Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Research Article

Immunoinformatic Analysis of Leishmania Major gp46 Protein and Potential Targets for Vaccination against Leishmaniasis

In Press, (this is not the final "Version of Record"). Available online 02 February, 2024
Author(s): Mohammad Reza Hafezi Ahmadi, Mina Mamizadeh, Davood Siamian, Mehdi Ali Asghari Touyeh, Morteza Shams* and Yasaman Rashidi
Published on: 02 February, 2024

DOI: 10.2174/0127722708283588240124095057

Price: $95

Abstract

Background: Cutaneous leishmaniasis (CL) is a parasitic disease with a significant burden in the Old World countries.

Objective: In the current study, some of the primary biochemical properties and IFN-γ inducing epitopes with specific binding capacity to human and mouse MHC alleles were predicted for Leishmania major gp46 antigenic protein.

Methods: Several online servers were used to predict physico-chemical traits, allergenicity, antigenicity, transmembrane domain and signal peptide, subcellular localization, post-translational modifications (PTMs), secondary and tertiary structures, tertiary model refining with validations. Also, IEDB web server was used to predict mouse/human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes.

Results: The 33.25 kDa protein was stable, hydrophilic, antigenic, while non-allergenic, with enhanced thermotolerance and 45 PTM sites. The secondary structure encompassed a random coil, followed by extended strands and helices. Ramachandran-based analysis of the refined model showed 73.1%, 21.6%, 3.4% and 1.9% of residues in the most favored, additional allowed, generously-allowed and disallowed regions, respectively. Epitope screening demonstrated 4 HTL epitopes against seemingly protective HLA alleles, 5 HTL epitopes against the HLA reference set, 3 human CTL epitopes and a number of mouse MHC-restricted epitopes.

Conclusion: This paper provides insights into the bioinformatics characteristics of the L. major gp46 protein as a promising vaccine candidate.

[1]
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: A review. F1000 Res 2017; 6: 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[2]
Mohebali M. Visceral leishmaniasis in Iran: Review of the epidemiological and clinical features. Iran J Parasitol 2013; 8(3): 348-58.
[PMID: 24454426]
[3]
Taghipour A, Abdoli A, Ramezani A, et al. Leishmaniasis and trace element alterations: A systematic review. Biol Trace Elem Res 2021; 199(10): 3918-38.
[http://dx.doi.org/10.1007/s12011-020-02505-0] [PMID: 33405078]
[4]
Sabzevari S, Teshnizi SH, Shokri A, Bahrami F, Kouhestani F. Cutaneous leishmaniasis in Iran: A systematic review and meta-analysis. Microb Pathog 2021; 152: 104721.
[http://dx.doi.org/10.1016/j.micpath.2020.104721] [PMID: 33539962]
[5]
Firooz A, Mortazavi H, Khamesipour A, et al. Old world cutaneous leishmaniasis in Iran: Clinical variants and treatments. J Dermatolog Treat 2021; 32(7): 673-83.
[http://dx.doi.org/10.1080/09546634.2019.1704214] [PMID: 31869258]
[6]
Shams M, Nourmohammadi H, Majidiani H, et al. Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia 2022; 77(1): 277-89.
[http://dx.doi.org/10.1007/s11756-021-00934-3] [PMID: 34866641]
[7]
Valero NNH, Uriarte M. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: A systematic review. Parasitol Res 2020; 119(2): 365-84.
[http://dx.doi.org/10.1007/s00436-019-06575-5] [PMID: 31897789]
[8]
Nazzaro G, Rovaris M, Veraldi S. Leishmaniasis. JAMA Dermatol 2014; 150(11): 1204.
[http://dx.doi.org/10.1001/jamadermatol.2014.1015] [PMID: 25389793]
[9]
Kedzierski L. Leishmaniasis vaccine: Where are we today? J Glob Infect Dis 2010; 2(2): 177-85.
[http://dx.doi.org/10.4103/0974-777X.62881] [PMID: 20606974]
[10]
Moulik S, Sengupta S, Chatterjee M. Molecular tracking of the Leishmania parasite. Front Cell Infect Microbiol 2021; 11: 623437.
[http://dx.doi.org/10.3389/fcimb.2021.623437] [PMID: 33692966]
[11]
Kumari S, Kumar A, Samant M, Singh N, Dube A. Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics. Curr Drug Targets 2008; 9(11): 938-47.
[http://dx.doi.org/10.2174/138945008786786091] [PMID: 18991606]
[12]
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9(1): 118.
[http://dx.doi.org/10.1186/s13071-016-1412-x] [PMID: 26932389]
[13]
Mougneau E, Bihl F, Glaichenhaus N. Cell biology and immunology of Leishmania. Immunol Rev 2011; 240(1): 286-96.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00983.x] [PMID: 21349100]
[14]
Iborra S, Solana JC, Requena JM, Soto M. Vaccine candidates against leishmania under current research. Expert Rev Vaccines 2018; 17(4): 323-34.
[http://dx.doi.org/10.1080/14760584.2018.1459191] [PMID: 29589966]
[15]
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306: 120829.
[http://dx.doi.org/10.1016/j.lfs.2022.120829] [PMID: 35872004]
[16]
Devault A, Bañuls AL. The promastigote surface antigen gene family of the Leishmania parasite: Differential evolution by positive selection and recombination. BMC Evol Biol 2008; 8(1): 292.
[http://dx.doi.org/10.1186/1471-2148-8-292] [PMID: 18950494]
[17]
Symons FM, Murray PJ, Ji H, et al. Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Mol Biochem Parasitol 1994; 67(1): 103-13.
[http://dx.doi.org/10.1016/0166-6851(94)90100-7] [PMID: 7838170]
[18]
Kedzierski L, Montgomery J, Bullen D, et al. A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. J Immunol 2004; 172(8): 4902-6.
[http://dx.doi.org/10.4049/jimmunol.172.8.4902] [PMID: 15067069]
[19]
Handman E, Symons FM, Baldwin TM, Curtis JM, Scheerlinck JP. Protective vaccination with promastigote surface antigen 2 from Leishmania major is mediated by a TH1 type of immune response. Infect Immun 1995; 63(11): 4261-7.
[http://dx.doi.org/10.1128/iai.63.11.4261-4267.1995] [PMID: 7591056]
[20]
McMahon-Pratt D, Rodriguez D, Rodriguez JR, et al. Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect Immun 1993; 61(8): 3351-9.
[http://dx.doi.org/10.1128/iai.61.8.3351-3359.1993] [PMID: 8335366]
[21]
Scarselli M, Giuliani MM, Adu-Bobie J, Pizza M, Rappuoli R. The impact of genomics on vaccine design. Trends Biotechnol 2005; 23(2): 84-91.
[http://dx.doi.org/10.1016/j.tibtech.2004.12.008] [PMID: 15661345]
[22]
Salemi A, Pourseif MM, Omidi Y. Next-generation vaccines and the impacts of state-of-the-art in-silico technologies. Biologicals 2021; 69: 83-5.
[http://dx.doi.org/10.1016/j.biologicals.2020.10.002] [PMID: 33143992]
[23]
Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discov Today 2020; 25(6): 1034-42.
[http://dx.doi.org/10.1016/j.drudis.2020.03.006] [PMID: 32205198]
[24]
Martins VT, Lage DP, Duarte MC, et al. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cell Immunol 2017; 313: 32-42.
[http://dx.doi.org/10.1016/j.cellimm.2016.12.008] [PMID: 28049560]
[25]
UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[26]
Gasteiger E, Hoogland C, Gattiker A. Duvaud Se, Wilkins MR, Appel RD, et al Protein identification and analysis tools on the ExPASy server. Springer 2005.
[27]
Asghari A, Shamsinia S, Nourmohammadi H, et al. Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches. Eur J Pharm Sci 2021; 162: 105837.
[http://dx.doi.org/10.1016/j.ejps.2021.105837] [PMID: 33836177]
[28]
Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007; 8(1): 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[29]
Nosrati MC, Ghasemi E, Shams M, et al. Toxoplasma gondii ROP38 protein: Bioinformatics analysis for vaccine design improvement against toxoplasmosis. Microb Pathog 2020; 149: 104488.
[http://dx.doi.org/10.1016/j.micpath.2020.104488] [PMID: 32916240]
[30]
Shams M, Nourmohammadi H, Basati G, Adhami G, Majidiani H, Azizi E. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. Informatics in Medicine Unlocked 2021; 24: 100626.
[http://dx.doi.org/10.1016/j.imu.2021.100626]
[31]
Sharma N, Patiyal S, Dhall A, Pande A, Arora C, Raghava GPS. AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Brief Bioinform 2021; 22(4): bbaa294.
[http://dx.doi.org/10.1093/bib/bbaa294] [PMID: 33201237]
[32]
Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 2017; 33(19): 3098-100.
[http://dx.doi.org/10.1093/bioinformatics/btx345] [PMID: 28575391]
[33]
Asghari A, Majidiani H, Fatollahzadeh M, et al. Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii. Infect Genet Evol 2021; 95: 105037.
[http://dx.doi.org/10.1016/j.meegid.2021.105037] [PMID: 34390868]
[34]
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: An updated software for palmitoylation sites prediction. Protein Eng Des Sel 2008; 21(11): 639-44.
[http://dx.doi.org/10.1093/protein/gzn039] [PMID: 18753194]
[35]
Blom N, Gammeltoft S. SJJomb Brunak. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 1999; 294(5): 1351-62.
[36]
Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S. NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15(2): 115-30.
[http://dx.doi.org/10.1023/A:1006960004440] [PMID: 9557871]
[37]
Deng W, Wang C, Zhang Y, et al. GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences. Sci Rep 2016; 6(1): 39787.
[http://dx.doi.org/10.1038/srep39787] [PMID: 28004786]
[38]
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res 2022; 50(W1): W228-34.
[http://dx.doi.org/10.1093/nar/gkac278] [PMID: 35489069]
[39]
Teufel F, Almagro Armenteros JJ, Johansen AR, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022; 40(7): 1023-5.
[http://dx.doi.org/10.1038/s41587-021-01156-3] [PMID: 34980915]
[40]
Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. BioRxiv 2022; 2022.04.
[http://dx.doi.org/10.1101/2022.04.08.487609]
[41]
Høie MH, Kiehl EN, Petersen B, et al. NetSurfP-3.0: Accurate and fast prediction of protein structural features by protein language models and deep learning. Nucleic Acids Res 2022; 50(W1): W510-5.
[http://dx.doi.org/10.1093/nar/gkac439] [PMID: 35648435]
[42]
Yang J, Zhang Y. Protein structure and function prediction using I‐TASSER. Curr Protoc Bioinformatics 2015; 52(1): 1-5.
[http://dx.doi.org/10.1002/0471250953.bi0508s52]
[43]
Majid M, Andleeb S. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep 2019; 9(1): 19780.
[http://dx.doi.org/10.1038/s41598-019-55613-w] [PMID: 31874963]
[44]
Vita R, Mahajan S, Overton JA, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 2019; 47(D1): D339-43.
[http://dx.doi.org/10.1093/nar/gky1006] [PMID: 30357391]
[45]
de Vrij N, Meysman P, Gielis S, Adriaensen W, Laukens K, Cuypers B. HLA-DRB1 alleles associated with lower leishmaniasis susceptibility share common amino acid polymorphisms and epitope binding repertoires. Vaccines 2021; 9(3): 270.
[http://dx.doi.org/10.3390/vaccines9030270] [PMID: 33803005]
[46]
Olivo-Díaz A, Debaz H, Alaez C, et al. Role of HLA class II alleles in susceptibility to and protection from localized cutaneous leishmaniasis. Hum Immunol 2004; 65(3): 255-61.
[http://dx.doi.org/10.1016/j.humimm.2003.12.008] [PMID: 15041165]
[47]
Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. Bioimpacts 2020; 11(1): 65-84.
[http://dx.doi.org/10.34172/bi.2021.11] [PMID: 33469510]
[48]
Gillespie PM, Beaumier CM, Strych U, Hayward T, Hotez PJ, Bottazzi ME. Status of vaccine research and development of vaccines for leishmaniasis. Vaccine 2016; 34(26): 2992-5.
[http://dx.doi.org/10.1016/j.vaccine.2015.12.071] [PMID: 26973063]
[49]
Dunning N. Leishmania vaccines: From leishmanization to the era of DNA technology. Biosci Horiz 2009; 2(1): 73-82.
[http://dx.doi.org/10.1093/biohorizons/hzp004]
[50]
Cobey S. Pathogen evolution and the immunological niche. Ann N Y Acad Sci 2014; 1320(1): 1-15.
[http://dx.doi.org/10.1111/nyas.12493] [PMID: 25040161]
[51]
Asghari A, Sadrebazzaz A, Shamsi L, Shams M. Global prevalence, subtypes distribution, zoonotic potential, and associated risk factors of Blastocystis sp. in domestic pigs (Sus domesticus) and wild boars (Sus scrofa): A systematic review and meta-analysis. Microb Pathog 2021; 160: 105183.
[http://dx.doi.org/10.1016/j.micpath.2021.105183] [PMID: 34517066]
[52]
De Brito RCF, Cardoso JMDO, Reis LES, et al. Peptide vaccines for leishmaniasis. Front Immunol 2018; 9: 1043.
[http://dx.doi.org/10.3389/fimmu.2018.01043] [PMID: 29868006]
[53]
Asghari A, Majidiani H, Nemati T, Fatollahzadeh M, Shams M, Naserifar R, et al. Toxoplasma gondii tyrosine-rich oocyst wall protein: A closer look through an in silico prism. Biomed Res Int 2021; 2021
[http://dx.doi.org/10.1155/2021/1315618]
[54]
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021; 10(1): 59-77.
[http://dx.doi.org/10.7774/cevr.2021.10.1.59] [PMID: 33628756]
[55]
Majidiani H, Dalimi A, Ghaffarifar F, Pirestani M. Multi-epitope vaccine expressed in Leishmania tarentolae confers protective immunity to Toxoplasma gondii in BALB/c mice. Microb Pathog 2021; 155: 104925.
[http://dx.doi.org/10.1016/j.micpath.2021.104925] [PMID: 33933602]
[56]
Majidiani H, Dalimi A, Ghaffarifar F, Pirestani M, Ghaffari AD. Computational probing of Toxoplasma gondii major surface antigen 1 (SAG1) for enhanced vaccine design against toxoplasmosis. Microb Pathog 2020; 147: 104386.
[http://dx.doi.org/10.1016/j.micpath.2020.104386] [PMID: 32663606]
[57]
Majidiani H, Soltani S, Ghaffari AD, Sabaghan M, Taghipour A, Foroutan M. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination. Clin Exp Vaccine Res 2020; 9(2): 146-58.
[http://dx.doi.org/10.7774/cevr.2020.9.2.146] [PMID: 32864371]
[58]
Basmenj ER, Arastonejad M, Mamizadeh M, et al. Engineering and design of promising T-cell-based multi-epitope vaccine candidates against leishmaniasis. Sci Rep 2023; 13(1): 19421.
[http://dx.doi.org/10.1038/s41598-023-46408-1] [PMID: 37940672]
[59]
Kordi B, Basmenj ER, Majidiani H, Basati G, Sargazi D, Nazari N, et al. In silico characterization of an important metacyclogenesis marker in leishmania donovani, HASPB1, as a potential vaccine candidate. In: Biomed Res Int 2023; 2023.
[60]
Asghari A, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Shams M, Montazeri F. In silico analysis and prediction of immunogenic epitopes for pre-erythrocytic proteins of the deadly Plasmodium falciparum. Infect Genet Evol 2021; 93: 104985.
[http://dx.doi.org/10.1016/j.meegid.2021.104985] [PMID: 34214673]
[61]
Azimi-Resketi M, Heydaryan S, Kumar N, Takalou A, Dizaji RE, Gorgani BN, et al. Computational clues of immunogenic hotspots in plasmodium falciparum erythrocytic stage vaccine candidate antigens: In silico approach. Biomed Res Int 2022.
[http://dx.doi.org/10.1155/2022/5886687]
[62]
Asghari A, Kordi B, Maleki B, Majidiani H, Shams M, Naserifar R. Neospora caninum SRS2 protein: essential vaccination targets and biochemical features for next-generation vaccine design. Biomed Res Int 2022; 2022.
[http://dx.doi.org/10.1155/2022/7070144]
[63]
Shams M, Maleki B, Kordi B, Majidiani H, Nazari N, Irannejad H. Towards the first multiepitope vaccine candidate against neospora caninum in mouse model: Immunoinformatic standpoint. Biomed Res Int 2022; 2022.
[64]
Nourmohammadi H, Javanmardi E, Shams M, et al. Multi-epitope vaccine against cystic echinococcosis using immunodominant epitopes from EgA31 and EgG1Y162 antigens. Inform Med Unlocked 2020; 21: 100464.
[http://dx.doi.org/10.1016/j.imu.2020.100464]
[65]
Shams M, Javanmardi E, Nosrati MC, et al. Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis. Infect Genet Evol 2021; 89: 104714.
[http://dx.doi.org/10.1016/j.meegid.2021.104714] [PMID: 33434702]
[66]
Lohman KL, Langer PJ, McMahon-Pratt D. Molecular cloning and characterization of the immunologically protective surface glycoprotein GP46/M-2 of Leishmania amazonensis. Proc Natl Acad Sci USA 1990; 87(21): 8393-7.
[http://dx.doi.org/10.1073/pnas.87.21.8393] [PMID: 2236047]
[67]
Murray PJ, Spithill TW. Variants of a Leishmania surface antigen derived from a multigenic family. J Biol Chem 1991; 266(36): 24477-84.
[http://dx.doi.org/10.1016/S0021-9258(18)54253-8] [PMID: 1761547]
[68]
Kemp M, Handman E, Kemp K, et al. The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major. FEMS Immunol Med Microbiol 1998; 20(3): 209-18.
[http://dx.doi.org/10.1111/j.1574-695X.1998.tb01129.x] [PMID: 9566492]
[69]
Handman E, Osborn AH, Symons F, van Driel R, Cappai R. The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle. Mol Biochem Parasitol 1995; 74(2): 189-200.
[http://dx.doi.org/10.1016/0166-6851(95)02500-6] [PMID: 8719160]
[70]
Tonui WK, Mejia JS, Hochberg L, et al. Immunization with Leishmania major exogenous antigens protects susceptible BALB/c mice against challenge infection with L. major. Infect Immun 2004; 72(10): 5654-61.
[http://dx.doi.org/10.1128/IAI.72.10.5654-5661.2004] [PMID: 15385463]
[71]
Kiefer D, Hu X, Dalbey R, Kuhn A. Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J 1997; 16(9): 2197-204.
[http://dx.doi.org/10.1093/emboj/16.9.2197] [PMID: 9171335]
[72]
Rai M, Padh H. Expression systems for production of heterologous proteins. Curr Sci 2001; 1121-8.
[73]
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci 2018; 110(3): e24067.
[http://dx.doi.org/10.1002/pep2.24067] [PMID: 32328540]
[74]
Shaddel M, Ebrahimi M, Tabandeh MR. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii. J Parasit Dis 2018; 42(2): 269-76.
[http://dx.doi.org/10.1007/s12639-018-0996-9] [PMID: 29844632]
[75]
Kemp M, Hey AS, Bendtzen K, Kharazmi A, Theander TG. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages. Scand J Immunol 1994; 40(6): 629-35.
[http://dx.doi.org/10.1111/j.1365-3083.1994.tb03515.x] [PMID: 7997852]
[76]
Kemp M, Hey AS, Kurtzhals J A L, et al. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis. Clin Exp Immunol 2008; 96(3): 410-5.
[http://dx.doi.org/10.1111/j.1365-2249.1994.tb06043.x] [PMID: 8004809]
[77]
Glennie ND, Volk SW, Scott P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog 2017; 13(4): e1006349.
[http://dx.doi.org/10.1371/journal.ppat.1006349] [PMID: 28419151]
[78]
Qadoumi M, Becker I, Donhauser N, Röllinghoff M, Bogdan C. Expression of inducible nitric oxide synthase in skin lesions of patients with american cutaneous leishmaniasis. Infect Immun 2002; 70(8): 4638-42.
[http://dx.doi.org/10.1128/IAI.70.8.4638-4642.2002] [PMID: 12117977]
[79]
Bogdan C, Moll H, Solbach W, Röllinghoff M. Tumor necrosis factor‐α in combination with interferon‐γ, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol 1990; 20(5): 1131-5.
[http://dx.doi.org/10.1002/eji.1830200528] [PMID: 2113475]
[80]
Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy C. Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol 1990; 145(12): 4290-7.
[81]
Gabriel Á, Valério-Bolas A, Palma-Marques J, Mourata-Gonçalves P, Ruas P, Dias-Guerreiro T. Cutaneous leishmaniasis: The complexity of host’s effective immune response against a polymorphic parasitic disease. J Immunol Res 2019; 2019.
[http://dx.doi.org/10.1155/2019/2603730]
[82]
Scott P, Novais FO. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nat Rev Immunol 2016; 16(9): 581-92.
[http://dx.doi.org/10.1038/nri.2016.72] [PMID: 27424773]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy