Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Structure-based Screening of Potential Anticancer Bioactive Natural Constituents from African Natural Products

Author(s): Khairedine Kraim*, Atidel Boudjedir, Youcef Saihi, Fatima Zohra Oueld Chikh, Yassira Slatnia and Fouad Ferkous

Volume 21, Issue 16, 2024

Published on: 06 February, 2024

Page: [3479 - 3492] Pages: 14

DOI: 10.2174/0115701808280302240117055932

Price: $65

Abstract

Introduction: Inhibitors of topoisomerases, essential regulators of cancer development, are promising as cancer treatments. These enzymes regulate DNA topology and eliminate topological constraints during various biological processes, including replication, transcription, and recombination. Nature has continually offered scientists pathways to explore the development of new drugs. Indeed, since ancient times, various plant extracts have been utilized in treating multiple pathologies.

Objective: It’s intriguing to diversify the therapeutic classes of natural topoisomerase 1 inhibitors. We aimed to explore the relationship between the toxicity of certain medicinal plants in North Africa and their anti-topoisomerase 1 enzyme activity. This investigation aims to discover potentially valuable compounds for fighting cancer by inhibiting the Topo1 enzyme, enriching the anticancer therapeutic class.

Methods: This study has conducted a virtual screening of the African Natural Products Database to identify new scaffolds as topoisomerase 1 inhibitors. Molecular docking as a structure-based drug design approach was selected as one of the best approaches, and the complex code ID: 1K4T was used for this purpose.

Results and Discussion: The molecular docking of more than 5790 natural products extracted from this database was docked into the binding site of the above-cited complex using the Modlock optimizer and Moldock score as search and scoring function algorithms, respectively. The top-ranked compounds have been assessed, analyzed, and compared to Topotecan and Irinotecan as reference ligands and drugs.

Conclusion: Consequently, the seven natural products have shown a strong affinity to topoisomerase 1 and DNA. They establish a clear link between topoisomerase 1 inhibition and the anticancer activity of their corresponding plant extracts. Therefore, these hits are promising and serve as a base for further development of new topoisomerase 1 inhibitors.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Stewart, L.; Ireton, G.C.; Champoux, J.J. Reconstitution of human topoisomerase i by fragment complementation11edited by P. E. Wright In: J. Mol. Biol;; , 1997; 269, pp. (3)355-372.
[http://dx.doi.org/10.1006/jmbi.1997.1056]
[3]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[4]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[5]
Pommier, Y.; Nussenzweig, A.; Takeda, S.; Austin, C. Human topoisomerases and their roles in genome stability and organization. Nat. Rev. Mol. Cell Biol., 2022, 23(6), 407-427.
[http://dx.doi.org/10.1038/s41580-022-00452-3] [PMID: 35228717]
[6]
Bjornsti, M.A.; Kaufmann, S.H. Topoisomerases and cancer chemotherapy: Recent advances and unanswered questions. F1000 Res., 2019, 8, 1704.
[http://dx.doi.org/10.12688/f1000research.20201.1] [PMID: 31602296]
[7]
Pommier, Y.; Sun, Y.; Huang, S.N.; Nitiss, J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 703-721.
[http://dx.doi.org/10.1038/nrm.2016.111] [PMID: 27649880]
[8]
Santella, R.M.; Gammon, M.; Terry, M.; Senie, R.; Shen, J.; Kennedy, D.; Agrawal, M.; Faraglia, B.; Zhang, F. DNA adducts, DNA repair genotype/phenotype and cancer risk. Mutat. Res., 2005, 592(1-2), 29-35.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.001] [PMID: 16023682]
[9]
Schoeffler, A.J.; Berger, J.M. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys., 2008, 41(1), 41-101.
[http://dx.doi.org/10.1017/S003358350800468X] [PMID: 18755053]
[10]
Liu, L.F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 1989, 58(1), 351-375.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.002031] [PMID: 2549853]
[11]
Chillemi, G.; Redinbo, M.; Bruselles, A.; Desideri, A. Role of the linker domain and the 203-214 N-terminal residues in the human topoisomerase I DNA complex dynamics. Biophys. J., 2004, 87(6), 4087-4097.
[http://dx.doi.org/10.1529/biophysj.104.044925] [PMID: 15347588]
[12]
Leppard, J.B.; Champoux, J.J. Human DNA topoisomerase I: Relaxation, roles, and damage control. Chromosoma, 2005, 114(2), 75-85.
[http://dx.doi.org/10.1007/s00412-005-0345-5] [PMID: 15830206]
[13]
Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA topoisomerases. J. Med. Chem., 2017, 60(6), 2169-2192.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00966] [PMID: 28072526]
[14]
Thomas, A.; Pommier, Y. Targeting topoisomerase I in the era of precision medicine. Clin. Cancer Res., 2019, 25(22), 6581-6589.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1089] [PMID: 31227499]
[15]
Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.J.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science, 1998, 279(5356), 1534-1541.
[http://dx.doi.org/10.1126/science.279.5356.1534] [PMID: 9488652]
[16]
Girstun, A.; Kowalska-Loth, B.; Czubaty, A.; Klocek, M.; Staroń, K. Fragment responsible for translocation in the N-terminal domain of human topoisomerase I. Biochem. Biophys. Res. Commun., 2008, 366(1), 250-257.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.131] [PMID: 18054778]
[17]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[18]
Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G.J. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science, 1998, 279(5356), 1504-1513.
[http://dx.doi.org/10.1126/science.279.5356.1504] [PMID: 9488644]
[19]
Krogh, S.; Mortensen, U.H.; Westergaard, O.; Bonven, B.J. Eukaryotic topoisomerase I-DNA interaction is stabilized by helix curvature. Nucleic Acids Res., 1991, 19(6), 1235-1241.
[http://dx.doi.org/10.1093/nar/19.6.1235] [PMID: 1851553]
[20]
Ireton, G.C.; Stewart, L.; Parker, L.H.; Champoux, J.J. Expression of human topoisomerase I with a partial deletion of the linker region yields monomeric and dimeric enzymes that respond differently to camptothecin. J. Biol. Chem., 2000, 275(33), 25820-25830.
[http://dx.doi.org/10.1074/jbc.M002144200] [PMID: 10827183]
[21]
Brodie, A.M.H. Aromatase inhibitors in the treatment of breast cancer. J. Steroid Biochem. Mol. Biol., 1994, 49(4-6), 281-287.
[http://dx.doi.org/10.1016/0960-0760(94)90269-0] [PMID: 8043490]
[22]
Li, C.J.; Averboukh, L.; Pardee, A.B. beta-Lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J. Biol. Chem., 1993, 268(30), 22463-22468.
[http://dx.doi.org/10.1016/S0021-9258(18)41552-9] [PMID: 8226754]
[23]
Zamboni, W.C.; Ramalingam, S.; Friedland, D.M.; Edwards, R.P.; Stoller, R.G.; Strychor, S.; Maruca, L.; Zamboni, B.A.; Belani, C.P.; Ramanathan, R.K. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res., 2009, 15(4), 1466-1472.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1405] [PMID: 19190127]
[24]
Moukharskaya, J.; Verschraegen, C. Topoisomerase 1 inhibitors and cancer therapy. Hematol. Oncol. Clin. North Am., 2012, 26(3), 507-525. [vii].
[http://dx.doi.org/10.1016/j.hoc.2012.03.002] [PMID: 22520977]
[25]
Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J., 2018, 475(2), 373-398.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[26]
Stehlin, J.S.; Giovanella, B.C.; Natelson, E.A.; De Ipolyi, P.D.; Coil, D.; Davis, B.; Wolk, D.; Wallace, P.; Trojacek, A. A study of 9-nitrocamptothecin (RFS-2000) in patients with advanced pancreatic cancer. Int. J. Oncol., 1999, 14(5), 821-831.
[http://dx.doi.org/10.3892/ijo.14.5.821] [PMID: 10200331]
[27]
Lee, J.H.; Lee, J.M.; Kim, J.K.; Ahn, S.K.; Lee, S.J.; Kim, M.Y.; Jew, S.S.; Park, J.G.; Hong, C.I. Antitumor activity of 7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin, CKD602, as a potent DNA topoisomerase I inhibitor. Arch. Pharm. Res., 1998, 21(5), 581-590.
[http://dx.doi.org/10.1007/BF02975379] [PMID: 9875499]
[28]
Takiguchi, S.; Kumazawa, E.; Shimazoe, T.; Tohgo, A.; Kono, A. Antitumor effect of DX-8951, a novel camptothecin analog, on human pancreatic tumor cells and their CPT-11-resistant variants cultured in vitro and xenografted into nude mice. Jpn. J. Cancer Res., 1997, 88(8), 760-769.
[http://dx.doi.org/10.1111/j.1349-7006.1997.tb00448.x] [PMID: 9330608]
[29]
Stewart, L.; Ireton, G.C.; Champoux, J.J. A functional linker in human topoisomerase I is required for maximum sensitivity to camptothecin in a DNA relaxation assay. J. Biol. Chem., 1999, 274(46), 32950-32960.
[http://dx.doi.org/10.1074/jbc.274.46.32950] [PMID: 10551862]
[30]
Loos, W.J.; Kehrer, D.; Brouwer, E.; Verweij, J.; de Bruijn, P.; Hamilton, M.; Gill, S.; Nooter, K.; Stoter, G.; Sparreboom, A. Liposomal lurtotecan (NX211): Determination of total drug levels in human plasma and urine by reversed-phase high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 2000, 738(1), 155-163.
[http://dx.doi.org/10.1016/S0378-4347(99)00513-7] [PMID: 10778937]
[31]
Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem., 2005, 48(7), 2336-2345.
[http://dx.doi.org/10.1021/jm049146p] [PMID: 15801827]
[32]
Mitsui, I.; Kumazawa, E.; Hirota, Y.; Aonuma, M.; Sugimori, M.; Ohsuki, S.; Uoto, K.; Ejima, A.; Terasawa, H.; Sato, K. A new water-soluble camptothecin derivative, DX-8951f, exhibits potent antitumor activity against human tumors in vitro and in vivo. Jpn. J. Cancer Res., 1995, 86(8), 776-782.
[http://dx.doi.org/10.1111/j.1349-7006.1995.tb02468.x] [PMID: 7559102]
[33]
Lavergne, O.; Lesueur-Ginot, L.; Pla Rodas, F.; Kasprzyk, P.G.; Pommier, J.; Demarquay, D.; Prévost, G.; Ulibarri, G.; Rolland, A. Schiano-Liberatore, A.M.; Harnett, J.; Pons, D.; Camara, J.; Bigg, D.C.H. Homocamptothecins: Synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J. Med. Chem., 1998, 41(27), 5410-5419.
[http://dx.doi.org/10.1021/jm980400l] [PMID: 9876111]
[34]
Laco, G.S.; Collins, J.R.; Luke, B.T.; Kroth, H.; Sayer, J.M.; Jerina, D.M.; Pommier, Y. Human topoisomerase I inhibition: Docking camptothecin and derivatives into a structure-based active site model. Biochemistry, 2002, 41(5), 1428-1435.
[http://dx.doi.org/10.1021/bi011774a] [PMID: 11814334]
[35]
Liu, L.F.; Desai, S.D.; Li, T.K.; Mao, Y.; Sun, M.; Sim, S.P. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci., 2000, 922(1), 1-10.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb07020.x] [PMID: 11193884]
[36]
Hertzberg, R.P.; Caranfa, M.J.; Hecht, S.M. On the mechanism of topoisomerase I inhibition by camptothecin: Evidence for binding to an enzyme-DNA complex. Biochemistry, 1989, 28(11), 4629-4638.
[http://dx.doi.org/10.1021/bi00437a018] [PMID: 2548584]
[37]
Pommier, Y.; Topoisomerase, I. Topoisomerase I inhibitors: Camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[38]
Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.M.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s journey from discovery to WHO essential medicine: Fifty years of promise. Eur. J. Med. Chem., 2021, 223, 113639.
[http://dx.doi.org/10.1016/j.ejmech.2021.113639] [PMID: 34175539]
[39]
Nishida, M.; Terabayashi, T.; Matsuoka, S.; Okuma, T.; Adachi, S.; Tomo, T.; Kawano, M.; Tanaka, K.; Tsumura, H.; Anai, H.; Ishizaki, T.; Nishida, Y.; Hanada, K. Mechanism of action of non-camptothecin inhibitor Genz-644282 in topoisomerase I inhibition. Commun. Biol., 2022, 5(1), 982.
[http://dx.doi.org/10.1038/s42003-022-03920-w] [PMID: 36114357]
[40]
Lavergne, O.; Harnett, J.; Rolland, A.; Lanco, C.; Lesueur-Ginot, L.; Demarquay, D.; Huchet, M.; Coulomb, H.; Bigg, D.C.H. BN 80927: A novel homocamptothecin with inhibitory activities on both topoisomerase I and topoisomerase II. Bioorg. Med. Chem. Lett., 1999, 9(17), 2599-2602.
[http://dx.doi.org/10.1016/S0960-894X(99)00428-X] [PMID: 10498216]
[41]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[http://dx.doi.org/10.1016/S0021-9258(17)38654-4] [PMID: 2997227]
[42]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[43]
van Hattum, A.H.; Pinedo, H.M.; Schlüper, H.M.M.; Erkelens, C.A.M.; Tohgo, A.; Boven, E. The activity profile of the hexacyclic camptothecin derivative DX-8951f in experimental human colon cancer and ovarian cancer. Biochem. Pharmacol., 2002, 64(8), 1267-1277.
[http://dx.doi.org/10.1016/S0006-2952(02)01297-2] [PMID: 12234607]
[44]
Demarquay, D.; Huchet, M.; Coulomb, H.; Lesueur-Ginot, L.; Lavergne, O.; Kasprzyk, P.G.; Bailly, C.; Camara, J.; Bigg, D.C.H. The homocamptothecin BN 80915 is a highly potent orally active topoisomerase I poison. Anticancer Drugs, 2001, 12(1), 9-19.
[http://dx.doi.org/10.1097/00001813-200101000-00003] [PMID: 11272292]
[45]
Comeaux, E.Q.; van Waardenburg, R.C.A.M. Tyrosyl-DNA phosphodiesterase I resolves both naturally and chemically induced DNA adducts and its potential as a therapeutic target. Drug Metab. Rev., 2014, 46(4), 494-507.
[http://dx.doi.org/10.3109/03602532.2014.971957] [PMID: 25327705]
[46]
Cardamone, F.; Pizzi, S.; Iacovelli, F.; Falconi, M.; Desideri, A. Virtual screening for the development of dual-inhibitors targeting topoisomerase IB and Tyrosyl-DNA phosphodiesterase 1. Curr. Drug Targets, 2017, 18(5), 544-555.
[http://dx.doi.org/10.2174/1389450116666150727114742] [PMID: 26212266]
[47]
Zhao, X.Z.; Wang, W.; Lountos, G.T.; Kiselev, E.; Tropea, J.E.; Needle, D.; Pommier, Y.; Burke, T.R. Jr Identification of multidentate tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors that simultaneously access the DNA, protein and catalytic-binding sites by oxime diversification. RSC Chem. Biol., 2023, 4(5), 334-343.
[http://dx.doi.org/10.1039/D2CB00230B] [PMID: 37181631]
[48]
Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol., 2021, 18(6), 327-344.
[http://dx.doi.org/10.1038/s41571-021-00470-8] [PMID: 33558752]
[49]
Hu, D.X.; Tang, W.L.; Zhang, Y.; Yang, H.; Wang, W.; Agama, K.; Pommier, Y.; An, L.K. Synthesis of methoxy-, methylenedioxy-, hydroxy-, and halo-substituted benzophenanthridinone derivatives as dna topoisomerase ib (TOP1) and tyrosyl-dna phosphodiesterase 1 (TDP1) Inhibitors and their biological activity for drug-resistant cancer. J. Med. Chem., 2021, 64(11), 7617-7629.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00318] [PMID: 34008967]
[50]
Syed, Y.Y. Sacituzumab govitecan: First approval. Drugs, 2020, 80(10), 1019-1025.
[http://dx.doi.org/10.1007/s40265-020-01337-5] [PMID: 32529410]
[51]
Singh, A.; Kaur, N.; Singh, G.; Sharma, P.; Bedi, P.M.S.; Sharma, S.; Nepali, K. Topoisomerase I and II inhibitors: A patent review. Recent Patents Anticancer Drug Discov., 2016, 11(4), 401-423.
[http://dx.doi.org/10.2174/0929866523666160720095940] [PMID: 27450102]
[52]
Ahmed Seddek, Y.-C. T.-D. Madeira, Christian ; Annamalai, Thirunavukkarasu .; Mederos, Christopher ; Tiwari, Purushottam B. ; Welch, Aaron Z. A yeast-based screening system for differential identification of poisons and suppressors of human topoisomerase I. FBL , 2022, 27(3), 93.
[http://dx.doi.org/10.31083/j.fbl2703093]
[53]
El-Kalyoubi, S.; Elbaramawi, S.S.; Zordok, W.A.; Malebari, A.M.; Safo, M.K.; Ibrahim, T.S.; Taher, E.S. Design and synthesis of ura-cil/thiouracil based quinoline scaffolds as topoisomerases I/II inhibitors for chemotherapy: A new hybrid navigator with DFT calculation. Bioorg. Chem., 2023, 136, 106560.
[http://dx.doi.org/10.1016/j.bioorg.2023.106560] [PMID: 37121108]
[54]
Kaur, M.; Mehta, V.; Arora, S.; Munshi, A.; Singh, S.; Kumar, R. Design, synthesis and biological evaluation of new 5‐(2‐Nitrophenyl)‐1‐aryl‐1 H ‐pyrazoles as topoisomerase inhibitors. ChemistrySelect, 2021, 6(26), 6644-6651.
[http://dx.doi.org/10.1002/slct.202101459]
[55]
Luzzio, M.J.; Besterman, J.M.; Emerson, D.L.; Evans, M.G.; Lackey, K.; Leitner, P.L.; McIntyre, G.; Morton, B.; Myers, P.L.; Peel, M.; Sisco, J.M.; Sternbach, D.D.; Tong, W.Q.; Truesdale, A.; Uehling, D.E.; Vuong, A.; Yates, J. Synthesis and antitumor activity of novel water soluble derivatives of camptothecin as specific inhibitors of topoisomerase I. J. Med. Chem., 1995, 38(3), 395-401.
[http://dx.doi.org/10.1021/jm00003a001] [PMID: 7853331]
[56]
Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392.
[http://dx.doi.org/10.1073/pnas.242259599] [PMID: 12426403]
[57]
Gairola, K.; Gururani, S.; Bahuguna, A.; Garia, V.; Pujari, R.; Dubey, S.K. Natural products targeting cancer stem cells: Implications for cancer chemoprevention and therapeutics. J. Food Biochem., 2021, 45(7), e13772.
[http://dx.doi.org/10.1111/jfbc.13772] [PMID: 34028051]
[58]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9(12), 767-776.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[59]
Liu, X.; Lv, L.; Jiang, C.; Bai, J.; Gao, Y.; Ma, Z.; Jiang, P. A natural product, (S)-10-Hydroxycamptothecin inhibits pseudorabies virus proliferation through DNA damage dependent antiviral innate immunity. Vet. Microbiol., 2022, 265, 109313.
[http://dx.doi.org/10.1016/j.vetmic.2021.109313] [PMID: 34968801]
[60]
Tan, W.; Lu, J.; Huang, M.; Li, Y.; Chen, M.; Wu, G.; Gong, J.; Zhong, Z.; Xu, Z.; Dang, Y.; Guo, J.; Chen, X.; Wang, Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin. Med., 2011, 6(1), 27.
[http://dx.doi.org/10.1186/1749-8546-6-27] [PMID: 21777476]
[61]
Sheng, C.; Miao, Z.; Zhang, W. Chapter 1 - Topoisomerase I inhibitors derived from natural products: Structure–activity relationships and antitumor potency. In: Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Studies in Natural Products Chemistry: Elsevier, 2016; 47, pp. 1-28.
[http://dx.doi.org/10.1016/B978-0-444-63603-4.00001-2]
[62]
Hong, L.L.; Ding, Y.F.; Zhang, W.; Lin, H.W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018). Mar. Life Sci. Technol., 2022, 4(3), 356-372.
[http://dx.doi.org/10.1007/s42995-022-00132-3] [PMID: 37073163]
[63]
Efferth, T.; Wink, M. Chemical-biology of natural products from medicinal plants for cancer therapy. In: Alternative and Complementary Therapies for Cancer: Integrative Approaches and Discovery of Conventional Drugs; Alaoui-Jamali, M., Ed.; Springer US: Boston, MA, 2010; pp. 557-582.
[http://dx.doi.org/10.1007/978-1-4419-0020-3_22]
[64]
Efferth, T.; Saeed, M.E.M.; Kadioglu, O.; Seo, E.J.; Shirooie, S.; Mbaveng, A.T.; Nabavi, S.M.; Kuete, V. Collateral sensitivity of natural products in drug-resistant cancer cells. Biotechnol. Adv., 2020, 38, 107342.
[http://dx.doi.org/10.1016/j.biotechadv.2019.01.009] [PMID: 30708024]
[65]
Chen, L.; Morrow, J.K.; Tran, H.T.; Phatak, S.S.; Du-Cuny, L.; Zhang, S. From laptop to benchtop to bedside: Structure-based drug design on protein targets. Curr. Drug Metab., 2012, 18(9), 1217-1239.
[http://dx.doi.org/10.2174/138920012799362837] [PMID: 22316152]
[66]
Faisal, M. Recent advances in drug design with machine learning. In: Drug Design Using Machine Learning; Inamuddin; Altalhi, T.; Cruz, J.N.; Refat, M.S.E., Eds.; Wiley, 2022; pp. 165-194.
[http://dx.doi.org/10.1002/9781394167258.ch6]
[67]
Anderson, A.C. The process of structure-based drug design. Chem. Biol., 2003, 10(9), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.002] [PMID: 14522049]
[68]
Fang, Y.; Lu, Y.; Zang, X.; Wu, T.; Qi, X.; Pan, S.; Xu, X. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors. Sci. Rep., 2016, 6(1), 23634.
[http://dx.doi.org/10.1038/srep23634] [PMID: 27049530]
[69]
Chen, G.L.; Tian, Y.Q.; Wu, J.L.; Li, N.; Guo, M.Q. Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep., 2016, 6(1), 38284.
[http://dx.doi.org/10.1038/srep38284] [PMID: 27922057]
[70]
Sandhaus, S.; Chapagain, P.P.; Tse-Dinh, Y.C. Discovery of novel bacterial topoisomerase I inhibitors by use of in silico docking and in vitro assays. Sci. Rep., 2018, 8(1), 1437.
[http://dx.doi.org/10.1038/s41598-018-19944-4] [PMID: 29362471]
[71]
Cai, C.; Wu, Q.; Hong, H.; He, L.; Liu, Z.; Gu, Y.; Zhang, S.; Wang, Q.; Fan, X.; Fang, J. In silico identification of natural products from traditional chinese medicine for cancer immunotherapy. Sci. Rep., 2021, 11(1), 3332.
[http://dx.doi.org/10.1038/s41598-021-82857-2] [PMID: 33558586]
[72]
Dai, S.X.; Li, W.X.; Han, F.F.; Guo, Y.C.; Zheng, J.J.; Liu, J.Q.; Wang, Q.; Gao, Y.D.; Li, G.H.; Huang, J.F. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci. Rep., 2016, 6(1), 25462.
[http://dx.doi.org/10.1038/srep25462] [PMID: 27145869]
[73]
Zhang, X.; Shen, T.; Zhou, X.; Tang, X.; Gao, R.; Xu, L.; Wang, L.; Zhou, Z.; Lin, J.; Hu, Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci. Rep., 2020, 10(1), 15730.
[http://dx.doi.org/10.1038/s41598-020-72797-8] [PMID: 32978480]
[74]
Boudjedir, A.; Kraim, K.; Saihi, Y.; Attoui-Yahia, O.; Ferkous, F.; Khorief Nacereddine, A. A computational molecular docking study of camptothecin similars as inhibitors for topoisomerase 1. Struct. Chem., 2021, 32(2), 689-697.
[http://dx.doi.org/10.1007/s11224-020-01633-6]
[75]
Ntie-Kang, F.; Telukunta, K.K.; Döring, K.; Simoben, C.V.; A, Moumbock A.F.; Malange, Y.I.; Njume, L.E.; Yong, J.N.; Sippl, W.; Günther, S. NANPDB: A resource for natural products from northern african sources. J. Nat. Prod., 2017, 80(7), 2067-2076.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00283] [PMID: 28641017]
[76]
Simoben, C.V.; Qaseem, A.; Moumbock, A.F.A.; Telukunta, K.K.; Günther, S.; Sippl, W.; Ntie-Kang, F. Pharmacoinformatic investigation of medicinal plants from east africa. Mol. Inform., 2020, 39(11), 2000163.
[http://dx.doi.org/10.1002/minf.202000163] [PMID: 32964659]
[77]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[78]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[79]
Cho, K.H.; Pezzuto, J.M.; Bolton, J.L.; Steele, V.E.; Kelloff, G.J.; Lee, S.K.; Constantinou, A. Selection of cancer chemopreventive agents based on inhibition of topoisomerase II activity. Eur. J. Cancer, 2000, 36(16), 2146-2156.
[http://dx.doi.org/10.1016/S0959-8049(00)00300-2] [PMID: 11044654]
[80]
Chung, Y.C.; Lu, L.C.; Tsai, M.H.; Chen, Y.J.; Chen, Y.Y.; Yao, S.P.; Hsu, C.P. The inhibitory effect of ellagic Acid on cell growth of ovarian carcinoma cells. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-12.
[http://dx.doi.org/10.1155/2013/306705] [PMID: 23843871]
[81]
Papoutsi, Z.; Kassi, E.; Tsiapara, A.; Fokialakis, N.; Chrousos, G.P.; Moutsatsou, P. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta. J. Agric. Food Chem., 2005, 53(20), 7715-7720.
[http://dx.doi.org/10.1021/jf0510539] [PMID: 16190622]
[82]
Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead phytochemicals for anticancer drug development. Front. Plant Sci., 2016, 7, 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[83]
Umesalma, S.; Nagendraprabhu, P.; Sudhandiran, G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol. Cell. Biochem., 2015, 399(1-2), 303-313.
[http://dx.doi.org/10.1007/s11010-014-2257-2] [PMID: 25355159]
[84]
Constantinou, A.; Mehta, R.; Runyan, C.; Rao, K.; Vaughan, A.; Moon, R. Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J. Nat. Prod., 1995, 58(2), 217-225.
[http://dx.doi.org/10.1021/np50116a009] [PMID: 7769390]
[85]
Fan, M.; Chen, G.; Sun, B.; Wu, J.; Li, N.; Sarker, S.D.; Nahar, L.; Guo, M. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem. Rev., 2020, 19(5), 1231-1261.
[http://dx.doi.org/10.1007/s11101-019-09635-x]
[86]
Chen, G.; Guo, M. Screening for natural inhibitors of topoisomerases I from Rhamnus davurica by affinity ultrafiltration and high-performance liquid chromatography–mass spectrometry. Front. Plant Sci., 2017, 8, 1521.
[http://dx.doi.org/10.3389/fpls.2017.01521] [PMID: 28919906]
[87]
Boege, F.; Straub, T.; Kehr, A.; Boesenberg, C.; Christiansen, K.; Andersen, A.; Jakob, F.; Köhrle, J. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J. Biol. Chem., 1996, 271(4), 2262-2270.
[http://dx.doi.org/10.1074/jbc.271.4.2262] [PMID: 8567688]
[88]
Mizushina, Y.; Shiomi, K.; Kuriyama, I.; Takahashi, Y.; Yoshida, H. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int. J. Oncol., 2013, 43(4), 1117-1124.
[http://dx.doi.org/10.3892/ijo.2013.2032] [PMID: 23900272]
[89]
Tselepi, M.; Papachristou, E.; Emmanouilidi, A.; Angelis, A.; Aligiannis, N.; Skaltsounis, A.L.; Kouretas, D.; Liadaki, K. Catalytic inhibition of eukaryotic topoisomerases I and II by flavonol glycosides extracted from Vicia faba and Lotus edulis. J. Nat. Prod., 2011, 74(11), 2362-2370.
[http://dx.doi.org/10.1021/np200292u] [PMID: 22014228]
[90]
Fernandes, A.S.; de Melo Bisneto, A.V.; Silva, L.S.; Bailão, E.F.L.C.; Cardoso, C.G.; Carneiro, C.C.; da Costa Santos, S.; Chen-Chen, L. Pedunculagin and tellimagrandin-I stimulate inflammation and angiogenesis and upregulate vascular endothelial growth factor and tumor necrosis factor-alpha in vivo. Microvasc. Res., 2024, 151, 104615.
[http://dx.doi.org/10.1016/j.mvr.2023.104615] [PMID: 37797833]
[91]
Yi, Z.C.; Liu, Y.Z.; Li, H.X.; Yin, Y.; Zhuang, F.Y.; Fan, Y.B.; Wang, Z.; Tellimagrandin, I. Tellimagrandin I enhances gap junctional communication and attenuates the tumor phenotype of human cervical carcinoma HeLa cells in vitro. Cancer Lett., 2006, 242(1), 77-87.
[http://dx.doi.org/10.1016/j.canlet.2005.10.044] [PMID: 16338066]
[92]
Yi, Z.C.; Liu, Y.Z.; Li, H.X.; Wang, Z. Chebulinic acid and tellimagrandin I inhibit DNA strand breaks by hydroquinone/Cu(II) and H2O2/Cu(II), but potentiate DNA strand breaks by H2O2/Fe(II). Toxicol. In Vitro, 2009, 23(4), 667-673.
[http://dx.doi.org/10.1016/j.tiv.2009.03.009] [PMID: 19328845]

© 2024 Bentham Science Publishers | Privacy Policy