times. Ageing Res. Rev., 2013, 12(3), 801-814.
[http://dx.doi.org/10.1016/j.arr.2013.03.004] [PMID: 23570941]
[145]
Li, X.; Wu, X.; Luo, P.; Xiong, L. Astrocyte-specific NDRG2 gene: functions in the brain and neurological diseases. Cell. Mol. Life Sci., 2020, 77(13), 2461-2472.
[http://dx.doi.org/10.1007/s00018-019-03406-9] [PMID: 31834421]
[146]
Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol., 2021, 12, 648636.
[http://dx.doi.org/10.3389/fphar.2021.648636] [PMID: 33935751]
[147]
Kumar, M.; Kumar, A.; Sindhu, R.K.; Kushwah, A.S. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats. Neurochem. Int., 2021, 151, 105217.
[http://dx.doi.org/10.1016/j.neuint.2021.105217] [PMID: 34710534]
[148]
Hayes, M.T. Parkinson’s disease and parkinsonism. Am. J. Med., 2019, 132(7), 802-807.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[149]
Reich, S.G.; Savitt, J.M. Parkinson’s disease. Med. Clin. North Am., 2019, 103(2), 337-350.
[http://dx.doi.org/10.1016/j.mcna.2018.10.014] [PMID: 30704685]
[150]
Raza, C.; Anjum, R.; Shakeel, N.A. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci., 2019, 226, 77-90.
[http://dx.doi.org/10.1016/j.lfs.2019.03.057] [PMID: 30980848]
[151]
Cosgrove, J.; Alty, J.E.; Jamieson, S. Cognitive impairment in Parkinson’s disease. Postgrad. Med. J., 2015, 91(1074), 212-220.
[http://dx.doi.org/10.1136/postgradmedj-2015-133247] [PMID: 25814509]
[152]
Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers, 2021, 7(1), 47.
[http://dx.doi.org/10.1038/s41572-021-00280-3] [PMID: 34210995]
[153]
Mattila, P.M.; Röyttä, M.; Lönnberg, P.; Marjamäki, P.; Helenius, H.; Rinne, J.O. Choline acetyltransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol., 2001, 102(2), 160-166.
[http://dx.doi.org/10.1007/s004010100372] [PMID: 11563631]
[154]
Dovonou, A.; Bolduc, C.; Soto Linan, V.; Gora, C.; Peralta, M.R., III; Lévesque, M. Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions. Transl. Neurodegener., 2023, 12(1), 36.
[http://dx.doi.org/10.1186/s40035-023-00368-8] [PMID: 37468944]
[155]
Shen, X.; Xie, Y.Y.; Chen, C.; Wang, X.P. Effects of electroacupuncture on cognitive function in rats with Parkinson’s disease. Int. J. Physiol. Pathophysiol. Pharmacol., 2015, 7(3), 145-151.
[PMID: 26823963]
[156]
Nguyen, D.H.; Cunningham, J.T.; Sumien, N. Estrogen receptor involvement in vascular cognitive impairment and vascular dementia pathogenesis and treatment. Geroscience, 2021, 43(1), 159-166.
[http://dx.doi.org/10.1007/s11357-020-00263-4] [PMID: 32902819]
[157]
Zanon, Z.M.C.; Sveikata, L.; Viswanathan, A.; Yilmaz, P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr. Opin. Neurol., 2021, 34(2), 246-257.
[http://dx.doi.org/10.1097/WCO.0000000000000913] [PMID: 33630769]
[158]
van der Flier, W.M.; Skoog, I.; Schneider, J.A.; Pantoni, L.; Mok, V.; Chen, C.L.H.; Scheltens, P. Vascular cognitive impairment. Nat. Rev. Dis. Primers, 2018, 4(1), 18003.
[http://dx.doi.org/10.1038/nrdp.2018.3] [PMID: 29446769]
[159]
Skrobot, O.A.; Attems, J.; Esiri, M.; Hortobágyi, T.; Ironside, J.W.; Kalaria, R.N.; King, A.; Lammie, G.A.; Mann, D.; Neal, J.; Ben-Shlomo, Y.; Kehoe, P.G.; Love, S. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain, 2016, 139(11), 2957-2969.
[http://dx.doi.org/10.1093/brain/aww214] [PMID: 27591113]
[160]
Vinciguerra, L.; Lanza, G.; Puglisi, V.; Fisicaro, F.; Pennisi, M.; Bella, R.; Cantone, M. Update on the neurobiology of vascular cognitive impairment: from lab to clinic. Int. J. Mol. Sci., 2020, 21(8), 2977.
[http://dx.doi.org/10.3390/ijms21082977] [PMID: 32340195]
[161]
Tian, Z.; Ji, X.; Liu, J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects. Int. J. Mol. Sci., 2022, 23(11), 6224.
[http://dx.doi.org/10.3390/ijms23116224] [PMID: 35682903]
[162]
Yang, T.; Zhang, F. Targeting transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) for the intervention of vascular cognitive impairment and dementia. Arterioscler. Thromb. Vasc. Biol., 2021, 41(1), 97-116.
[PMID: 33054394]
[163]
Tucsek, Z.; Noa Valcarcel-Ares, M.; Tarantini, S.; Yabluchanskiy, A.; Fülöp, G.; Gautam, T.; Orock, A.; Csiszar, A.; Deak, F.; Ungvari, Z. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: Implications for the pathogenesis of vascular cognitive impairment. Geroscience, 2017, 39(4), 385-406.
[http://dx.doi.org/10.1007/s11357-017-9981-y] [PMID: 28664509]
[164]
Huang, Y.; Liao, X.; Wang, H.; Luo, J.; Zhong, S.; Zhang, Z. zhang, F.; Chen, J.; Xie, F. Effects of imperatorin on apoptosis and synaptic plasticity in vascular dementia rats. Sci. Rep., 2021, 11(1), 8590.
[http://dx.doi.org/10.1038/s41598-021-88206-7] [PMID: 33883654]
[165]
Tuo, Q.; Zou, J.; Lei, P. Rodent models of vascular cognitive impairment. J. Mol. Neurosci., 2021, 71, 1-21.
[PMID: 33107013]
[166]
Li, Y.; Zhang, J. Animal models of stroke. Animal Model. Exp. Med., 2021, 4(3), 204-219.
[http://dx.doi.org/10.1002/ame2.12179] [PMID: 34557647]
[167]
Li, G.; Shi, Y.; Zhang, L.; Yang, C.; Wan, T.; Lv, H.; Jian, W.; Li, J.; Li, M. Efficacy of acupuncture in animal models of vascular dementia: A systematic review and network meta-analysis. Front. Aging Neurosci., 2022, 14, 952181.
[http://dx.doi.org/10.3389/fnagi.2022.952181] [PMID: 36062145]
[168]
Ahn, S.M.; Kim, Y.R.; Kim, H.N.; Shin, Y.I.; Shin, H.K.; Choi, B.T. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion. Sci. Rep., 2016, 6(1), 28646.
[http://dx.doi.org/10.1038/srep28646] [PMID: 27350403]
[169]
Bi, X.; Feng, Y.; Wu, Z.; Fang, J. Electroacupuncture attenuates cognitive impairment in rat model of chronic cerebral hypoperfusion via miR-137/NOX4 axis. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/8842022] [PMID: 33986822]
[170]
Dai, Y.; Zhang, Y.; Yang, M.; Lin, H.; Liu, Y.; Xu, W.; Ding, Y.; Tao, J.; Liu, W. Electroacupuncture increases the hippocampal synaptic transmission efficiency and long-term plasticity to improve vascular cognitive impairment. Mediators Inflamm., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/5985143] [PMID: 35784174]
[171]
Han, D.; Liu, Z.; Wang, G.; Zhang, Y.; Wu, Z. Electroacupuncture improves cognitive deficits through increasing regional cerebral blood flow and alleviating inflammation in CCI rats. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/5173168] [PMID: 28491108]
[172]
Zheng, C.X.; Lu, M.; Guo, Y.B.; Zhang, F.X.; Liu, H.; Guo, F.; Huang, X.L.; Han, X.H. Electroacupuncture ameliorates learning and memory and improves synaptic plasticity via activation of the PKA/CREB signaling pathway in cerebral hypoperfusion. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/7893710] [PMID: 27829866]
[173]
Feng, X.; Yang, S.; Liu, J.; Huang, J.; Peng, J.; Lin, J.; Tao, J.; Chen, L. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats. Mol. Med. Rep., 2013, 7(5), 1516-1522.
[http://dx.doi.org/10.3892/mmr.2013.1392] [PMID: 23525450]
[174]
Liu, F.; Jiang, Y.J.; Zhao, H.J.; Yao, L.Q.; Chen, L.D. Electroacupuncture ameliorates cognitive impairment and regulates the expression of apoptosis-related genes Bcl-2 and Bax in rats with cerebral ischaemia-reperfusion injury. Acupunct. Med., 2015, 33(6), 478-484.
[http://dx.doi.org/10.1136/acupmed-2014-010728] [PMID: 26376847]
[175]
Lin, R.; Wu, Y.; Tao, J.; Chen, B.; Chen, J.; Zhao, C.; Yu, K.; Li, X.; Chen, L.D. Electroacupuncture improves cognitive function through Rho GTPases and enhances dendritic spine plasticity in rats with cerebral ischemia-reperfusion. Mol. Med. Rep., 2016, 13(3), 2655-2660.
[http://dx.doi.org/10.3892/mmr.2016.4870] [PMID: 26846874]
[176]
Lin, R.; Yu, K.; Li, X.; Tao, J.; Lin, Y.; Zhao, C.; Li, C.; Chen, L.D. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats. Mol. Med. Rep., 2016, 14(1), 225-233.
[http://dx.doi.org/10.3892/mmr.2016.5227] [PMID: 27177163]
[177]
Lin, R.; Li, X.; Liu, W.; Chen, W.; Yu, K.; Zhao, C.; Huang, J.; Yang, S.; Peng, H.; Tao, J.; Chen, L. Electro-acupuncture ameliorates cognitive impairment via improvement of brain-derived neurotropic factor-mediated hippocampal synaptic plasticity in cerebral ischemia-reperfusion injured rats. Exp. Ther. Med., 2017, 14(3), 2373-2379.
[http://dx.doi.org/10.3892/etm.2017.4750] [PMID: 28962170]
[178]
Zhang, Y.; Mao, X.; Lin, R.; Li, Z.; Lin, J. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury. Acupunct. Med., 2018, 36(6), 401-407.
[http://dx.doi.org/10.1136/acupmed-2016-011353] [PMID: 30257960]
[179]
Shi, Y.; Dai, Q.; Ji, B.; Huang, L.; Zhuang, X.; Mo, Y.; Wang, J. Electroacupuncture pretreatment prevents cognitive impairment induced by cerebral ischemia-reperfusion via adenosine A1 receptors in rats. Front. Aging Neurosci., 2021, 13, 680706.
[http://dx.doi.org/10.3389/fnagi.2021.680706] [PMID: 34413765]
[180]
Feng, X-D.; Wang, H-L.; Liu, F-L.; Li, R-Q.; Wan, M-Y.; Li, J-Y.; Shi, J.; Wu, M-L.; Chen, J-H.; Sun, W-J.; Feng, H-X.; Zhao, W.; Huang, J.; Liu, R-C.; Hao, W-X. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/] reperfusion injury model through PI3K/Akt signaling pathway activation. Neural Regen. Res., 2021, 16(6), 1011-1016.
[http://dx.doi.org/10.4103/1673-5374.300454] [PMID: 33269744]
[181]
Su, K.; Hao, W.; Lv, Z.; Wu, M.; Li, J.; Hu, Y.; Zhang, Z.; Gao, J.; Feng, X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front. Neurol., 2022, 13, 855362.
[http://dx.doi.org/10.3389/fneur.2022.855362] [PMID: 36062010]
[182]
Huang, J.; You, X.; Liu, W.; Song, C.; Lin, X.; Zhang, X.; Tao, J.; Chen, L. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia. BMC Complement. Altern. Med., 2017, 17(1), 480.
[http://dx.doi.org/10.1186/s12906-017-1974-y] [PMID: 29017492]
[183]
Liu, W.; Wu, J.; Huang, J.; Zhuo, P.; Lin, Y.; Wang, L.; Lin, R.; Chen, L.; Tao, J. Electroacupuncture regulates hippocampal synaptic plasticity via miR-134-mediated LIMK1 function in rats with ischemic stroke. Neural Plast., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/9545646] [PMID: 28116173]
[184]
He, J.; Zhao, C.; Liu, W.; Huang, J.; Liang, S.; Chen, L.; Tao, J. Neurochemical changes in the hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment. Int. J. Mol. Med., 2018, 41(2), 709-716.
[PMID: 29207061]
[185]
Wen, T.; Zhang, X.; Liang, S.; Li, Z.; Xing, X.; Liu, W.; Tao, J. Electroacupuncture ameliorates cognitive impairment and spontaneous low-frequency brain activity in rats with ischemic stroke. J. Stroke Cerebrovasc. Dis., 2018, 27(10), 2596-2605.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.021] [PMID: 30220306]
[186]
Wang, Z.; Lin, B.; Liu, W.; Peng, H.; Song, C.; Huang, J.; Li, Z.; Chen, L.; Tao, J. Electroacupuncture ameliorates learning and memory deficits via hippocampal 5-HT1A receptors and the PKA signaling pathway in rats with ischemic stroke. Metab. Brain Dis., 2020, 35(3), 549-558.
[http://dx.doi.org/10.1007/s11011-019-00489-y] [PMID: 31515682]
[187]
Zheng, Y.; Qin, Z.; Tsoi, B.; Shen, J.; Zhang, Z.J. Electroacupuncture on Trigeminal nerve-innervated acupoints ameliorates poststroke cognitive impairment in rats with middle cerebral artery occlusion: involvement of neuroprotection and synaptic plasticity. Neural Plast., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8818328] [PMID: 32963517]
[188]
Zhong, X.; Chen, B.; Li, Z.; Lin, R.; Ruan, S.; Wang, F.; Liang, H.; Tao, J. Electroacupuncture ameliorates cognitive impairment through the inhibition of NLRP3 inflammasome activation by regulating melatonin-mediated mitophagy in stroke rats. Neurochem. Res., 2022, 47(7), 1917-1930.
[http://dx.doi.org/10.1007/s11064-022-03575-3] [PMID: 35301664]
[189]
Duan, X.; Zhang, L.; Yu, J.; Wei, W.; Liu, X.; Xu, F.; Guo, S. The effect of different frequencies of electroacupuncture on BDNF and NGF expression in the hippocampal CA3 area of the ischemic hemisphere in cerebral ischemic rats. Neuropsychiatr. Dis. Treat., 2018, 14, 2689-2696.
[http://dx.doi.org/10.2147/NDT.S183436] [PMID: 30349267]
[190]
Zhang, Y.; Lin, R.; Tao, J.; Wu, Y.; Chen, B.; Yu, K.; Chen, J.; Li, X.; Chen, L.D. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp. Ther. Med., 2016, 12(2), 777-782.
[http://dx.doi.org/10.3892/etm.2016.3428] [PMID: 27446275]
[191]
Xie, G.; Song, C.; Lin, X.; Yang, M.; Fan, X.; Liu, W.; Tao, J.; Chen, L.; Huang, J. Electroacupuncture regulates hippocampal synaptic plasticity via inhibiting janus-activated kinase 2/signal transducer and activator of transcription 3 signaling in cerebral ischemic rats. J. Stroke Cerebrovasc. Dis., 2019, 28(3), 792-799.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.025] [PMID: 30552029]
[192]
Yang, E.J.; Cai, M.; Lee, J.H. Neuroprotective effects of electroacupuncture on an animal model of bilateral common carotid artery occlusion. Mol. Neurobiol., 2016, 53(10), 7228-7236.
[http://dx.doi.org/10.1007/s12035-015-9610-7] [PMID: 26687230]
[193]
Nishiyama, J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin. Neurosci., 2019, 73(9), 541-550.
[http://dx.doi.org/10.1111/pcn.12899] [PMID: 31215705]
[194]
Chidambaram, S.B.; Rathipriya, A.G.; Bolla, S.R.; Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M.; Guillemin, G.J.; Chandra, R.; Sakharkar, M.K. Dendritic spines: Revisiting the physiological role. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 161-193.
[http://dx.doi.org/10.1016/j.pnpbp.2019.01.005] [PMID: 30654089]
[195]
Suratkal, S.S.; Yen, Y.H.; Nishiyama, J. Imaging dendritic spines: molecular organization and signaling for plasticity. Curr. Opin. Neurobiol., 2021, 67, 66-74.
[http://dx.doi.org/10.1016/j.conb.2020.08.006] [PMID: 32942126]
[196]
Segal, M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur. J. Neurosci., 2010, 31(12), 2178-2184.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07270.x] [PMID: 20550565]
[197]
Matsuzaki, M.; Honkura, N.; Ellis-Davies, G.C.R.; Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature, 2004, 429(6993), 761-766.
[http://dx.doi.org/10.1038/nature02617] [PMID: 15190253]
[198]
Zhou, Q.; Homma, K.J.; Poo, M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 2004, 44(5), 749-757.
[http://dx.doi.org/10.1016/j.neuron.2004.11.011] [PMID: 15572107]
[199]
Sala, C.; Segal, M. Dendritic spines: the locus of structural and functional plasticity. Physiol. Rev., 2014, 94(1), 141-188.
[http://dx.doi.org/10.1152/physrev.00012.2013] [PMID: 24382885]
[200]
Bosch, M.; Castro, J.; Saneyoshi, T.; Matsuno, H.; Sur, M.; Hayashi, Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron, 2014, 82(2), 444-459.
[http://dx.doi.org/10.1016/j.neuron.2014.03.021] [PMID: 24742465]
[201]
Savioz, A.; Leuba, G.; Vallet, P.G. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res. Rev., 2014, 18, 86-94.
[http://dx.doi.org/10.1016/j.arr.2014.09.004] [PMID: 25264360]
[202]
Guo, X.; Tian, Y.; Yang, Y.; Li, S.; Guo, L.; Shi, J. Pituitary adenylate cyclase-activating polypeptide protects against cognitive impairment caused by chronic cerebral hypoperfusion. Mol. Neurobiol., 2021, 58(9), 4309-4322.
[http://dx.doi.org/10.1007/s12035-021-02381-2] [PMID: 33999349]
[203]
Yasuda, R. Biophysics of biochemical signaling in dendritic spines: Implications in synaptic plasticity. Biophys. J., 2017, 113(10), 2152-2159.
[http://dx.doi.org/10.1016/j.bpj.2017.07.029] [PMID: 28866426]
[204]
Takemoto-Kimura, S.; Suzuki, K.; Horigane, S.; Kamijo, S.; Inoue, M.; Sakamoto, M.; Fujii, H.; Bito, H. Calmodulin kinases: essential regulators in health and disease. J. Neurochem., 2017, 141(6), 808-818.
[http://dx.doi.org/10.1111/jnc.14020] [PMID: 28295333]
[205]
Bito, H.; Takemoto-Kimura, S. Ca2+/CREB/CBP-dependent gene regulation: A shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium, 2003, 34(4-5), 425-430.
[http://dx.doi.org/10.1016/S0143-4160(03)00140-4] [PMID: 12909086]
[206]
Benito, E.; Barco, A. CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci., 2010, 33(5), 230-240.
[http://dx.doi.org/10.1016/j.tins.2010.02.001] [PMID: 20223527]
[207]
Lu, M.C.; Lee, I.T.; Hong, L.Z.; Ben-Arie, E.; Lin, Y.H.; Lin, W.T.; Kao, P.Y.; Yang, M.D.; Chan, Y.C. Coffeeberry activates the CaMKII/CREB/BDNF pathway, normalizes autophagy and apoptosis signaling in nonalcoholic fatty liver rodent model. Nutrients, 2021, 13(10), 3652.
[http://dx.doi.org/10.3390/nu13103652] [PMID: 34684653]
[208]
von Bohlen und Halbach. O.; von Bohlen und Halbach, V. BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res., 2018, 373(3), 729-741.
[http://dx.doi.org/10.1007/s00441-017-2782-x] [PMID: 29450725]
[209]
Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci., 2020, 21(20), 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[210]
Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell, 2022, 185(1), 62-76.
[http://dx.doi.org/10.1016/j.cell.2021.12.003] [PMID: 34963057]
[211]
Wang, J.; Niu, Y.; Tao, H.; Xue, M.; Wan, C. Knockdown of lncRNA TUG1 inhibits hippocampal neuronal apoptosis and participates in aerobic exercise-alleviated vascular cognitive impairment. Biol. Res., 2020, 53(1), 53.
[http://dx.doi.org/10.1186/s40659-020-00320-4] [PMID: 33213523]
[212]
Scott, H.L.; Tamagnini, F.; Narduzzo, K.E.; Howarth, J.L.; Lee, Y.B.; Wong, L.F.; Brown, M.W.; Warburton, E.C.; Bashir, Z.I.; Uney, J.B. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur. J. Neurosci., 2012, 36(7), 2941-2948.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08220.x] [PMID: 22845676]
[213]
Fortin, D.A.; Srivastava, T.; Soderling, T.R. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist, 2012, 18(4), 326-341.
[http://dx.doi.org/10.1177/1073858411407206] [PMID: 21670426]
[214]
Wang, J.Q.; Guo, M.L.; Jin, D.Z.; Xue, B.; Fibuch, E.E.; Mao, L.M. Roles of subunit phosphorylation in regulating glutamate receptor function. Eur. J. Pharmacol., 2014, 728, 183-187.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.019] [PMID: 24291102]
[215]
Ribeiro, D.; Petrigna, L.; Pereira, F.C.; Muscella, A.; Bianco, A.; Tavares, P. The impact of physical exercise on the circulating levels of BDNF and NT 4/5: A review. Int. J. Mol. Sci., 2021, 22(16), 8814.
[http://dx.doi.org/10.3390/ijms22168814] [PMID: 34445512]
[216]
Nicoletti, V.G.; Pajer, K.; Calcagno, D.; Pajenda, G.; Nógrádi, A. The role of metals in the neuroregenerative action of BDNF, GDNF, NGF and other neurotrophic factors. Biomolecules, 2022, 12(8), 1015.
[http://dx.doi.org/10.3390/biom12081015] [PMID: 35892326]
[217]
Nordvall, G.; Forsell, P.; Sandin, J. Neurotrophin-targeted therapeutics: A gateway to cognition and more? Drug Discov. Today, 2022, 27(10), 103318.
[http://dx.doi.org/10.1016/j.drudis.2022.07.003] [PMID: 35850433]
[218]
Wang, X.X.; Zhang, B.; Xia, R.; Jia, Q.Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(18), 9601-9614.
[PMID: 33015803]
[219]
Wang, P.; Guan, Y.F.; Du, H.; Zhai, Q.W.; Su, D.F.; Miao, C.Y. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 2012, 8(1), 77-87.
[http://dx.doi.org/10.4161/auto.8.1.18274] [PMID: 22113203]
[220]
Zhou, H.; Wang, J.; Jiang, J.; Stavrovskaya, I.G.; Li, M.; Li, W.; Wu, Q.; Zhang, X.; Luo, C.; Zhou, S.; Sirianni, A.C.; Sarkar, S.; Kristal, B.S.; Friedlander, R.M.; Wang, X. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J. Neurosci., 2014, 34(8), 2967-2978.
[http://dx.doi.org/10.1523/JNEUROSCI.1948-13.2014] [PMID: 24553937]
[221]
Azedi, F.; Tavakol, S.; Ketabforoush, A.H.M.E.; Khazaei, G.; Bakhtazad, A.; Mousavizadeh, K.; Joghataei, M.T. Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci., 2022, 307, 120870.
[http://dx.doi.org/10.1016/j.lfs.2022.120870] [PMID: 35948118]
[222]
Lan, T.; Xu, Y.; Li, S.; Li, N.; Zhang, S.; Zhu, H. Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway. BMC Pharmacol. Toxicol., 2022, 23(1), 82.
[http://dx.doi.org/10.1186/s40360-022-00620-3] [PMID: 36280856]
[223]
Lu, X.; Zhang, J.; Ding, Y.; Wu, J.; Chen, G. Novel therapeutic strategies for ischemic stroke: Recent insights into autophagy. Oxid. Med. Cell. Longev., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/3450207] [PMID: 35720192]
[224]
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741-752.
[http://dx.doi.org/10.1038/nrm2239] [PMID: 17717517]
[225]
Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci., 2012, 8(9), 1254-1266.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[226]
Allan, S.M.; Rothwell, N.J. Cytokines and acute neurodegeneration. Nat. Rev. Neurosci., 2001, 2(10), 734-744.
[http://dx.doi.org/10.1038/35094583] [PMID: 11584311]
[227]
Smith, C.J.; Emsley, H.C.A.; Gavin, C.M.; Georgiou, R.F.; Vail, A.; Barberan, E.M.; del Zoppo, G.J.; Hallenbeck, J.M.; Rothwell, N.J.; Hopkins, S.J.; Tyrrell, P.J. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol., 2004, 4(1), 2.
[http://dx.doi.org/10.1186/1471-2377-4-2] [PMID: 14725719]
[228]
Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[229]
Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol., 2015, 97(4), 463-472.
[http://dx.doi.org/10.1016/j.bcp.2015.07.032] [PMID: 26232730]
[230]
Albert-Gascó, H.; Ros-Bernal, F.; Castillo-Gómez, E.; Olucha-Bordonau, F.E. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes. Int. J. Mol. Sci., 2020, 21(12), 4471.
[http://dx.doi.org/10.3390/ijms21124471] [PMID: 32586047]
[231]
Rivera, A.; Vanzulli, I.; Butt, A. A central role for ATP signalling in glial interactions in the CNS. Curr. Drug Targets, 2016, 17(16), 1829-1833.
[http://dx.doi.org/10.2174/1389450117666160711154529] [PMID: 27400972]
[232]
Huang, C.; Chi, X.; Li, R.; Hu, X.; Xu, H.; Li, J.; Zhou, D. Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus. J. Mol. Neurosci., 2017, 63(2), 173-184.
[http://dx.doi.org/10.1007/s12031-017-0968-z] [PMID: 28856625]
[233]
Chin, Y.; Kishi, M.; Sekino, M.; Nakajo, F.; Abe, Y.; Terazono, Y.; Hiroyuki, O.; Kato, F.; Koizumi, S.; Gachet, C.; Hisatsune, T. Involvement of glial P2Y1 receptors in cognitive deficit after focal cerebral stroke in a rodent model. J. Neuroinflammation, 2013, 10(1), 860.
[http://dx.doi.org/10.1186/1742-2094-10-95] [PMID: 23890321]
[234]
Nishibori, M.; Wang, D.; Ousaka, D.; Wake, H. High mobility group box-1 and blood-brain barrier disruption. Cells, 2020, 9(12), 2650.
[http://dx.doi.org/10.3390/cells9122650] [PMID: 33321691]
[235]
Sulhan, S.; Lyon, K.A.; Shapiro, L.A.; Huang, J.H. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J. Neurosci. Res., 2020, 98(1), 19-28.
[http://dx.doi.org/10.1002/jnr.24331] [PMID: 30259550]
[236]
Jin, R.; Yang, G.; Li, G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol. Dis., 2010, 38(3), 376-385.
[http://dx.doi.org/10.1016/j.nbd.2010.03.008] [PMID: 20302940]
[237]
Chazelas, P.; Steichen, C.; Favreau, F.; Trouillas, P.; Hannaert, P.; Thuillier, R.; Giraud, S.; Hauet, T.; Guillard, J. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives. Int. J. Mol. Sci., 2021, 22(5), 2366.
[http://dx.doi.org/10.3390/ijms22052366] [PMID: 33673423]
[238]
Orellana-Urzúa, S.; Rojas, I.; Líbano, L.; Rodrigo, R. Pathophysiology of ischemic stroke: Role of oxidative stress. Curr. Pharm. Des., 2020, 26(34), 4246-4260.
[http://dx.doi.org/10.2174/1381612826666200708133912] [PMID: 32640953]
[239]
Lushchak, V.I.; Lushchak, O. Interplay between reactive oxygen and nitrogen species in living organisms. Chem. Biol. Interact., 2021, 349, 109680.
[http://dx.doi.org/10.1016/j.cbi.2021.109680] [PMID: 34606757]
[240]
Motavaf, M.; Piao, X. Oligodendrocyte development and implication in perinatal white matter injury. Front. Cell. Neurosci., 2021, 15, 764486.
[http://dx.doi.org/10.3389/fncel.2021.764486] [PMID: 34803612]
[241]
Xin, W.; Chan, J.R. Myelin plasticity: Sculpting circuits in learning and memory. Nat. Rev. Neurosci., 2020, 21(12), 682-694.
[http://dx.doi.org/10.1038/s41583-020-00379-8] [PMID: 33046886]
[242]
Nave, K.A. Myelination and support of axonal integrity by glia. Nature, 2010, 468(7321), 244-252.
[http://dx.doi.org/10.1038/nature09614] [PMID: 21068833]
[243]
Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol., 2016, 15(8), 869-881.
[http://dx.doi.org/10.1016/S1474-4422(16)00114-9] [PMID: 27180033]
[244]
Di, Z.; Guo, Q.; Zhang, Q. Neuroprotective effect of moxibustion on cerebral ischemia/reperfusion injury in rats by downregulating NR2B expression. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/5370214] [PMID: 34733340]
[245]
Shipton, O.A.; Paulsen, O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1633), 20130163.
[http://dx.doi.org/10.1098/rstb.2013.0163] [PMID: 24298164]
[246]
Cheng, M.; Wu, X.; Wang, F.; Tan, B.; Hu, J. Electro-acupuncture inhibits p66Shc-mediated oxidative stress to facilitate functional recovery after spinal cord injury. J. Mol. Neurosci., 2020, 70(12), 2031-2040.
[http://dx.doi.org/10.1007/s12031-020-01609-5] [PMID: 32488847]
[247]
Xu, M.S.; Yin, L.M.; Cheng, A.F.; Zhang, Y.J.; Zhang, D.; Tao, M.M.; Deng, Y.Y.; Ge, L.B.; Shan, C.L. Cerebral ischemia-reperfusion is associated with upregulation of cofilin-1 in the motor cortex. Front. Cell Dev. Biol., 2021, 9, 634347.
[http://dx.doi.org/10.3389/fcell.2021.634347] [PMID: 33777942]
[248]
Mirzaei, G.; Adeli, H. Resting state functional magnetic resonance imaging processing techniques in stroke studies. Rev. Neurosci., 2016, 27(8), 871-885.
[http://dx.doi.org/10.1515/revneuro-2016-0052] [PMID: 27845889]
[249]
Jayaweera, H.K.; Lagopoulos, J.; Duffy, S.L.; Lewis, S.J.G.; Hermens, D.F.; Norrie, L.; Hickie, I.B.; Naismith, S.L. Spectroscopic markers of memory impairment, symptom severity and age of onset in older people with lifetime depression: Discrete roles of N-acetyl aspartate and glutamate. J. Affect. Disord., 2015, 183, 31-38.
[http://dx.doi.org/10.1016/j.jad.2015.04.023] [PMID: 26000754]
[250]
Bekdash, R.A. Neuroprotective effects of choline and other methyl donors. Nutrients, 2019, 11(12), 2995.
[http://dx.doi.org/10.3390/nu11122995] [PMID: 31817768]
[251]
Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci., 2017, 55(2), 182-196.
[http://dx.doi.org/10.1093/chromsci/bmw167] [PMID: 28087761]
[252]
Hosp, F.; Mann, M. A primer on concepts and applications of proteomics in neuroscience. Neuron, 2017, 96(3), 558-571.
[http://dx.doi.org/10.1016/j.neuron.2017.09.025] [PMID: 29096073]
[253]
Akalın, P.K. Introduction to bioinformatics. Mol. Nutr. Food Res., 2006, 50(7), 610-619.
[http://dx.doi.org/10.1002/mnfr.200500273] [PMID: 16810733]
[254]
Foulkes, A.C.; Watson, D.S.; Griffiths, C.E.M.; Warren, R.B.; Huber, W.; Barnes, M.R. Research techniques made simple: Bioinformatics for genome-scale biology. J. Invest. Dermatol., 2017, 137(9), e163-e168.
[http://dx.doi.org/10.1016/j.jid.2017.07.095] [PMID: 28843296]
[255]
Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; Song, X.J.; Stevens, B.; Sullivan, M.D.; Tutelman, P.R.; Ushida, T.; Vader, K. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161(9), 1976-1982.
[http://dx.doi.org/10.1097/j.pain.0000000000001939] [PMID: 32694387]
[256]
Zhou, Y.Q.; Mei, W.; Tian, X.B.; Tian, Y.K.; Liu, D.Q.; Ye, D.W. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol. Ther., 2021, 225, 107846.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107846] [PMID: 33819559]
[257]
Cao, S.; Fisher, D.W.; Yu, T.; Dong, H. The link between chronic pain and Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 204.
[http://dx.doi.org/10.1186/s12974-019-1608-z] [PMID: 31694670]
[258]
Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: an update on burden, best practices, and new advances. Lancet, 2021, 397(10289), 2082-2097.
[http://dx.doi.org/10.1016/S0140-6736(21)00393-7] [PMID: 34062143]
[259]
Kankowski, S.; Grothe, C.; Haastert-Talini, K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur. J. Neurosci., 2021, 54(2), 4475-4496.
[http://dx.doi.org/10.1111/ejn.15266] [PMID: 33942412]
[260]
An, J.X.; He, Y.; Qian, X.Y.; Wu, J.P.; Xie, Y.K.; Guo, Q.L.; Williams, J.P.; Cope, D.K. A new animal model of trigeminal neuralgia produced by administration of cobra venom to the infraorbital nerve in the rat. Anesth. Analg., 2011, 113(3), 652-656.
[http://dx.doi.org/10.1213/ANE.0b013e3182245add] [PMID: 21778333]
[261]
Bushnell, M.C.; Čeko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci., 2013, 14(7), 502-511.
[http://dx.doi.org/10.1038/nrn3516] [PMID: 23719569]
[262]
Hylands-White, N.; Duarte, R.V.; Raphael, J.H. An overview of treatment approaches for chronic pain management. Rheumatol. Int., 2017, 37(1), 29-42.
[http://dx.doi.org/10.1007/s00296-016-3481-8] [PMID: 27107994]
[263]
Vickers, A.J.; Vertosick, E.A.; Lewith, G.; MacPherson, H.; Foster, N.E.; Sherman, K.J.; Irnich, D.; Witt, C.M.; Linde, K. Acupuncture for chronic pain: Update of an individual patient data meta-analysis. J. Pain, 2018, 19(5), 455-474.
[http://dx.doi.org/10.1016/j.jpain.2017.11.005] [PMID: 29198932]
[264]
Gong, D.; Yu, X.; Jiang, M.; Li, C.; Wang, Z. Differential proteomic analysis of the hippocampus in rats with neuropathic pain to investigate the use of electroacupuncture in relieving mechanical allodynia and cognitive decline. Neural Plast., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/5597163] [PMID: 34394341]
[265]
Zhang, J.F.; Williams, J.P.; Shi, W.R.; Qian, X.Y.; Zhao, Q.N.; Lu, G.F.; An, J.X. Potential molecular mechanisms of electroacupuncture with spatial learning and memory impairment induced by chronic pain on a rat model. Pain Physician, 2022, 25(2), E271-E283.
[PMID: 35322982]
[266]
Chambers, D.C.; Carew, A.M.; Lukowski, S.W.; Powell, J.E. Transcriptomics and single-cell RNA-sequencing. Respirology, 2019, 24(1), 29-36.
[http://dx.doi.org/10.1111/resp.13412] [PMID: 30264869]
[267]
Ifrim Chen, F.; Antochi, A.D.; Barbilian, A.G. Acupuncture and the retrospect of its modern research. Rom. J. Morphol. Embryol., 2019, 60(2), 411-418.
[PMID: 31658313]
[268]
Zhou, W.; Benharash, P. Effects and mechanisms of acupuncture based on the principle of meridians. J. Acupunct. Meridian Stud., 2014, 7(4), 190-193.
[http://dx.doi.org/10.1016/j.jams.2014.02.007] [PMID: 25151452]
[269]
Chen, Y.; Lei, Y.; Mo, L.Q.; Li, J.; Wang, M.H.; Wei, J.C.; Zhou, J. Electroacupuncture pretreatment with different waveforms prevents brain injury in rats subjected to cecal ligation and puncture via inhibiting microglial activation, and attenuating inflammation, oxidative stress and apoptosis. Brain Res. Bull., 2016, 127, 248-259.
[http://dx.doi.org/10.1016/j.brainresbull.2016.10.009] [PMID: 27771396]
[270]
Zhang, R.; Lao, L.; Ren, K.; Berman, B.M. Mechanisms of acupuncture-electroacupuncture on persistent pain. Anesthesiology, 2014, 120(2), 482-503.
[http://dx.doi.org/10.1097/ALN.0000000000000101] [PMID: 24322588]
[271]
Chou, P.; Chu, H.; Lin, J.G. Effects of electroacupuncture treatment on impaired cognition and quality of life in Taiwanese stroke patients. J. Altern. Complement. Med., 2009, 15(10), 1067-1073.
[PMID: 20050300]
[272]
Teoh, A.Y.B.; Chong, C.C.N.; Leung, W.W.; Chan, S.K.C.; Tse, Y.K.; Ng, E.K.W.; Lai, P.B.S.; Wu, J.C.Y.; Lau, J.Y.W. Electroacupuncture-reduced sedative and analgesic requirements for diagnostic EUS: a prospective, randomized, double-blinded, sham-controlled study. Gastrointest. Endosc., 2018, 87(2), 476-485.
[http://dx.doi.org/10.1016/j.gie.2017.07.029] [PMID: 28750840]
[273]
Xu, S.; Yu, L.; Luo, X.; Wang, M.; Chen, G.; Zhang, Q.; Liu, W.; Zhou, Z.; Song, J.; Jing, H.; Huang, G.; Liang, F.; Wang, H.; Wang, W. Manual acupuncture versus sham acupuncture and usual care for prophylaxis of episodic migraine without aura: multicentre, randomised clinical trial. BMJ, 2020, 368, m697.
[http://dx.doi.org/10.1136/bmj.m697] [PMID: 32213509]
[274]
Sun, Y.; Liu, Y.; Liu, B.; Zhou, K.; Yue, Z.; Zhang, W.; Fu, W.; Yang, J.; Li, N.; He, L.; Zang, Z.; Su, T.; Fang, J.; Ding, Y.; Qin, Z.; Song, H.; Hu, H.; Zhao, H.; Mo, Q.; Zhou, J.; Wu, J.; Liu, X.; Wang, W.; Pang, R.; Chen, H.; Wang, X.; Liu, Z. Efficacy of acupuncture for chronic prostatitis/chronic pelvic pain syndrome. Ann. Intern. Med., 2021, 174(10), 1357-1366.
[http://dx.doi.org/10.7326/M21-1814] [PMID: 34399062]
[275]
Yang, J.W.; Wang, L.Q.; Zou, X.; Yan, S.Y.; Wang, Y.; Zhao, J.J.; Tu, J.F.; Wang, J.; Shi, G.X.; Hu, H.; Zhou, W.; Du, Y.; Liu, C.Z. Effect of acupuncture for postprandial distress syndrome. Ann. Intern. Med., 2020, 172(12), 777-785.
[http://dx.doi.org/10.7326/M19-2880] [PMID: 32422066]
[276]
Tu, J.F.; Yang, J.W.; Shi, G.X.; Yu, Z.S.; Li, J.L.; Lin, L.L.; Du, Y.Z.; Yu, X.G.; Hu, H.; Liu, Z.S.; Jia, C.S.; Wang, L.Q.; Zhao, J.J.; Wang, J.; Wang, T.; Wang, Y.; Wang, T.Q.; Zhang, N.; Zou, X.; Wang, Y.; Shao, J.K.; Liu, C.Z. Efficacy of intensive acupuncture versus sham acupuncture in knee osteoarthritis: A randomized controlled trial. Arthritis Rheumatol., 2021, 73(3), 448-458.
[http://dx.doi.org/10.1002/art.41584] [PMID: 33174383]
[277]
Wang, T.; Liu, J.; Luo, X.; Hu, L.; Lu, H. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacol. Ther., 2021, 224, 107824.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107824] [PMID: 33667524]
[278]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[279]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[280]
Fang, S.; Dong, L.; Liu, L.; Guo, J.; Zhao, L.; Zhang, J.; Bu, D.; Liu, X.; Huo, P.; Cao, W.; Dong, Q.; Wu, J.; Zeng, X.; Wu, Y.; Zhao, Y. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res., 2021, 49(D1), D1197-D1206.
[http://dx.doi.org/10.1093/nar/gkaa1063] [PMID: 33264402]
[281]
Zeng, Q.; Li, L.; Siu, W.; Jin, Y.; Cao, M.; Li, W.; Chen, J.; Cong, W.; Ma, M.; Chen, K.; Wu, Z. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease. Biomed. Pharmacother., 2019, 120, 109370.
[http://dx.doi.org/10.1016/j.biopha.2019.109370] [PMID: 31563815]
[282]
Wang, M.; Chen, L.; Liu, D.; Chen, H.; Tang, D.D.; Zhao, Y.Y. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem. Biol. Interact., 2017, 273, 133-141.
[http://dx.doi.org/10.1016/j.cbi.2017.06.011] [PMID: 28619388]
[283]
Garrido-Suárez, B.B.; Garrido, G.; Márquez, L.; Martínez, I.; Hernández, I.; Merino, N.; Luque, Y.; Delgado, R.; Bosch, F. Pre-emptive anti-hyperalgesic effect of electroacupuncture in carrageenan-induced inflammation: Role of nitric oxide. Brain Res. Bull., 2009, 79(6), 339-344.
[http://dx.doi.org/10.1016/j.brainresbull.2009.04.014] [PMID: 19410637]
[284]
Yen, L.T.; Hsieh, C.L.; Hsu, H.C.; Lin, Y.W. Preventing the induction of acid saline-induced fibromyalgia pain in mice by electroacupuncture or APETx2 injection. Acupunct. Med., 2020, 38(3), 188-193.
[http://dx.doi.org/10.1136/acupmed-2017-011457] [PMID: 31986902]
[285]
Wang, C.; Liang, X.; Yu, Y.; Li, Y.; Wen, X.; Liu, M. Electroacupuncture pretreatment alleviates myocardial injury through regulating mitochondrial function. Eur. J. Med. Res., 2020, 25(1), 29.
[http://dx.doi.org/10.1186/s40001-020-00431-4] [PMID: 32738910]
[286]
Acosta-Galeana, I.; Hernández-Martínez, R.; Reyes-Cruz, T.; Chiquete, E.; Aceves-Buendia, J.J. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front. Mol. Neurosci., 2023, 16, 1193636.
[http://dx.doi.org/10.3389/fnmol.2023.1193636] [PMID: 37475885]
[287]
Gebauer, F.; Schwarzl, T.; Valcárcel, J.; Hentze, M.W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet., 2021, 22(3), 185-198.
[http://dx.doi.org/10.1038/s41576-020-00302-y] [PMID: 33235359]
[288]
Varesi, A.; Campagnoli, L.I.M.; Barbieri, A.; Rossi, L.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; Marchesi, N.; Pascale, A. RNA binding proteins in senescence: A potential common linker for age-related diseases? Ageing Res. Rev., 2023, 88, 101958.
[http://dx.doi.org/10.1016/j.arr.2023.101958] [PMID: 37211318]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy