Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Sia-m7G: Predicting m7G Sites through the Siamese Neural Network with an Attention Mechanism

Author(s): Jia Zheng* and Yetong Zhou

Volume 19, Issue 10, 2024

Published on: 07 February, 2024

Page: [953 - 962] Pages: 10

DOI: 10.2174/0115748936285540240116065719

Price: $65

Abstract

Background: The chemical modification of RNA plays a crucial role in many biological processes. N7-methylguanosine (m7G), being one of the most important epigenetic modifications, plays an important role in gene expression, processing metabolism, and protein synthesis. Detecting the exact location of m7G sites in the transcriptome is key to understanding their relevant mechanism in gene expression. On the basis of experimentally validated data, several machine learning or deep learning tools have been designed to identify internal m7G sites and have shown advantages over traditional experimental methods in terms of speed, cost-effectiveness and robustness. Aims: In this study, we aim to develop a computational model to help predict the exact location of m7G sites in humans.

Objective: Simple and advanced encoding methods and deep learning networks are designed to achieve excellent m7G prediction efficiently.

Methods: Three types of feature extractions and six classification algorithms were tested to identify m7G sites. Our final model, named Sia-m7G, adopts one-hot encoding and a delicate Siamese neural network with an attention mechanism. In addition, multiple 10-fold cross-validation tests were conducted to evaluate our predictor.

Results: Sia-m7G achieved the highest sensitivity, specificity and accuracy on 10-fold cross validation tests compared with the other six m7G predictors. Nucleotide preference and model visualization analyses were conducted to strengthen the interpretability of Sia-m7G and provide a further understanding of m7G site fragments in genomic sequences.

Conclusion: Sia-m7G has significant advantages over other classifiers and predictors, which proves the superiority of the Siamese neural network algorithm in identifying m7G sites.

[1]
Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science 2018; 361(6409): 1346-9.
[http://dx.doi.org/10.1126/science.aau1646] [PMID: 30262497]
[2]
Komal S, Zhang LR, Han SN. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother 2021; 137: 111376.
[http://dx.doi.org/10.1016/j.biopha.2021.111376] [PMID: 33588266]
[3]
Furuichi Y. Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad, Ser B, Phys Biol Sci 2015; 91(8): 394-409.
[http://dx.doi.org/10.2183/pjab.91.394] [PMID: 26460318]
[4]
Tomikawa C. 7-Methylguanosine modifications in Transfer RNA (tRNA). Int J Mol Sci 2018; 19(12): 4080.
[http://dx.doi.org/10.3390/ijms19124080] [PMID: 30562954]
[5]
Lin S, Liu Q, Lelyveld VS, Choe J, Szostak JW, Gregory RI. Mettl1/Wdr4-Mediated m7G tRNA methylome is required for Normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 2018; 71(2): 244-255.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.06.001] [PMID: 29983320]
[6]
Marchand V, Ayadi L, Ernst FGM, et al. AlkAniline‐Seq: Profiling of m 7 G and m 3 C RNA modifications at single nucleotide resolution. Angew Chem Int Ed 2018; 57(51): 16785-90.
[http://dx.doi.org/10.1002/anie.201810946] [PMID: 30370969]
[7]
Zhang LS, Liu C, Ma H, et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol Cell 2019; 74(6): 1304-1316.e8.
[http://dx.doi.org/10.1016/j.molcel.2019.03.036] [PMID: 31031084]
[8]
Malbec L, Zhang T, Chen YS, et al. Dynamic methylome of internal mRNA N7-methylguanosine and its regulatory role in translation. Cell Res 2019; 29(11): 927-41.
[http://dx.doi.org/10.1038/s41422-019-0230-z] [PMID: 31520064]
[9]
Luo X, Chi W, Deng M. Deepprune: Learning efficient and interpretable convolutional networks through weight pruning for predicting DNA-protein binding. Front Genet 2019; 10: 1145.
[http://dx.doi.org/10.3389/fgene.2019.01145] [PMID: 31824562]
[10]
Zhang Y, Qiao S, Ji S, Li Y. DeepSite: Bidirectional LSTM and CNN models for predicting DNA-protein binding. Int J Mach Learn Cybern 2020; 11(4): 841-51.
[http://dx.doi.org/10.1007/s13042-019-00990-x]
[11]
Chen W, Feng P, Song X, Lv H, Lin H. iRNA-m7G: Identifying N7-methylguanosine sites by fusing multiple features. Mol Ther Nucleic Acids 2019; 18: 269-74.
[http://dx.doi.org/10.1016/j.omtn.2019.08.022] [PMID: 31581051]
[12]
Yang YH, Ma C, Wang JS, et al. Prediction of N7-methylguanosine sites in human RNA based on optimal sequence features. Genomics 2020; 112(6): 4342-7.
[http://dx.doi.org/10.1016/j.ygeno.2020.07.035] [PMID: 32721444]
[13]
Song B, Tang Y, Chen K, et al. m7GHub: Deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine (m7G) sites in human. Bioinformatics 2020; 36(11): 3528-36.
[http://dx.doi.org/10.1093/bioinformatics/btaa178] [PMID: 32163126]
[14]
Zou H, Yin Z. m7G-DPP: Identifying N7-methylguanosine sites based on dinucleotide physicochemical properties of RNA. Biophys Chem 2021; 279: 106697.
[http://dx.doi.org/10.1016/j.bpc.2021.106697] [PMID: 34628276]
[15]
Liu X, Liu Z, Mao X, Li Q. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties. Anal Biochem 2020; 609: 113905.
[http://dx.doi.org/10.1016/j.ab.2020.113905] [PMID: 32805275]
[16]
Dai C, Feng P, Cui L, Su R, Chen W, Wei L. Iterative feature representation algorithm to improve the predictive performance of N7-methylguanosine sites. Brief Bioinform 2021; 22(4): bbaa278.
[http://dx.doi.org/10.1093/bib/bbaa278]
[17]
Bi Y, Xiang D, Ge Z, Li F, Jia C, Song J. An interpretable prediction model for identifying N7-methylguanosine sites based on XGBoost and SHAP. Mol Ther Nucleic Acids 2020; 22: 362-72.
[http://dx.doi.org/10.1016/j.omtn.2020.08.022] [PMID: 33230441]
[18]
Zhang L, Qin X, Liu M, Liu G, Ren Y. BERT-m7G: A transformer architecture based on BERT and stacking ensemble to identify RNA N7-methylguanosine sites from sequence information. Comput Math Methods Med 2021; 2021: 7764764.
[19]
Shoombuatong W, Basith S, Pitti T, Lee G, Manavalan B. THRONE: A new approach for accurate prediction of human RNA N7-methylguanosine sites. J Mol Biol 2022; 434(11): 167549.
[http://dx.doi.org/10.1016/j.jmb.2022.167549] [PMID: 35662472]
[20]
Zhang Y, Yu L, Jing R, Han B, Luo J. Fast and efficient design of deep neural networks for predicting N 7 -methylguanosine sites using autobioseqpy. ACS Omega 2023; 8(22): 19728-40.
[http://dx.doi.org/10.1021/acsomega.3c01371] [PMID: 37305295]
[21]
Ning Q, Sheng M. m7G-DLSTM: Intergrating directional Double-LSTM and fully connected network for RNA N7-methlguanosine sites prediction in human. Chemom Intell Lab Syst 2021; 217: 104398.
[http://dx.doi.org/10.1016/j.chemolab.2021.104398]
[22]
Tahir M, Hayat M, Khan R, Chong KT. An effective deep learning-based architecture for prediction of N7-methylguanosine sites in health systems. Electronics 2022; 11(12): 1917.
[http://dx.doi.org/10.3390/electronics11121917]
[23]
Chen Z, Zhao P, Li F, et al. iLearn: An integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief Bioinform 2020; 21(3): 1047-57.
[http://dx.doi.org/10.1093/bib/bbz041] [PMID: 31067315]
[24]
Chen W, Tang H, Ye J, Lin H, Chou K-C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol Ther Nucleic Acids 2016; 5(7): e332.
[PMID: 28427142]
[25]
Wu H, Pan X, Yang Y, Shen HB. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Brief Bioinform 2021; 22(6): bbab279.
[http://dx.doi.org/10.1093/bib/bbab279] [PMID: 34297803]
[26]
Vacic V, Iakoucheva LM, Radivojac P. Two Sample Logo: A graphical representation of the differences between two sets of sequence alignments. Bioinformatics 2006; 22(12): 1536-7.
[http://dx.doi.org/10.1093/bioinformatics/btl151] [PMID: 16632492]
[27]
Luo X, Tu X, Ding Y, Gao G, Deng M. Expectation pooling: An effective and interpretable pooling method for predicting DNA–protein binding. Bioinformatics 2020; 36(5): 1405-12.
[http://dx.doi.org/10.1093/bioinformatics/btz768] [PMID: 31598637]
[28]
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W. Eds. LightGBM: A highly efficient gradient boosting decision tree. 31st Annual Conference on Neural Information Processing Systems (NIPS). 04-09 Dec; Long Beach, CA, USA. 2017.
[29]
Tang Z, Li Z, Hou T, et al. SiGra: Single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun 2023; 14(1): 5618.
[http://dx.doi.org/10.1038/s41467-023-41437-w] [PMID: 37699885]
[30]
Tang Z, Liu X, Li Z, et al. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24(6): bbad338.
[http://dx.doi.org/10.1093/bib/bbad338] [PMID: 37798249]
[31]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN. Eds. Attention is all you need. 31st Annual Conference on Neural Information Processing Systems (NIPS). 04-09 Dec; Long Beach, CA, USA. 2017.
[32]
van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res 2008; 9: 2579-605.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy