Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Biodistribution and Tumor Targeted Accumulation of Anti-CEA-loaded Iron Nanoparticles

In Press, (this is not the final "Version of Record"). Available online 06 February, 2024
Author(s): Thais Silva Correa, William Gustavo Lima, Aline Beatriz do Couto Campos, Alexsandro Sobreira Galdino*, Emilia Celma de Oliveira Lima, Valbert Nascimento Cardoso, Simone Odília Antunes Fernandes* and Mariana Campos-da-Paz*
Published on: 06 February, 2024

DOI: 10.2174/0113892010268872240104114444

Price: $95

Abstract

Introduction: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals.

Method: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium–99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA.

Results: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF.

Conclusion: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.

[1]
Global Cancer Observatory. 2020. Available from: https://gco.iarc.fr/
[2]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[3]
Babiker, H.M.; McBride, A.; Newton, M.; Boehmer, L.M.; Drucker, A.G.; Gowan, M.; Cassagnol, M.; Camenisch, T.D.; Anwer, F.; Hollands, J.M. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit. Rev. Oncol. Hematol., 2018, 126, 186-200.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.014] [PMID: 29759560]
[4]
Ribeiro, J.T.; Macedo, L.T.; Curigliano, G.; Fumagalli, L.; Locatelli, M.; Dalton, M.; Quintela, A.; Carvalheira, J.B.C.; Manunta, S.; Mazzarella, L.; Brollo, J.; Goldhirsch, A. Cytotoxic drugs for patients with breast cancer in the era of targeted treatment: back to the future? Ann. Oncol., 2012, 23(3), 547-555.
[http://dx.doi.org/10.1093/annonc/mdr382] [PMID: 21896541]
[5]
Wang, S.Y.; Hu, H.Z.; Qing, X.C.; Zhang, Z.C.; Shao, Z.W. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J. Cancer, 2020, 11(1), 69-82.
[http://dx.doi.org/10.7150/jca.36588] [PMID: 31892974]
[6]
Rajora, A.K.; Ravishankar, D.; Zhang, H.; Rosenholm, J.M. Recent advances and impact of chemotherapeutic and antiangiogenic nanoformulations for combination cancer therapy. Pharmaceutics, 2020, 12(6), 592-618.
[http://dx.doi.org/10.3390/pharmaceutics12060592] [PMID: 32630584]
[7]
Samanta, K.; Setua, S.; Kumari, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics, 2019, 11(11), 574-599.
[http://dx.doi.org/10.3390/pharmaceutics11110574] [PMID: 31689930]
[8]
Hoang Thi, T.; Nguyen Tran, D.H.; Bach, L.; Vu-Quang, H.; Nguyen, D.; Park, K.; Nguyen, D. Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics, 2019, 11(3), 120-133.
[http://dx.doi.org/10.3390/pharmaceutics11030120] [PMID: 30875948]
[9]
Gholami, A.; Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Chiang, W.H.; Parvin, N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab. Rev., 2020, 52(1), 205-224.
[http://dx.doi.org/10.1080/03602532.2020.1726943] [PMID: 32083952]
[10]
Pusta, A.; Tertis, M.; Crăciunescu, I.; Turcu, R.; Mirel, S.; Cristea, C. Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics, 2023, 15(7), 1872.
[http://dx.doi.org/10.3390/pharmaceutics15071872] [PMID: 37514058]
[11]
Gao, P.; Mei, C.; He, L.; Xiao, Z.; Chan, L.; Zhang, D.; Shi, C.; Chen, T.; Luo, L. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Deliv., 2018, 25(1), 1811-1825.
[http://dx.doi.org/10.1080/10717544.2018.1494224] [PMID: 30465437]
[12]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[13]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[14]
Fang, K.; Song, L.; Gu, Z.; Yang, F.; Zhang, Y.; Gu, N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf. B Biointerfaces, 2015, 136, 712-720.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.014] [PMID: 26513754]
[15]
Jeon, M.J.; Ahn, C.H.; Kim, H.; Chung, I.J.; Jung, S.; Kim, Y.H.; Youn, H.; Chung, J.W.; Kim, Y.I. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J. Exp. Clin. Cancer Res., 2014, 33(1), 57.
[http://dx.doi.org/10.1186/s13046-014-0057-x] [PMID: 25037747]
[16]
Abed, Z.; Beik, J.; Laurent, S.; Eslahi, N.; Khani, T.; Davani, E.S.; Ghaznavi, H.; Shakeri-Zadeh, A. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J. Cancer Res. Clin. Oncol., 2019, 145(5), 1213-1219.
[http://dx.doi.org/10.1007/s00432-019-02870-x] [PMID: 30847551]
[17]
Cancino, J.; Marangoni, V.S.; Zucolotto, V. Nanotecnologia em medicina: Aspectos fundamentais e principais preocupações. Quim. Nova, 2014, 37(3), 521-526.
[http://dx.doi.org/10.5935/0100-4042.20140086]
[18]
Balas, M.; Predoi, D.; Burtea, C.; Dinischiotu, A. New insights into the biological response triggered by dextran-coated maghemite nanoparticles in pancreatic cancer cells and their potential for theranostic applications. Int. J. Mol. Sci., 2023, 24(4), 3307.
[http://dx.doi.org/10.3390/ijms24043307] [PMID: 36834718]
[19]
Rehman, Y.; Cheng, Z.; Wang, X.; Huang, X.F.; Konstantinov, K. Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(29), 5805-5817.
[http://dx.doi.org/10.1039/D1TB01036K] [PMID: 34231637]
[20]
Kuchma, E.A.; Zolotukhin, P.V.; Belanova, A.A.; Soldatov, M.A.; Kozakov, A.T.; Kubrin, S.P.; Polozhentsev, O.E.; Medvedev, P.V.; Soldatov, A.V. Effect of synthesis conditions on local atomic structure and properties of low-toxic maghemite nanoparticles for local magnetic hyperthermia in oncology. J. Nanopart. Res., 2022, 24(2), 25.
[http://dx.doi.org/10.1007/s11051-021-05393-0]
[21]
Darson, J.; Mohan, M. Iron oxide nanoparticles and nano-composites: An efficient tool for cancer theranostics.In: Iron Oxide Nanoparticles; Intechopen, 2022.
[http://dx.doi.org/10.5772/intechopen.101934]
[22]
Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics, 2023, 15(1), 236.
[http://dx.doi.org/10.3390/pharmaceutics15010236] [PMID: 36678868]
[23]
Fernández-Álvarez, F.; Caro, C.; García-García, G.; García-Martín, M.L.; Arias, J.L. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(24), 4963-4980.
[http://dx.doi.org/10.1039/D1TB00354B] [PMID: 34114575]
[24]
Agwa, M.M.; Sabra, S. Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int. J. Biol. Macromol., 2021, 167, 1527-1543.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.107] [PMID: 33212102]
[25]
Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Biosensing Res., 2016, 9, 17-22.
[http://dx.doi.org/10.1016/j.sbsr.2016.04.002]
[26]
Zhi, D.; Yang, T.; Yang, J.; Fu, S.; Zhang, S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater., 2020, 102, 13-34.
[http://dx.doi.org/10.1016/j.actbio.2019.11.027] [PMID: 31759124]
[27]
Lacava, Z. Campos da Paz; Almeida Santos; Santos; Silva; Souza; Lima; Silva; Lucci; Morais; Azevedo, R. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int. J. Nanomedicine, 2012, 7, 5271-5282.
[http://dx.doi.org/10.2147/IJN.S32139] [PMID: 23055733]
[28]
Teijeira, A.; Migueliz, I.; Garasa, S.; Karanikas, V.; Luri, C.; Cirella, A.; Olivera, I.; Cañamero, M.; Alvarez, M.; Ochoa, M.C.; Rouzaut, A.; Rodriguez-Ruiz, M.E.; Sanmamed, M.F.; Klein, C.; Umaña, P.; Ponz, M.; Bacac, M.; Melero, I. Three-dimensional colon cancer organoids model the response to CEA-CD3 T-cell engagers. Theranostics, 2022, 12(3), 1373-1387.
[http://dx.doi.org/10.7150/thno.63359] [PMID: 35154495]
[29]
Mustafa, A.J.; Ismail, P.A. Association of potent inflammatory Cytokine and Oxidative DNA Damage Biomarkers in Stomach cancer patients. Baghdad Sci J, 2022, 19(6), 1313.
[http://dx.doi.org/10.21123/bsj.2022.6589]
[30]
Sato, O.; Tsuchikawa, T.; Kato, T.; Amaishi, Y.; Okamoto, S.; Mineno, J.; Takeuchi, Y.; Sasaki, K.; Nakamura, T.; Umemoto, K.; Suzuki, T.; Wang, L.; Wang, Y.; Hatanaka, K.C.; Mitsuhashi, T.; Hatanaka, Y.; Shiku, H.; Hirano, S. Tumor growth suppression of pancreatic cancer orthotopic xenograft model by CEA-targeting CAR-T cells. Cancers, 2023, 15(3), 601.
[http://dx.doi.org/10.3390/cancers15030601] [PMID: 36765558]
[31]
Campos-da-Paz, M.; Dórea, J.G.; Galdino, A.S.; Lacava, Z.G.M.; de Fatima Menezes Almeida Santos, M. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Pat. Biotechnol., 2018, 12(4), 269-279.
[http://dx.doi.org/10.2174/1872208312666180731104244] [PMID: 30062978]
[32]
Aurich, K.; Nagel, S.; Heister, E.; Weitschies, W. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements. Nanotechnology, 2008, 19(50), 505102-505110.
[http://dx.doi.org/10.1088/0957-4484/19/50/505102] [PMID: 19942759]
[33]
Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release, 2013, 172(3), 782-794.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.013] [PMID: 24075927]
[34]
Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev., 2013, 65(5), 622-648.
[http://dx.doi.org/10.1016/j.addr.2012.08.015] [PMID: 22975010]
[35]
Xu, L.; Xu, M.; Sun, X.; Feliu, N.; Feng, L.; Parak, W.J.; Liu, S. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano, 2023, 17(3), 2039-2052.
[http://dx.doi.org/10.1021/acsnano.2c07295] [PMID: 36717361]
[36]
Shipunova, V.O.; Belova, M.M.; Kotelnikova, P.A.; Shilova, O.N.; Mirkasymov, A.B.; Danilova, N.V.; Komedchikova, E.N.; Popovtzer, R.; Deyev, S.M.; Nikitin, M.P. Photothermal therapy with HER2-targeted silver nanoparticles leading to cancer remission. Pharmaceutics, 2022, 14(5), 1013.
[http://dx.doi.org/10.3390/pharmaceutics14051013] [PMID: 35631598]
[37]
Felber, M.; Bauwens, M.; Mateos, J.M.; Imstepf, S.; Mottaghy, F.M.; Alberto, R. (99m) Tc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand. Chemistry, 2015, 21(16), 6090-6099.
[http://dx.doi.org/10.1002/chem.201405704] [PMID: 25765900]
[38]
Diniz, S.O.F.; Siqueira, C.F.; Nelson, D.L.; Martin-Comin, J.; Cardoso, V.N. Technetium-99m ceftizoxime kit preparation.Braz. Arch. Biol. Technol., 2005, 48(spe2), 89-96.
[http://dx.doi.org/10.1590/S1516-89132005000700014]
[39]
Tsiapa, I.; Efthimiadou, E.K.; Fragogeorgi, E.; Loudos, G.; Varvarigou, A.D.; Bouziotis, P.; Kordas, G.C.; Mihailidis, D.; Nikiforidis, G.C.; Xanthopoulos, S.; Psimadas, D.; Paravatou-Petsotas, M.; Palamaris, L.; Hazle, J.D.; Kagadis, G.C. 99m Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3 -mediated tumor expression and feasibility for hyperthermia treatment. J. Colloid Interface Sci., 2014, 433, 163-175.
[http://dx.doi.org/10.1016/j.jcis.2014.07.032] [PMID: 25128864]
[40]
Lassenberger, A.; Scheberl, A.; Stadlbauer, A.; Stiglbauer, A.; Helbich, T.; Reimhult, E. Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Appl. Mater. Interfaces, 2017, 9(4), 3343-3353.
[http://dx.doi.org/10.1021/acsami.6b12932] [PMID: 28071883]
[41]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44(10), 853-862.
[http://dx.doi.org/10.1021/ar2000277] [PMID: 21528865]
[42]
Song, L.; Chen, Y.; Ding, J.; Wu, H.; Zhang, W.; Ma, M.; Zang, F.; Wang, Z.; Gu, N.; Zhang, Y. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(5), 895-907.
[http://dx.doi.org/10.1039/C9TB02521A] [PMID: 31909406]
[43]
Avazzadeh, R.; Vasheghani-Farahani, E.; Soleimani, M.; Amanpour, S.; Sadeghi, M. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia. Prog. Biomater., 2017, 6(3), 75-84.
[http://dx.doi.org/10.1007/s40204-017-0068-8] [PMID: 28624871]
[44]
Driskell, J.D.; Jones, C.A.; Tompkins, S.M.; Tripp, R.A. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analys, 2011, 136(15), 3083-3090.
[http://dx.doi.org/10.1039/c1an15303j] [PMID: 21666913]
[45]
Venkatraman, G. Ramya; Shruthilaya; Akila; Ganga; Suresh Kumar; Yoganathan; Santosham, R.; Ponraju, Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int. J. Nanomedicine, 2012, 7, 1043-1060.
[http://dx.doi.org/10.2147/IJN.S25182] [PMID: 22403487]
[46]
Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C, 2019, 98, 1252-1276.
[http://dx.doi.org/10.1016/j.msec.2019.01.066] [PMID: 30813007]
[47]
Mikelez-Alonso, I.; Aires, A.; Cortajarena, A.L. Cancer nano-immunotherapy from the injection to the target: The role of protein corona. Int. J. Mol. Sci., 2020, 21(2), 519-536.
[http://dx.doi.org/10.3390/ijms21020519] [PMID: 31947622]
[48]
Foroozandeh, P.; Aziz, A.A. Merging worlds of nanomaterials and biological environment: Factors governing protein corona formation on nanoparticles and its biological consequences. Nanoscale Res. Lett., 2015, 10(1), 221.
[http://dx.doi.org/10.1186/s11671-015-0922-3] [PMID: 25995715]
[49]
Belanova, A.A.; Gavalas, N.; Makarenko, Y.M.; Belousova, M.M.; Soldatov, A.V.; Zolotukhin, P.V. Physicochemical properties of magnetic nanoparticles: Implications for biomedical applications in vitro and in vivo. Oncol. Res. Treat., 2018, 41(3), 139-143.
[http://dx.doi.org/10.1159/000485020] [PMID: 29485418]
[50]
Dias, C.R.D.B.R. Studies of monoclonal antibodies IOR-CEA-1 and IOR-EGF/R3 labelled with 99mTc; , 2005. Available from https://inis.iaea.org/search/search.aspx?orig_q=RN:40094776
[51]
Bailey, J.J.; Dewaraja, Y.; Hubers, D.; Srinivasa, R.; Frey, K.A. Biodistribution of 99mTc-MAA on SPECT/CT performed for 90Y-radioembolization therapy planning: A pictorial review. Clin. Transl. Imaging, 2017, 5(5), 473-485.
[http://dx.doi.org/10.1007/s40336-017-0245-8] [PMID: 29423383]
[52]
Zhang, Q.; Rajan, S.S.; Tyner, K.M.; Casey, B.J.; Dugard, C.K.; Jones, Y.; Paredes, A.M.; Clingman, C.S.; Howard, P.C.; Goering, P.L. Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(5), 1032-1042.
[http://dx.doi.org/10.1002/jbm.b.33450] [PMID: 26013845]
[53]
Gaharwar, U.S.; Meena, R.; Rajamani, P. Biodistribution, clearance and morphological alterations of intravenously administered iron oxide nanoparticles in male wistar rats. Int. J. Nanomedicine, 2019, 14, 9677-9692.
[http://dx.doi.org/10.2147/IJN.S223142] [PMID: 31827324]
[54]
Klapproth, A.P.; Shevtsov, M.; Stangl, S.; Li, W.B.; Multhoff, G. A new pharmacokinetic model describing the biodistribution of intravenously and intratumorally administered superparamagnetic iron oxide nanoparticles (SPIONs) in a GL261 Xenograft glioblastoma model. Int. J. Nanomedicine, 2020, 15, 4677-4689.
[http://dx.doi.org/10.2147/IJN.S254745] [PMID: 32669844]
[55]
Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev., 2015, 44(23), 8576-8607.
[http://dx.doi.org/10.1039/C5CS00541H] [PMID: 26390044]
[56]
Yang, B.; Han, X.; Ji, B.; Lu, R. Competition between tumor and mononuclear phagocyte system causing the low tumor distribution of nanoparticles and strategies to improve tumor accumulation. Curr. Drug Deliv., 2016, 13(8), 1261-1274.
[http://dx.doi.org/10.2174/1567201813666160418105703] [PMID: 27086698]
[57]
Lu, Y.; Gu, Z. A size bandpass filter. Nat. Nanotechnol., 2017, 12(11), 1023-1025.
[http://dx.doi.org/10.1038/nnano.2017.200] [PMID: 28892100]
[58]
Gómez-Vallejo, V.; Puigivila, M.; Plaza-García, S.; Szczupak, B.; Piñol, R.; Murillo, J.L.; Sorribas, V.; Lou, G.; Veintemillas, S.; Ramos-Cabrer, P.; Llop, J.; Millán, A. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale, 2018, 10(29), 14153-14164.
[http://dx.doi.org/10.1039/C8NR03084G] [PMID: 29999506]
[59]
Ruggiero, A.; Villa, C.H.; Bander, E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Manova-Todorova, K.; Deen, W.M.; Scheinberg, D.A.; McDevitt, M.R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci., 2010, 107(27), 12369-12374.
[http://dx.doi.org/10.1073/pnas.0913667107] [PMID: 20566862]
[60]
He, X.; Nie, H.; Wang, K.; Tan, W.; Wu, X.; Zhang, P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem., 2008, 80(24), 9597-9603.
[http://dx.doi.org/10.1021/ac801882g] [PMID: 19007246]
[61]
Naumenko, V.; Nikitin, A.; Kapitanova, K.; Melnikov, P.; Vodopyanov, S.; Garanina, A.; Valikhov, M.; Ilyasov, A.; Vishnevskiy, D.; Markov, A.; Golyshev, S.; Zhukov, D.; Alieva, I.; Abakumov, M.; Chekhonin, V.; Majouga, A. Intravital microscopy reveals a novel mechanism of nanoparticles excretion in kidney. J. Control. Release, 2019, 307, 368-378.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.026] [PMID: 31247280]
[62]
Duan, L.; Yang, L.; Jin, J.; Yang, F.; Liu, D.; Hu, K.; Wang, Q.; Yue, Y.; Gu, N. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics, 2020, 10(2), 462-483.
[http://dx.doi.org/10.7150/thno.37593] [PMID: 31903132]
[63]
Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26), 8073-8090.
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]
[64]
Kang, H.; Rho, S.; Stiles, W.R.; Hu, S.; Baek, Y.; Hwang, D.W.; Kashiwagi, S.; Kim, M.S.; Choi, H.S. Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater., 2020, 9(1)1901223
[http://dx.doi.org/10.1002/adhm.201901223] [PMID: 31794153]
[65]
Field, L.D.; Nag, O.K.; Sangtani, A.; Burns, K.E.; Delehanty, J.B. The role of nanoparticles in the improvement of systemic anticancer drug delivery. Ther. Deliv., 2018, 9(7), 527-545.
[http://dx.doi.org/10.4155/tde-2018-0015] [PMID: 29943689]
[66]
Alric, C.; Hervé-Aubert, K.; Aubrey, N.; Melouk, S.; Lajoie, L.; Même, W.; Même, S.; Courbebaisse, Y.; Ignatova, A.A.; Feofanov, A.V.; Chourpa, I.; Allard-Vannier, E. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J. Nanobiotechnology, 2018, 16(1), 18.
[http://dx.doi.org/10.1186/s12951-018-0341-6] [PMID: 29466990]
[67]
Lin, R.; Huang, J.; Wang, L.; Li, Y.; Lipowska, M.; Wu, H.; Yang, J.; Mao, H. Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater. Sci., 2018, 6(6), 1517-1525.
[http://dx.doi.org/10.1039/C8BM00225H] [PMID: 29652061]
[68]
Griswold, K.; Ndong, C.; Toraya-Brown, S.; Kekalo, K.; Baker, I.; Gerngross, T.; Fiering, S. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 2595-2617.
[http://dx.doi.org/10.2147/IJN.S79367] [PMID: 25878495]
[69]
Cędrowska, E.; Pruszyński, M.; Gawęda, W.; Żuk, M.; Krysiński, P.; Bruchertseifer, F.; Morgenstern, A.; Karageorgou, M.A.; Bouziotis, P.; Bilewicz, A. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225AC as a perspective tool for combined α-radioimmunotherapy and magnetic hyperthermia of HER2-positive breast cancer. Molecules, 2020, 25(5), 1025-1043.
[http://dx.doi.org/10.3390/molecules25051025] [PMID: 32106568]
[70]
Tate, J.A.; Kett, W. NDong, C.; Griswold, K.E.; Hoopes, P.J. Biodistribution of antibody-targeted and non-targeted iron oxide nanoparticles in a breast cancer mouse model. Proc. SPIE, 2013, 858485840G
[http://dx.doi.org/10.1117/12.2008814] [PMID: 25301995]
[71]
Stanković, A.; Mihailović, J.; Mirković, M.; Radović, M.; Milanović, Z.; Ognjanović, M.; Janković, D.; Antić, B.; Mijović, M.; Vranješ-Đurić, S.; Prijović, Ž. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. Int. J. Pharm., 2020, 587, 119628-119665.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119628] [PMID: 32681867]
[72]
Oltolina, F.; Colangelo, D.; Miletto, I.; Clemente, N.; Miola, M.; Verné, E.; Prat, M.; Follenzi, A. Tumor targeting by monoclonal antibody functionalized magnetic nanoparticles. Nanomaterials, 2019, 9(11), 1575-1597.
[http://dx.doi.org/10.3390/nano9111575] [PMID: 31698869]
[73]
Cai, Z.; Chattopadhyay, N.; Yang, K.; Kwon, Y.L.; Yook, S.; Pignol, J.P.; Reilly, R.M. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl. Med. Biol., 2016, 43(12), 818-826.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.08.009] [PMID: 27788375]
[74]
Framery, B.; Gutowski, M.; Dumas, K.; Evrard, A.; Muller, N.; Dubois, V.; Quinonero, J.; Scherninski, F.; Pèlegrin, A.; Cailler, F. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol. Rep., 2019, 6, 409-415.
[http://dx.doi.org/10.1016/j.toxrep.2019.04.011] [PMID: 31080749]
[75]
Correa, T.S.; Bocca, A.L.; Figueiredo, F.; Lima, E.C.O.; Almeida Santos, M.D.F.M.; Lacava, Z.G.M.; Campos-da-Paz, M. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer. Biomed. Mater., 2021, 16(3), 035017-035042.
[http://dx.doi.org/10.1088/1748-605X/abe359] [PMID: 33540396]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy