Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals.
Method: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium–99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA.
Results: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF.
Conclusion: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.
[2]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[3]
Babiker, H.M.; McBride, A.; Newton, M.; Boehmer, L.M.; Drucker, A.G.; Gowan, M.; Cassagnol, M.; Camenisch, T.D.; Anwer, F.; Hollands, J.M. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit. Rev. Oncol. Hematol., 2018, 126, 186-200.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.014] [PMID: 29759560]
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.014] [PMID: 29759560]
[4]
Ribeiro, J.T.; Macedo, L.T.; Curigliano, G.; Fumagalli, L.; Locatelli, M.; Dalton, M.; Quintela, A.; Carvalheira, J.B.C.; Manunta, S.; Mazzarella, L.; Brollo, J.; Goldhirsch, A. Cytotoxic drugs for patients with breast cancer in the era of targeted treatment: back to the future? Ann. Oncol., 2012, 23(3), 547-555.
[http://dx.doi.org/10.1093/annonc/mdr382] [PMID: 21896541]
[http://dx.doi.org/10.1093/annonc/mdr382] [PMID: 21896541]
[5]
Wang, S.Y.; Hu, H.Z.; Qing, X.C.; Zhang, Z.C.; Shao, Z.W. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J. Cancer, 2020, 11(1), 69-82.
[http://dx.doi.org/10.7150/jca.36588] [PMID: 31892974]
[http://dx.doi.org/10.7150/jca.36588] [PMID: 31892974]
[6]
Rajora, A.K.; Ravishankar, D.; Zhang, H.; Rosenholm, J.M. Recent advances and impact of chemotherapeutic and antiangiogenic nanoformulations for combination cancer therapy. Pharmaceutics, 2020, 12(6), 592-618.
[http://dx.doi.org/10.3390/pharmaceutics12060592] [PMID: 32630584]
[http://dx.doi.org/10.3390/pharmaceutics12060592] [PMID: 32630584]
[7]
Samanta, K.; Setua, S.; Kumari, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics, 2019, 11(11), 574-599.
[http://dx.doi.org/10.3390/pharmaceutics11110574] [PMID: 31689930]
[http://dx.doi.org/10.3390/pharmaceutics11110574] [PMID: 31689930]
[8]
Hoang Thi, T.; Nguyen Tran, D.H.; Bach, L.; Vu-Quang, H.; Nguyen, D.; Park, K.; Nguyen, D. Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics, 2019, 11(3), 120-133.
[http://dx.doi.org/10.3390/pharmaceutics11030120] [PMID: 30875948]
[http://dx.doi.org/10.3390/pharmaceutics11030120] [PMID: 30875948]
[9]
Gholami, A.; Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Chiang, W.H.; Parvin, N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev., 2020, 52(1), 205-224.
[http://dx.doi.org/10.1080/03602532.2020.1726943] [PMID: 32083952]
[http://dx.doi.org/10.1080/03602532.2020.1726943] [PMID: 32083952]
[10]
Pusta, A.; Tertis, M.; Crăciunescu, I.; Turcu, R.; Mirel, S.; Cristea, C. Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics, 2023, 15(7), 1872.
[http://dx.doi.org/10.3390/pharmaceutics15071872] [PMID: 37514058]
[http://dx.doi.org/10.3390/pharmaceutics15071872] [PMID: 37514058]
[11]
Gao, P.; Mei, C.; He, L.; Xiao, Z.; Chan, L.; Zhang, D.; Shi, C.; Chen, T.; Luo, L. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Deliv., 2018, 25(1), 1811-1825.
[http://dx.doi.org/10.1080/10717544.2018.1494224] [PMID: 30465437]
[http://dx.doi.org/10.1080/10717544.2018.1494224] [PMID: 30465437]
[12]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[13]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[14]
Fang, K.; Song, L.; Gu, Z.; Yang, F.; Zhang, Y.; Gu, N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B Biointerfaces, 2015, 136, 712-720.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[15]
Jeon, M.J.; Ahn, C.H.; Kim, H.; Chung, I.J.; Jung, S.; Kim, Y.H.; Youn, H.; Chung, J.W.; Kim, Y.I. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J. Exp. Clin. Cancer Res., 2014, 33(1), 57.
[http://dx.doi.org/10.1186/s13046-014-0057-x] [PMID: 25037747]
[http://dx.doi.org/10.1186/s13046-014-0057-x] [PMID: 25037747]
[16]
Abed, Z.; Beik, J.; Laurent, S.; Eslahi, N.; Khani, T.; Davani, E.S.; Ghaznavi, H.; Shakeri-Zadeh, A. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J. Cancer Res. Clin. Oncol., 2019, 145(5), 1213-1219.
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
[17]
Cancino, J.; Marangoni, V.S.; Zucolotto, V. Nanotecnologia em medicina: Aspectos fundamentais e principais preocupações. Quim. Nova, 2014, 37(3), 521-526.
[http://dx.doi.org/10.5935/0100-4042.20140086]
[http://dx.doi.org/10.5935/0100-4042.20140086]
[18]
Balas, M.; Predoi, D.; Burtea, C.; Dinischiotu, A. New insights into the biological response triggered by dextran-coated maghemite nanoparticles in pancreatic cancer cells and their potential for theranostic applications. Int. J. Mol. Sci., 2023, 24(4), 3307.
[http://dx.doi.org/10.3390/ijms24043307] [PMID: 36834718]
[http://dx.doi.org/10.3390/ijms24043307] [PMID: 36834718]
[19]
Rehman, Y.; Cheng, Z.; Wang, X.; Huang, X.F.; Konstantinov, K. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(29), 5805-5817.
[http://dx.doi.org/10.1039/D1TB01036K] [PMID: 34231637]
[http://dx.doi.org/10.1039/D1TB01036K] [PMID: 34231637]
[20]
Kuchma, E.A.; Zolotukhin, P.V.; Belanova, A.A.; Soldatov, M.A.; Kozakov, A.T.; Kubrin, S.P.; Polozhentsev, O.E.; Medvedev, P.V.; Soldatov, A.V. Effect of synthesis conditions on local atomic structure and properties of low-toxic maghemite nanoparticles for local magnetic hyperthermia in oncology. J. Nanopart. Res., 2022, 24(2), 25.
[http://dx.doi.org/10.1007/s11051-021-05393-0]
[http://dx.doi.org/10.1007/s11051-021-05393-0]
[21]
Darson, J.; Mohan, M. Iron oxide nanoparticles and nano-composites: An efficient tool for cancer theranostics.In: Iron Oxide Nanoparticles; Intechopen, 2022.
[http://dx.doi.org/10.5772/intechopen.101934]
[http://dx.doi.org/10.5772/intechopen.101934]
[22]
Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics, 2023, 15(1), 236.
[http://dx.doi.org/10.3390/pharmaceutics15010236] [PMID: 36678868]
[http://dx.doi.org/10.3390/pharmaceutics15010236] [PMID: 36678868]
[23]
Fernández-Álvarez, F.; Caro, C.; García-García, G.; García-Martín, M.L.; Arias, J.L. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(24), 4963-4980.
[http://dx.doi.org/10.1039/D1TB00354B] [PMID: 34114575]
[http://dx.doi.org/10.1039/D1TB00354B] [PMID: 34114575]
[24]
Agwa, M.M.; Sabra, S. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int. J. Biol. Macromol., 2021, 167, 1527-1543.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.107] [PMID: 33212102]
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.107] [PMID: 33212102]
[25]
Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Biosensing Res., 2016, 9, 17-22.
[http://dx.doi.org/10.1016/j.sbsr.2016.04.002]
[http://dx.doi.org/10.1016/j.sbsr.2016.04.002]
[26]
Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[27]
Lacava, Z. Campos da Paz; Almeida Santos; Santos; Silva; Souza; Lima; Silva; Lucci; Morais; Azevedo, R. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int. J. Nanomedicine, 2012, 7, 5271-5282.
[http://dx.doi.org/10.2147/IJN.S32139] [PMID: 23055733]
[http://dx.doi.org/10.2147/IJN.S32139] [PMID: 23055733]
[28]
Teijeira, A.; Migueliz, I.; Garasa, S.; Karanikas, V.; Luri, C.; Cirella, A.; Olivera, I.; Cañamero, M.; Alvarez, M.; Ochoa, M.C.; Rouzaut, A.; Rodriguez-Ruiz, M.E.; Sanmamed, M.F.; Klein, C.; Umaña, P.; Ponz, M.; Bacac, M.; Melero, I. Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers. Theranostics, 2022, 12(3), 1373-1387.
[http://dx.doi.org/10.7150/thno.63359] [PMID: 35154495]
[http://dx.doi.org/10.7150/thno.63359] [PMID: 35154495]
[29]
Mustafa, A.J.; Ismail, P.A. Association of potent inflammatory Cytokine and Oxidative DNA Damage Biomarkers in Stomach cancer patients. Baghdad Sci J, 2022, 19(6), 1313.
[http://dx.doi.org/10.21123/bsj.2022.6589]
[http://dx.doi.org/10.21123/bsj.2022.6589]
[30]
Sato, O.; Tsuchikawa, T.; Kato, T.; Amaishi, Y.; Okamoto, S.; Mineno, J.; Takeuchi, Y.; Sasaki, K.; Nakamura, T.; Umemoto, K.; Suzuki, T.; Wang, L.; Wang, Y.; Hatanaka, K.C.; Mitsuhashi, T.; Hatanaka, Y.; Shiku, H.; Hirano, S. Tumor growth suppression of pancreatic cancer orthotopic xenograft model by CEA-targeting CAR-T cells. Cancers, 2023, 15(3), 601.
[http://dx.doi.org/10.3390/cancers15030601] [PMID: 36765558]
[http://dx.doi.org/10.3390/cancers15030601] [PMID: 36765558]
[31]
Campos-da-Paz, M.; Dórea, J.G.; Galdino, A.S.; Lacava, Z.G.M.; de Fatima Menezes Almeida Santos, M. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Pat. Biotechnol., 2018, 12(4), 269-279.
[http://dx.doi.org/10.2174/1872208312666180731104244] [PMID: 30062978]
[http://dx.doi.org/10.2174/1872208312666180731104244] [PMID: 30062978]
[32]
Aurich, K.; Nagel, S.; Heister, E.; Weitschies, W. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements. Nanotechnology, 2008, 19(50), 505102-505110.
[http://dx.doi.org/10.1088/0957-4484/19/50/505102] [PMID: 19942759]
[http://dx.doi.org/10.1088/0957-4484/19/50/505102] [PMID: 19942759]
[33]
Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release, 2013, 172(3), 782-794.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.013] [PMID: 24075927]
[http://dx.doi.org/10.1016/j.jconrel.2013.09.013] [PMID: 24075927]
[34]
Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev., 2013, 65(5), 622-648.
[http://dx.doi.org/10.1016/j.addr.2012.08.015] [PMID: 22975010]
[http://dx.doi.org/10.1016/j.addr.2012.08.015] [PMID: 22975010]
[35]
Xu, L.; Xu, M.; Sun, X.; Feliu, N.; Feng, L.; Parak, W.J.; Liu, S. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano, 2023, 17(3), 2039-2052.
[http://dx.doi.org/10.1021/acsnano.2c07295] [PMID: 36717361]
[http://dx.doi.org/10.1021/acsnano.2c07295] [PMID: 36717361]
[36]
Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission. Pharmaceutics, 2022, 14(5), 1013.
[http://dx.doi.org/10.3390/pharmaceutics14051013] [PMID: 35631598]
[http://dx.doi.org/10.3390/pharmaceutics14051013] [PMID: 35631598]
[37]
Felber, M.; Bauwens, M.; Mateos, J.M.; Imstepf, S.; Mottaghy, F.M.; Alberto, R. (99m) Tc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand. Chemistry, 2015, 21(16), 6090-6099.
[http://dx.doi.org/10.1002/chem.201405704] [PMID: 25765900]
[http://dx.doi.org/10.1002/chem.201405704] [PMID: 25765900]
[38]
Diniz, S.O.F.; Siqueira, C.F.; Nelson, D.L.; Martin-Comin, J.; Cardoso, V.N. Technetium-99m ceftizoxime kit preparation.Braz. Arch. Biol. Technol., 2005, 48(spe2), 89-96.
[http://dx.doi.org/10.1590/S1516-89132005000700014]
[http://dx.doi.org/10.1590/S1516-89132005000700014]
[39]
Tsiapa, I.; Efthimiadou, E.K.; Fragogeorgi, E.; Loudos, G.; Varvarigou, A.D.; Bouziotis, P.; Kordas, G.C.; Mihailidis, D.; Nikiforidis, G.C.; Xanthopoulos, S.; Psimadas, D.; Paravatou-Petsotas, M.; Palamaris, L.; Hazle, J.D.; Kagadis, G.C. 99m Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3 -mediated tumor expression and feasibility for hyperthermia treatment. J. Colloid Interface Sci., 2014, 433, 163-175.
[http://dx.doi.org/10.1016/j.jcis.2014.07.032] [PMID: 25128864]
[http://dx.doi.org/10.1016/j.jcis.2014.07.032] [PMID: 25128864]
[40]
Lassenberger, A.; Scheberl, A.; Stadlbauer, A.; Stiglbauer, A.; Helbich, T.; Reimhult, E. Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Appl. Mater. Interfaces, 2017, 9(4), 3343-3353.
[http://dx.doi.org/10.1021/acsami.6b12932] [PMID: 28071883]
[http://dx.doi.org/10.1021/acsami.6b12932] [PMID: 28071883]
[41]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44(10), 853-862.
[http://dx.doi.org/10.1021/ar2000277] [PMID: 21528865]
[http://dx.doi.org/10.1021/ar2000277] [PMID: 21528865]
[42]
Song, L.; Chen, Y.; Ding, J.; Wu, H.; Zhang, W.; Ma, M.; Zang, F.; Wang, Z.; Gu, N.; Zhang, Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(5), 895-907.
[http://dx.doi.org/10.1039/C9TB02521A] [PMID: 31909406]
[http://dx.doi.org/10.1039/C9TB02521A] [PMID: 31909406]
[43]
Avazzadeh, R.; Vasheghani-Farahani, E.; Soleimani, M.; Amanpour, S.; Sadeghi, M. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia. Prog. Biomater., 2017, 6(3), 75-84.
[http://dx.doi.org/10.1007/s40204-017-0068-8] [PMID: 28624871]
[http://dx.doi.org/10.1007/s40204-017-0068-8] [PMID: 28624871]
[44]
Driskell, J.D.; Jones, C.A.; Tompkins, S.M.; Tripp, R.A. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analys, 2011, 136(15), 3083-3090.
[http://dx.doi.org/10.1039/c1an15303j] [PMID: 21666913]
[http://dx.doi.org/10.1039/c1an15303j] [PMID: 21666913]
[45]
Venkatraman, G. Ramya; Shruthilaya; Akila; Ganga; Suresh Kumar; Yoganathan; Santosham, R.; Ponraju, Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomedicine, 2012, 7, 1043-1060.
[http://dx.doi.org/10.2147/IJN.S25182] [PMID: 22403487]
[http://dx.doi.org/10.2147/IJN.S25182] [PMID: 22403487]
[46]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[47]
Mikelez-Alonso, I.; Aires, A.; Cortajarena, A.L. Cancer nano-immunotherapy from the injection to the target: The role of protein corona. Int. J. Mol. Sci., 2020, 21(2), 519-536.
[http://dx.doi.org/10.3390/ijms21020519] [PMID: 31947622]
[http://dx.doi.org/10.3390/ijms21020519] [PMID: 31947622]
[48]
Foroozandeh, P.; Aziz, A.A. Merging worlds of nanomaterials and biological environment: Factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res. Lett., 2015, 10(1), 221.
[http://dx.doi.org/10.1186/s11671-015-0922-3] [PMID: 25995715]
[http://dx.doi.org/10.1186/s11671-015-0922-3] [PMID: 25995715]
[49]
Belanova, A.A.; Gavalas, N.; Makarenko, Y.M.; Belousova, M.M.; Soldatov, A.V.; Zolotukhin, P.V. Physicochemical properties of magnetic nanoparticles: Implications for biomedical applications in vitro and in vivo. Oncol. Res. Treat., 2018, 41(3), 139-143.
[http://dx.doi.org/10.1159/000485020] [PMID: 29485418]
[http://dx.doi.org/10.1159/000485020] [PMID: 29485418]
[50]
Dias, C.R.D.B.R. Studies of monoclonal antibodies IOR-CEA-1 and IOR-EGF/R3 labelled with 99mTc; , 2005. Available from
https://inis.iaea.org/search/search.aspx?orig_q=RN:40094776
[51]
Bailey, J.J.; Dewaraja, Y.; Hubers, D.; Srinivasa, R.; Frey, K.A. Biodistribution of 99mTc-MAA on SPECT/CT performed for 90Y-radioembolization therapy planning: A pictorial review. Clin. Transl. Imaging, 2017, 5(5), 473-485.
[http://dx.doi.org/10.1007/s40336-017-0245-8] [PMID: 29423383]
[http://dx.doi.org/10.1007/s40336-017-0245-8] [PMID: 29423383]
[52]
Zhang, Q.; Rajan, S.S.; Tyner, K.M.; Casey, B.J.; Dugard, C.K.; Jones, Y.; Paredes, A.M.; Clingman, C.S.; Howard, P.C.; Goering, P.L. Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(5), 1032-1042.
[http://dx.doi.org/10.1002/jbm.b.33450] [PMID: 26013845]
[http://dx.doi.org/10.1002/jbm.b.33450] [PMID: 26013845]
[53]
Gaharwar, U.S.; Meena, R.; Rajamani, P. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male wistar rats. Int. J. Nanomedicine, 2019, 14, 9677-9692.
[http://dx.doi.org/10.2147/IJN.S223142] [PMID: 31827324]
[http://dx.doi.org/10.2147/IJN.S223142] [PMID: 31827324]
[54]
Klapproth, A.P.; Shevtsov, M.; Stangl, S.; Li, W.B.; Multhoff, G. A new pharmacokinetic model describing the biodistribution of intravenously and intratumorally administered superparamagnetic iron oxide nanoparticles (SPIONs) in a GL261 Xenograft glioblastoma model. Int. J. Nanomedicine, 2020, 15, 4677-4689.
[http://dx.doi.org/10.2147/IJN.S254745] [PMID: 32669844]
[http://dx.doi.org/10.2147/IJN.S254745] [PMID: 32669844]
[55]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[http://dx.doi.org/10.1039/C5CS00541H] [PMID: 26390044]
[http://dx.doi.org/10.1039/C5CS00541H] [PMID: 26390044]
[56]
Yang, B.; Han, X.; Ji, B.; Lu, R. Competition between tumor and mononuclear phagocyte system causing the low tumor distribution of nanoparticles and strategies to improve tumor accumulation. Curr. Drug Deliv., 2016, 13(8), 1261-1274.
[http://dx.doi.org/10.2174/1567201813666160418105703] [PMID: 27086698]
[http://dx.doi.org/10.2174/1567201813666160418105703] [PMID: 27086698]
[57]
Lu, Y.; Gu, Z. A size bandpass filter. Nat. Nanotechnol., 2017, 12(11), 1023-1025.
[http://dx.doi.org/10.1038/nnano.2017.200] [PMID: 28892100]
[http://dx.doi.org/10.1038/nnano.2017.200] [PMID: 28892100]
[58]
Gómez-Vallejo, V.; Puigivila, M.; Plaza-García, S.; Szczupak, B.; Piñol, R.; Murillo, J.L.; Sorribas, V.; Lou, G.; Veintemillas, S.; Ramos-Cabrer, P.; Llop, J.; Millán, A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale, 2018, 10(29), 14153-14164.
[http://dx.doi.org/10.1039/C8NR03084G] [PMID: 29999506]
[http://dx.doi.org/10.1039/C8NR03084G] [PMID: 29999506]
[59]
Ruggiero, A.; Villa, C.H.; Bander, E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Manova-Todorova, K.; Deen, W.M.; Scheinberg, D.A.; McDevitt, M.R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci., 2010, 107(27), 12369-12374.
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[60]
He, X.; Nie, H.; Wang, K.; Tan, W.; Wu, X.; Zhang, P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem., 2008, 80(24), 9597-9603.
[http://dx.doi.org/10.1021/ac801882g] [PMID: 19007246]
[http://dx.doi.org/10.1021/ac801882g] [PMID: 19007246]
[61]
Naumenko, V.; Nikitin, A.; Kapitanova, K.; Melnikov, P.; Vodopyanov, S.; Garanina, A.; Valikhov, M.; Ilyasov, A.; Vishnevskiy, D.; Markov, A.; Golyshev, S.; Zhukov, D.; Alieva, I.; Abakumov, M.; Chekhonin, V.; Majouga, A. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney. J. Control. Release, 2019, 307, 368-378.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.026] [PMID: 31247280]
[http://dx.doi.org/10.1016/j.jconrel.2019.06.026] [PMID: 31247280]
[62]
Duan, L.; Yang, L.; Jin, J.; Yang, F.; Liu, D.; Hu, K.; Wang, Q.; Yue, Y.; Gu, N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10(2), 462-483.
[http://dx.doi.org/10.7150/thno.37593] [PMID: 31903132]
[http://dx.doi.org/10.7150/thno.37593] [PMID: 31903132]
[63]
Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090.
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]
[64]
Kang, H.; Rho, S.; Stiles, W.R.; Hu, S.; Baek, Y.; Hwang, D.W.; Kashiwagi, S.; Kim, M.S.; Choi, H.S. Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater., 2020, 9(1)1901223
[http://dx.doi.org/10.1002/adhm.201901223] [PMID: 31794153]
[http://dx.doi.org/10.1002/adhm.201901223] [PMID: 31794153]
[65]
Field, L.D.; Nag, O.K.; Sangtani, A.; Burns, K.E.; Delehanty, J.B. The role of nanoparticles in the improvement of systemic anticancer drug delivery. Ther. Deliv., 2018, 9(7), 527-545.
[http://dx.doi.org/10.4155/tde-2018-0015] [PMID: 29943689]
[http://dx.doi.org/10.4155/tde-2018-0015] [PMID: 29943689]
[66]
Alric, C.; Hervé-Aubert, K.; Aubrey, N.; Melouk, S.; Lajoie, L.; Même, W.; Même, S.; Courbebaisse, Y.; Ignatova, A.A.; Feofanov, A.V.; Chourpa, I.; Allard-Vannier, E. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J. Nanobiotechnology, 2018, 16(1), 18.
[http://dx.doi.org/10.1186/s12951-018-0341-6] [PMID: 29466990]
[http://dx.doi.org/10.1186/s12951-018-0341-6] [PMID: 29466990]
[67]
Lin, R.; Huang, J.; Wang, L.; Li, Y.; Lipowska, M.; Wu, H.; Yang, J.; Mao, H. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater. Sci., 2018, 6(6), 1517-1525.
[http://dx.doi.org/10.1039/C8BM00225H] [PMID: 29652061]
[http://dx.doi.org/10.1039/C8BM00225H] [PMID: 29652061]
[68]
Griswold, K.; Ndong, C.; Toraya-Brown, S.; Kekalo, K.; Baker, I.; Gerngross, T.; Fiering, S. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 2595-2617.
[http://dx.doi.org/10.2147/IJN.S79367] [PMID: 25878495]
[http://dx.doi.org/10.2147/IJN.S79367] [PMID: 25878495]
[69]
Cędrowska, E.; Pruszyński, M.; Gawęda, W.; Żuk, M.; Krysiński, P.; Bruchertseifer, F.; Morgenstern, A.; Karageorgou, M.A.; Bouziotis, P.; Bilewicz, A. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225AC as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer. Molecules, 2020, 25(5), 1025-1043.
[http://dx.doi.org/10.3390/molecules25051025] [PMID: 32106568]
[http://dx.doi.org/10.3390/molecules25051025] [PMID: 32106568]
[70]
Tate, J.A.; Kett, W. NDong, C.; Griswold, K.E.; Hoopes, P.J. Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model. Proc. SPIE, 2013, 858485840G
[http://dx.doi.org/10.1117/12.2008814] [PMID: 25301995]
[http://dx.doi.org/10.1117/12.2008814] [PMID: 25301995]
[71]
Stanković, A.; Mihailović, J.; Mirković, M.; Radović, M.; Milanović, Z.; Ognjanović, M.; Janković, D.; Antić, B.; Mijović, M.; Vranješ-Đurić, S.; Prijović, Ž. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. Int. J. Pharm., 2020, 587, 119628-119665.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119628] [PMID: 32681867]
[http://dx.doi.org/10.1016/j.ijpharm.2020.119628] [PMID: 32681867]
[72]
Oltolina, F.; Colangelo, D.; Miletto, I.; Clemente, N.; Miola, M.; Verné, E.; Prat, M.; Follenzi, A. Tumor targeting by monoclonal antibody functionalized magnetic nanoparticles. Nanomaterials, 2019, 9(11), 1575-1597.
[http://dx.doi.org/10.3390/nano9111575] [PMID: 31698869]
[http://dx.doi.org/10.3390/nano9111575] [PMID: 31698869]
[73]
Cai, Z.; Chattopadhyay, N.; Yang, K.; Kwon, Y.L.; Yook, S.; Pignol, J.P.; Reilly, R.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl. Med. Biol., 2016, 43(12), 818-826.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.009] [PMID: 27788375]
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.009] [PMID: 27788375]
[74]
Framery, B.; Gutowski, M.; Dumas, K.; Evrard, A.; Muller, N.; Dubois, V.; Quinonero, J.; Scherninski, F.; Pèlegrin, A.; Cailler, F. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol. Rep., 2019, 6, 409-415.
[http://dx.doi.org/10.1016/j.toxrep.2019.04.011] [PMID: 31080749]
[http://dx.doi.org/10.1016/j.toxrep.2019.04.011] [PMID: 31080749]
[75]
Correa, T.S.; Bocca, A.L.; Figueiredo, F.; Lima, E.C.O.; Almeida Santos, M.D.F.M.; Lacava, Z.G.M.; Campos-da-Paz, M. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer. Biomed. Mater., 2021, 16(3), 035017-035042.
[http://dx.doi.org/10.1088/1748-605X/abe359] [PMID: 33540396]
[http://dx.doi.org/10.1088/1748-605X/abe359] [PMID: 33540396]