Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Dauricine Inhibits Non-small Cell Lung Cancer Development by Regulating PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2 Pathways in a FLT4-dependent Manner

Author(s): Jinna Liang, Panpan Lei, Xinyue Su, Jiapan Gao, Bingxi Ren, Yuxiu Zhang, Xiaoyu Ma and Weina Ma*

Volume 24, Issue 11, 2024

Published on: 06 February, 2024

Page: [1157 - 1168] Pages: 12

DOI: 10.2174/0115680096282997240101192452

Abstract

Objective: Non-small cell lung cancer (NSCLC) is still a solid tumor with high malignancy and poor prognosis. Vascular endothelial growth factor receptor 3 (FLT4, VEGFR3) is overexpressed in NSCLC cells, making it a potential target for NSCLC treatment. In this study, we aimed to explore the anti-cancer effects of dauricine on NSCLC cells and its mechanism targeting FLT4.

Methods: We found that dauricine inhibited the growth of NCI-H1299 cells by blocking the cycle in the G2/M phase through flow cytometry analysis. In addition, dauricine also inhibited the migration of NCI-H1299 cells by wound healing assay and transwell migration assay. More importantly, our empirical analysis found the anti-cancer effect of dauricine on NCI-H1299 cells and the protein level of FLT4 had a distinctly positive correlation, and this effect was weakened after FLT4 knockdown.

Results: It is suggested that dauricine suppressed the growth and migration of NCI-H1299 cells by targeting FLT4. Furthermore, dauricine inhibited FLT4 downstream pathways, such as PTEN/AKT/mTOR and Ras/MEK1/2/ERK1/2, thereby regulating cell migration-related molecule MMP3 and cell cycle-related molecules (CDK1, pCDK1-T161, and cyclin B1).

Conclusion: Dauricine may be a promising FLT4 inhibitor for the treatment of NSCLC.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[3]
Wang, J.; Zhang, R.; Lin, Z.; Zhang, S.; Chen, Y.; Tang, J.; Hong, J.; Zhou, X.; Zong, Y.; Xu, Y.; Meng, R.; Xu, S.; Liu, L.; Zhang, T.; Yang, K.; Dong, X.; Wu, G. CDK7 inhibitor THZ1 enhances antiPD-1 therapy efficacy via the p38α/MYC/PD-L1 signaling in non-small cell lung cancer. J. Hematol. Oncol., 2020, 13(1), 99.
[http://dx.doi.org/10.1186/s13045-020-00926-x] [PMID: 32690037]
[4]
Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med., 2021, 27(8), 1345-1356.
[http://dx.doi.org/10.1038/s41591-021-01450-2] [PMID: 34385702]
[5]
Ellis, L.M.; Hicklin, D.J. VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 2008, 8(8), 579-591.
[http://dx.doi.org/10.1038/nrc2403] [PMID: 18596824]
[6]
Yeh, Y.W.; Cheng, C.C.; Yang, S.T.; Tseng, C.F.; Chang, T.Y.; Tsai, S.Y.; Fu, E.; Chiang, C.P.; Liao, L.C.; Tsai, P.W.; Yu, Y.L.; Su, J.L. Targeting the VEGF-C/VEGFR3 axis suppresses Slug-mediated cancer metastasis and stemness via inhibition of KRAS/YAP1 signaling. Oncotarget, 2017, 8(3), 5603-5618.
[http://dx.doi.org/10.18632/oncotarget.13629] [PMID: 27901498]
[7]
Lim, J.; Ryu, J.H.; Kim, E.J.; Ham, S.; Kang, D. Inhibition of vascular endothelial growth factor receptor 3 reduces migration of gastric cancer cells. Cancer Invest., 2015, 33(8), 398-404.
[http://dx.doi.org/10.3109/07357907.2015.1047509] [PMID: 26115478]
[8]
Shigetomi, S.; Imanishi, Y.; Shibata, K.; Sakai, N.; Sakamoto, K.; Fujii, R.; Habu, N.; Otsuka, K.; Sato, Y.; Watanabe, Y.; Shimoda, M.; Kameyama, K.; Ozawa, H.; Tomita, T.; Ogawa, K. VEGF-C/Flt-4 axis in tumor cells contributes to the progression of oral squamous cell carcinoma via upregulating VEGF-C itself and contactin-1 in an autocrine manner. Am. J. Cancer Res., 2018, 8(10), 2046-2063.
[PMID: 30416855]
[9]
Tacconi, C.; Ungaro, F.; Correale, C.; Arena, V.; Massimino, L.; Detmar, M.; Spinelli, A.; Carvello, M.; Mazzone, M.; Oliveira, A.I.; Rub-bino, F.; Garlatti, V.; Spanò, S.; Lugli, E.; Colombo, F.S.; Malesci, A.; Peyrin-Biroulet, L.; Vetrano, S.; Danese, S.; D’Alessio, S. Activation of the VEGFC/VEGFR3 pathway induces tumor immune escape in colorectal cancer. Cancer Res., 2019, 79(16), 4196-4210.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3657] [PMID: 31239267]
[10]
Tuomela, J.; Valta, M.; Seppänen, J.; Tarkkonen, K.; Väänänen, H.K.; Härkönen, P. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors. BMC Cancer, 2009, 9(1), 362.
[http://dx.doi.org/10.1186/1471-2407-9-362] [PMID: 19821979]
[11]
Dias, S.; Choy, M.; Alitalo, K.; Rafii, S. Vascular endothelial growth factor (VEGF)–C signaling through FLT-4 (VEGFR-3) mediates leu-kemic cell proliferation, survival, and resistance to chemotherapy. Blood, 2002, 99(6), 2179-2184.
[http://dx.doi.org/10.1182/blood.V99.6.2179] [PMID: 11877295]
[12]
Sun, P.; Gao, J.; Liu, Y.L.; Wei, L.W.; Wu, L.P.; Liu, Z.Y. RNA interference (RNAi)-mediated vascular endothelial growth factor-C (VEGF-C) reduction interferes with lymphangiogenesis and enhances Epirubicin sensitivity of breast cancer cells. Mol. Cell. Biochem., 2008, 308(1-2), 161-168.
[http://dx.doi.org/10.1007/s11010-007-9624-1] [PMID: 17938864]
[13]
Su, J-L.; Yen, C-J.; Chen, P-S.; Chuang, S-E.; Hong, C-C.; Kuo, I-H.; Chen, H-Y.; Hung, M-C.; Kuo, M-L. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br. J. Cancer, 2007, 96(4), 541-545.
[http://dx.doi.org/10.1038/sj.bjc.6603487] [PMID: 17164762]
[14]
Li, J.; Zhang, W.; Xia, H.; Liu, Y. [High expression of VEGFR3 is positively associated with poor prognosis in lung adenocarcinoma]. ξExplosion y UF enzi Mia N medical za value, 2019, 35(11), 1023-1029.
[PMID: 31878999]
[15]
Jiang, L.; Guo, T.; Jiang, Y.; Liu, P.; Bai, Y. Dauricine inhibits human pancreatic carcinoma cell proliferation through regulating miRNAs. Mol. Omics, 2021, 17(4), 630-640.
[http://dx.doi.org/10.1039/D1MO00156F] [PMID: 34184018]
[16]
Zhang, S.; Ren, Y.; Qiu, J. Dauricine inhibits viability and induces cell cycle arrest and apoptosis via inhibiting the PI3K/Akt signaling pathway in renal cell carcinoma cells. Mol. Med. Rep., 2018, 17(5), 7403-7408.
[http://dx.doi.org/10.3892/mmr.2018.8732] [PMID: 29568902]
[17]
Collins, I.; Workman, P. New approaches to molecular cancer therapeutics. Nat. Chem. Biol., 2006, 2(12), 689-700.
[http://dx.doi.org/10.1038/nchembio840] [PMID: 17108987]
[18]
Li, Z.; Mao, L.; Yu, B.; Liu, H.; Zhang, Q.; Bian, Z.; Zhang, X.; Liao, W.; Sun, S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J. Pharm. Anal., 2022, 12(2), 339-349.
[http://dx.doi.org/10.1016/j.jpha.2021.06.007] [PMID: 35582406]
[19]
Zhang, Y.B.; Fei, H.X.; Guo, J.; Zhang, X.J.; Wu, S.L.; Zhong, L.L. Dauricine suppresses the growth of pancreatic cancer in vivo by modulating the Hedgehog signaling pathway. Oncol. Lett., 2019, 18(5), 4403-4414.
[http://dx.doi.org/10.3892/ol.2019.10790] [PMID: 31611949]
[20]
Yang, Z.; Li, C.; Wang, X.; Zhai, C.; Yi, Z.; Wang, L.; Liu, B.; Du, B.; Wu, H.; Guo, X.; Liu, M.; Li, D.; Luo, J. Dauricine induces apopto-sis, inhibits proliferation and invasion through inhibiting NF‐κB signaling pathway in colon cancer cells. J. Cell. Physiol., 2010, 225(1), 266-275.
[http://dx.doi.org/10.1002/jcp.22261] [PMID: 20509140]
[21]
Li, X.; Song, D.; Liu, H.; Wang, Z.; Ma, G.; Yu, M.; Zhang, Y.; Zeng, Y. Expression levels of VEGF C and VEGFR 3 in renal cell carcinoma and their association with lymph node metastasis. Exp. Ther. Med., 2021, 21(6), 554.
[http://dx.doi.org/10.3892/etm.2021.9986] [PMID: 33850526]
[22]
Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J., 1996, 15(7), 1751.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00521.x] [PMID: 8612600]
[23]
Li, J.; Yi, H.; Liu, Z.; Zhang, H.; Zhang, D.; Yue, W.; Jia, H.; Xu, S.; Li, B. Association between VEGFR-3 expression and lymph node metastasis in non-small-cell lung cancer. Exp. Ther. Med., 2015, 9(2), 389-394.
[http://dx.doi.org/10.3892/etm.2014.2091] [PMID: 25574203]
[24]
Babaei, Z.; Panjehpour, M.; Ghorbanhosseini, S.S.; Parsian, H.; Khademi, M.; Aghaei, M. VEGFR3 suppression through miR‐1236 inhibits proliferation and induces apoptosis in ovarian cancer via ERK1/2 and AKT signaling pathways. J. Cell. Biochem., 2023, 124(5), 674-686.
[http://dx.doi.org/10.1002/jcb.30395] [PMID: 36922713]
[25]
Jin, H.; Dai, J.; Chen, X.; Liu, J.; Zhong, D.; Gu, Y.; Zheng, J. Pulmonary toxicity and metabolic activation of dauricine in CD-1 mice. J. Pharmacol. Exp. Ther., 2010, 332(3), 738-746.
[http://dx.doi.org/10.1124/jpet.109.162297] [PMID: 20008063]
[26]
Qian, L.; Su, H.; Wang, G.; Li, B.; Shen, G.; Gao, Q. Anti-tumor activity of bufalin by inhibiting c-MET mediated MEK/ERK and PI3K/AKT signaling pathways in gallbladder cancer. J. Cancer, 2020, 11(11), 3114-3123.
[http://dx.doi.org/10.7150/jca.38393] [PMID: 32231716]
[27]
Mancikova, V.; Inglada-Pérez, L.; Curras-Freixes, M.; de Cubas, A.A.; Gómez, Á.; Letón, R.; Kersten, I.; Leandro-García, L.J.; Comino-Méndez, I.; Apellaniz-Ruiz, M.; Sánchez, L.; Cascón, A.; Sastre-Marcos, J.; García, J.F.; Rodríguez-Antona, C.; Robledo, M. VEGF, VEGFR3, and PDGFRB protein expression is influenced by RAS mutations in medullary thyroid carcinoma. Thyroid, 2014, 24(8), 1251-1255.
[http://dx.doi.org/10.1089/thy.2013.0579] [PMID: 24754736]
[28]
Feng, Y.; Hu, J.; Ma, J.; Feng, K.; Zhang, X.; Yang, S.; Wang, W.; Zhang, J.; Zhang, Y. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur. J. Cancer, 2011, 47(15), 2353-2363.
[http://dx.doi.org/10.1016/j.ejca.2011.05.006] [PMID: 21680174]
[29]
Hashemi, M.; Etemad, S.; Rezaei, S.; Ziaolhagh, S.; Rajabi, R.; Rahmanian, P.; Abdi, S.; Koohpar, Z.K.; Rafiei, R.; Raei, B.; Ahmadi, F.; Salimimoghadam, S.; Aref, A.R.; Zandieh, M.A.; Entezari, M.; Taheriazam, A.; Hushmandi, K. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed. Pharmacother., 2023, 158, 114204.
[http://dx.doi.org/10.1016/j.biopha.2022.114204] [PMID: 36916430]
[30]
Chan, C.; Chan, G.; Awang, K.; Abdul Kadir, H. Deoxyelephantopin from elephantopus scaber inhibits HCT116 human colorectal carcinoma cell growth through apoptosis and cell cycle arrest. Molecules, 2016, 21(3), 385.
[http://dx.doi.org/10.3390/molecules21030385] [PMID: 27007366]
[31]
Luo, X.; Peng, J.M.; Su, L.D.; Wang, D.Y.; Yu, Y.J. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression. Exp. Ther. Med., 2016, 11(2), 613-618.
[http://dx.doi.org/10.3892/etm.2015.2915] [PMID: 26893655]
[32]
Shi, X.; Zhu, M.; Gong, Z.; Yang, T.; Yu, R.; Wang, J.; Zhang, Y. Homoharringtonine suppresses LoVo cell growth by inhibiting EphB4 and the PI3K/AKT and MAPK/EKR1/2 signaling pathways. Food Chem. Toxicol., 2020, 136, 110960.
[http://dx.doi.org/10.1016/j.fct.2019.110960] [PMID: 31726078]
[33]
Bao, Y.; Wu, X.; Jin, X.; Kanematsu, A.; Nojima, M.; Kakehi, Y.; Yamamoto, S. Apigenin inhibits renal cell carcinoma cell proliferation through G2/M phase cell cycle arrest. Oncol. Rep., 2022, 47(3), 60.
[http://dx.doi.org/10.3892/or.2022.8271] [PMID: 35088891]
[34]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[35]
Wang, J.; Zhang, Z.; Che, Y.; Yuan, Z.; Lu, Z.; Li, Y.; Wan, J.; Sun, H.; Chen, Z.; Pu, J.; He, J. Rabdocoestin B exhibits antitumor activity by inducing G2/M phase arrest and apoptosis in esophageal squamous cell carcinoma. Cancer Chemother. Pharmacol., 2018, 81(3), 469-481.
[http://dx.doi.org/10.1007/s00280-017-3507-2] [PMID: 29308536]
[36]
Zhu, T.; Bao, X.; Chen, M.; Lin, R.; Zhuyan, J.; Zhen, T.; Xing, K.; Zhou, W.; Zhu, S. Mechanisms and future of non-small cell lung cancer metastasis. Front. Oncol., 2020, 10, 585284.
[http://dx.doi.org/10.3389/fonc.2020.585284] [PMID: 33262947]
[37]
Chauhan, A.; Islam, A.U.; Prakash, H.; Singh, S. Phytochemicals targeting NF-κB signaling: Potential anti-cancer interventions. J. Pharm. Anal., 2022, 12(3), 394-405.
[http://dx.doi.org/10.1016/j.jpha.2021.07.002] [PMID: 35811622]
[38]
Chu, C.; Liu, X.; Bai, X.; Zhao, T.; Wang, M.; Xu, R.; Li, M.; Hu, Y.; Li, W.; Yang, L.; Qin, Y.; Yang, M.; Yan, C.; Zhang, Y. MiR-519d suppresses breast cancer tumorigenesis and metastasis via targeting MMP3. Int. J. Biol. Sci., 2018, 14(2), 228-236.
[http://dx.doi.org/10.7150/ijbs.22849] [PMID: 29483840]
[39]
Yang, Y.L.; Gong, W.Y.; Chen, F.F.; Chen, L.C.; Chen, Y.T. pPeOp from Omphalia lapidescens Schroet induces cell cycle arrest and inhibits the migration of MC-4 gastric tumor cells. Oncol. Lett., 2017, 14(1), 533-540.
[http://dx.doi.org/10.3892/ol.2017.6207] [PMID: 28693202]
[40]
Shoshan, E.; Braeuer, R.R.; Kamiya, T.; Mobley, A.K.; Huang, L.; Vasquez, M.E.; Velazquez-Torres, G.; Chakravarti, N.; Ivan, C.; Prieto, V.; Villares, G.J.; Bar-Eli, M. NFAT1 directly regulates IL8 and MMP3 to promote melanoma tumor growth and metastasis. Cancer Res., 2016, 76(11), 3145-3155.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2511] [PMID: 27013197]

© 2024 Bentham Science Publishers | Privacy Policy