Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Role of NADPH Quinone Reductase 1 (NQO1) Polymorphism in Prevention, Diagnosis, and Treatment of Gastrointestinal Cancers

In Press, (this is not the final "Version of Record"). Available online 02 February, 2024
Author(s): Fereshte Ghorbani, Afrooz Mazidimoradi, Arezou Biyabani, Leila Allahqoli and Hamid Salehiniya*
Published on: 02 February, 2024

DOI: 10.2174/0115680096283149240109094710

Abstract

Most cancer deaths are related to gastrointestinal (GI) cancers. Several environmental and genetic factors are effective in the occurrence of GI cancers, such as esophageal, stomach, colorectal, liver, and pancreatic cancers. In addition to risk factors related to lifestyle, reactive oxygen species (ROS) also play a role in GI cancers, and an increase in the amount of free radicals can lead to oxidative stress and increase the probability of malignancies. NQO1 is part of the body's antioxidant defense system that protects cells against mutagenesis and carcinogenesis. NQO1 is responsible for reducing quinones to hydroquinone and preventing the generation of ROS by catalyzing the reaction. The existence of single nucleotide polymorphisms (SNPs) of NADPH Quinone Reductase 1 (NQO1), such as 609C>T NQO1, leads to a decrease in NQO1 enzyme activity. Some NQO1 polymorphisms may increase the risk of gastrointestinal cancer. So, the C609T polymorphism in the NQO1 gene has been found to be effective in causing gastrointestinal cancers. On the other hand, it is very important to know the role of biomarkers in the prognosis and management of cancer treatment. Therefore, this study investigated the role of NQO1 as a biomarker in the management of gastrointestinal cancers (prevention, diagnosis and treatment).

[1]
Arnold, M; Abnet, CC; Neale, RE; Vignat, J; Giovannucci, EL; McGlynn, KA Global burden of 5 major types of gastrointestinal cancer. Gastroenterology, 2020, 159(1), 335-49.e15..
[http://dx.doi.org/10.1053/j.gastro.2020.02.068]
[2]
Ferlay, J; Colombet, M; Soerjomataram, I; Parkin, DM; Piñeros, M; Znaor, A Cancer statistics for the year 2020: An overview. Int J Cancer, 2021, 149(4), 778-789.
[3]
Wild, C.P.; Stewart, B.W.; Wild, C. World cancer report 2014; World Health Organization: Geneva, Switzerland, 2014.
[4]
Masoudi, N.; Sadeghi, S.; Pashaei, M.R.; Valizad Hasanloei, M.A. Evaluation of the relationship between serum levels of carcinoembryonic antigen (Cea) and homeostasis model assessment of insulin resistance-2 (Homa2-Ir) in colorectal cancer patients. Stud. Med. Sci., 2022, 33(3), 152-159.
[http://dx.doi.org/10.52547/umj.33.3.152]
[5]
Soerjomataram, I.; Lortet-Tieulent, J.; Parkin, D.M.; Ferlay, J.; Mathers, C.; Forman, D.; Bray, F. Global burden of cancer in 2008: A systematic analysis of disability-adjusted life-years in 12 world regions. Lancet, 2012, 380(9856), 1840-1850.
[http://dx.doi.org/10.1016/S0140-6736(12)60919-2] [PMID: 23079588]
[6]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun Jin, K.; Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. The global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[7]
Rafiemanesh, H.; Mohammadian-Hafshejani, A.; Ghoncheh, M.; Sepehri, Z.; Shamlou, R.; Salehiniya, H.; Towhidi, F.; Makhsosi, B.R. Incidence and mortality of colorectal cancer and relationships with the human development index across the world. Asian Pac. J. Cancer Prev., 2016, 17(5), 2465-2473.
[PMID: 27268615]
[8]
Mazidimoradi, A.; Gerayllo, S.; Banakar, N.; Allahqoli, L.; Salehiniya, H. Global distribution of incidence, mortality, and burden of stomach cancers and its relationship with the sociodemographic index; World Cancer Research Journal, 2023, p. 10.
[9]
Mazidimoradi, A.; Amiri, S.; Khani, Y.; Allahqoli, L.; Salehiniya, H. Burden of esophageal cancer between 2010 and 2019 in Asian countries by geographical region and SOCIODEMOGRAPHIC INDEX: A comparison with global data. Thorac. Cancer, 2023, 14(24), 2361-2407.
[http://dx.doi.org/10.1111/1759-7714.15026] [PMID: 37455657]
[10]
Strober, W.; Fuss, I.; Mannon, P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest., 2007, 117(3), 514-521.
[http://dx.doi.org/10.1172/JCI30587] [PMID: 17332878]
[11]
Neuman, M.G. Immune dysfunction in inflammatory bowel disease. Transl. Res., 2007, 149(4), 173-186.
[http://dx.doi.org/10.1016/j.trsl.2006.11.009] [PMID: 17383591]
[12]
Sands, B.E. Inflammatory bowel disease: Past, present, and future. J. Gastroenterol., 2007, 42(1), 16-25.
[http://dx.doi.org/10.1007/s00535-006-1995-7] [PMID: 17322989]
[13]
Yusefi, A.R.; Bagheri, L.K.; Bastani, P.; Radinmanesh, M.; Kavosi, Z. Risk factors for gastric cancer: A systematic review. Asian Pac. J. Cancer Prev., 2018, 19(3), 591-603.
[PMID: 29579788]
[14]
Lu, L; Mullins, CS; Schafmayer, C; Zeißig, S; Linnebacher, M A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun, 2021, 41(11), 1137-1151. .
[http://dx.doi.org/10.1002/cac2.12220]
[15]
Lv, X.P. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations. Oncol. Lett., 2017, 13(3), 1499-1508.
[http://dx.doi.org/10.3892/ol.2017.5629] [PMID: 28454282]
[16]
Katabathina, V.S.; Menias, C.O.; Khanna, L.; Murphy, L.; Dasyam, A.K.; Lubner, M.G. Hereditary gastrointestinal cancer syndromes: Role of imaging in screening, diagnosis, and management. Radiographics, 2019, 39(5), 1280-1301.
[17]
Shokrzadeh, M.; Fattahi, I.; Mohammadpour, A.; Mashhadban, A.H. Presence of CagA gene and its antibiotic resistance pattern in helicobacter pylori isolates %J. J. Mazandaran Univ. Med. Sci., 2017, 27(154), 60-72.
[18]
Halliwell, B. Oxidative stress and cancer: Have we moved forward? Biochem. J., 2007, 401(1), 1-11.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
[19]
Zhang, Y.; Wang, Z.T.; Zhong, J. Meta-analysis demonstrates that the NAD(P)H: Quinone oxidoreductase 1 (NQO1) gene 609 C>T polymorphism is associated with increased gastric cancer risk in Asians. Genet. Mol. Res., 2012, 11(3), 2328-2337.
[http://dx.doi.org/10.4238/2012.August.13.6] [PMID: 22911602]
[20]
Akkiz, H.; Bayram, S.; Bekar, A.; Akgöllü, E.; Ülger, Y.; Kaya, B.Y.; Sandikçi, M.; Özdil, B. No association of NAD(P)H: Quinone oxidoreductase 1 (NQO1) C609T polymorphism and risk of hepatocellular carcinoma development in Turkish subjects. APJCP, 2010, 11(4), 1051-1058.
[PMID: 21133623]
[21]
Huang, X.; Dong, Y.; Bey, E.A.; Kilgore, J.A.; Bair, J.S.; Li, L.S.; Patel, M.; Parkinson, E.I.; Wang, Y.; Williams, N.S.; Gao, J.; Hergenrother, P.J.; Boothman, D.A. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res., 2012, 72(12), 3038-3047.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3135] [PMID: 22532167]
[22]
Lee, J.C.; Espéli, M.; Anderson, C.A.; Linterman, M.A.; Pocock, J.M.; Williams, N.J.; Roberts, R.; Viatte, S.; Fu, B.; Peshu, N.; Hien, T.T.; Phu, N.H.; Wesley, E.; Edwards, C.; Ahmad, T.; Mansfield, J.C.; Gearry, R.; Dunstan, S.; Williams, T.N.; Barton, A.; Vinuesa, C.G.; Parkes, M.; Lyons, P.A.; Smith, K.G.C.; Phillips, A.; Mowat, C.; Drummond, H.; Kennedy, N.; Lees, C.W.; Satsangi, J.; Taylor, K.; Prescott, N.J.; Mathew, C.G.; Simpson, P.; Simmons, A.; Khan, M.; Newman, W.G.; Hawkey, C.; Hart, A.; Wilson, D.C.; Henderson, P.; Barrett, J.C. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell, 2013, 155(1), 57-69.
[http://dx.doi.org/10.1016/j.cell.2013.08.034] [PMID: 24035192]
[23]
Ross, D.; Siegel, D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol., 2021, 41, 101950.
[http://dx.doi.org/10.1016/j.redox.2021.101950] [PMID: 33774477]
[24]
Atia, A.; Abdullah, A. NQO1 enzyme and its role in cellular protection; an insight. Iberoam J Med, 2020, 2(4), 306-313.
[http://dx.doi.org/10.53986/ibjm.2020.0054]
[25]
Yu, H.; Liu, H.; Wang, L.E.; Wei, Q. A functional NQO1 609C>T polymorphism and risk of gastrointestinal cancers: A meta-analysis. PLoS One, 2012, 7(1), e30566.
[http://dx.doi.org/10.1371/journal.pone.0030566] [PMID: 22272361]
[26]
Gorący, J.; Bogacz, A.; Uzar, I.; Wolek, M.; Łochyńska, M.; Ziętek, P.; Czerny, B.; Cymbaluk-Płoska, A.; Modliborski, P.; Kamiński, A. The analysis of NADPH quinone reductase 1 (NQO1) polymorphism in polish patients with colorectal cancer. Biomolecules, 2021, 11(7), 1024.
[http://dx.doi.org/10.3390/biom11071024] [PMID: 34356648]
[27]
Lajin, B.; Alachkar, A. The NQO1 polymorphism C609T (Pro187Ser) and cancer susceptibility: A comprehensive meta-analysis. Br. J. Cancer, 2013, 109(5), 1325-1337.
[http://dx.doi.org/10.1038/bjc.2013.357] [PMID: 23860519]
[28]
Gummadi, A.C.; Guddati, A.K. Genetic polymorphisms in pharmaceuticals and chemotherapy. World J. Oncol., 2021, 12(5), 149-154.
[http://dx.doi.org/10.14740/wjon1405] [PMID: 34804277]
[29]
Marjani, H.A.; Biramijamal, F.; Rakhshani, N.; Hossein-Nezhad, A.; Malekzadeh, R. Investigation of NQO1 genetic polymorphism, NQO1 gene expression and PAH-DNA adducts in ESCC. A case-control study from Iran. Genet. Mol. Res., 2010, 9(1), 239-249.
[http://dx.doi.org/10.4238/vol9-1gmr693] [PMID: 20198579]
[30]
Boroumand, M.; Pourgholi, L.; Goodarzynejad, H.; Ziaee, S.; Hajhosseini-Talasaz, A.; Sotoudeh-Anvari, M.; Mandegary, A. NQO1 C609T polymorphism is associated with coronary artery disease in a gender-dependent manner. Cardiovasc. Toxicol., 2017, 17(1), 35-41.
[http://dx.doi.org/10.1007/s12012-015-9353-8] [PMID: 26690082]
[31]
Zhu, H.; Li, Y. NAD(P)H: Quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovasc. Toxicol., 2012, 12(1), 39-45.
[http://dx.doi.org/10.1007/s12012-011-9136-9] [PMID: 21818552]
[32]
Diao, J.; Bao, J.; Peng, J.; Mo, J.; Ye, Q.; He, J. Correlation between NAD(P)H: Quinone oxidoreductase 1 C609T polymorphism and increased risk of esophageal cancer: Evidence from a meta-analysis. Ther. Adv. Med. Oncol., 2017, 9(1), 13-21.
[http://dx.doi.org/10.1177/1758834016668682] [PMID: 28203294]
[33]
Luo, S.; Kang, S.S.; Wang, Z.H.; Liu, X.; Day, J.X.; Wu, Z.; Peng, J.; Xiang, D.; Springer, W.; Ye, K. Akt phosphorylates NQO1 and triggers its degradation, abolishing its antioxidative activities in Parkinson’s disease. J. Neurosci., 2019, 39(37), 7291-7305.
[http://dx.doi.org/10.1523/JNEUROSCI.0625-19.2019] [PMID: 31358653]
[34]
Oh, E.T.; Park, H.J. Implications of NQO1 in cancer therapy. BMB Rep., 2015, 48(11), 609-617.
[http://dx.doi.org/10.5483/BMBRep.2015.48.11.190] [PMID: 26424559]
[35]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[36]
Liu, K.; Jin, B.; Wu, C.; Yang, J.; Zhan, X.; Wang, L.; Shen, X.; Chen, J.; Chen, H.; Mao, Z. NQO1 stabilizes p53 in response to oncogene-induced senescence. Int. J. Biol. Sci., 2015, 11(7), 762-771.
[http://dx.doi.org/10.7150/ijbs.11978] [PMID: 26078718]
[37]
Pey, A.L.; Megarity, C.F.; Timson, D.J. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(11), 2163-2173.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.011] [PMID: 25179580]
[38]
Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H:Quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys., 2010, 501(1), 116-123.
[http://dx.doi.org/10.1016/j.abb.2010.03.019] [PMID: 20361926]
[39]
Asher, G.; Lotem, J.; Kama, R.; Sachs, L.; Shaul, Y. NQO1 stabilizes p53 through a distinct pathway. Proc. Natl. Acad. Sci., 2002, 99(5), 3099-3104.
[http://dx.doi.org/10.1073/pnas.052706799] [PMID: 11867746]
[40]
Atia, A.; Alrawaiq, N.; Abdullah, A. Tocotrienol-rich palm oil extract induces NAD(P)H:quinone oxidoreductase 1 (NQO1) expression in mice liver. J. Appl. Pharm. Sci., 2016, 6(8), 127-134.
[http://dx.doi.org/10.7324/JAPS.2016.60820]
[41]
Niki, E. Evidence for beneficial effects of vitamin E. Korean J. Intern. Med., 2015, 30(5), 571-579.
[http://dx.doi.org/10.3904/kjim.2015.30.5.571] [PMID: 26354050]
[42]
Chan, T.S.; Wilson, J.X.; O’Brien, P.J. Coenzyme Q cytoprotective mechanisms. Methods Enzymol., 2004, 382, 89-104.
[http://dx.doi.org/10.1016/S0076-6879(04)82006-8] [PMID: 15047098]
[43]
Asher, G.; Lotem, J.; Sachs, L.; Shaul, Y. p53-dependent apoptosis and NAD(P)H:quinone oxidoreductase 1. Methods Enzymol., 2004, 382, 278-293.
[http://dx.doi.org/10.1016/S0076-6879(04)82016-0] [PMID: 15047108]
[44]
Atia, A.; Alrawaiq, N.; Abdullah, A. A review of NAD (P) H: Quinone oxidoreductase 1 (NQO1); A multifunctional antioxidant enzyme. J. Appl. Pharm. Sci., 2014, 4(12), 118-122.
[45]
Li, Y.; Paonessa, J.D.; Zhang, Y. Mechanism of chemical activation of Nrf2. PLoS One, 2012, 7(4), e35122.
[http://dx.doi.org/10.1371/journal.pone.0035122] [PMID: 22558124]
[46]
Kaspar, J.W.; Jaiswal, A.K. Antioxidant-induced phosphorylation of tyrosine 486 leads to rapid nuclear export of Bach1 that allows Nrf2 to bind to the antioxidant response element and activate defensive gene expression. J. Biol. Chem., 2010, 285(1), 153-162.
[http://dx.doi.org/10.1074/jbc.M109.040022] [PMID: 19897490]
[47]
Peng, Q.; Lu, Y.; Lao, X.; Chen, Z.; Li, R.; Sui, J.; Qin, X.; Li, S. The NQO1 Pro187Ser polymorphism and breast cancer susceptibility: Evidence from an updated meta-analysis. Diagn. Pathol., 2014, 9(1), 100.
[http://dx.doi.org/10.1186/1746-1596-9-100] [PMID: 24884893]
[48]
Cuadrado, A.; Rojo, A.I.; Wells, G.; Hayes, J.D.; Cousin, S.P.; Rumsey, W.L.; Attucks, O.C.; Franklin, S.; Levonen, A.L.; Kensler, T.W.; Dinkova-Kostova, A.T. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov., 2019, 18(4), 295-317.
[http://dx.doi.org/10.1038/s41573-018-0008-x] [PMID: 30610225]
[49]
Su, X.L.; Yan, M.R.; Yang, L.; Qimuge-Suyila NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia. Chin. J. Cancer Res., 2012, 24(4), 317-322.
[http://dx.doi.org/10.1007/s11670-012-0270-0] [PMID: 23358185]
[50]
Sameer, A.S.; Shah, Z.A.; Syeed, N.; Rasool, R.; Afroze, D.; Siddiqi, M.A. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and colorectal cancer predisposition in the ethnic Kashmiri population. Asian Pac. J. Cancer Prev., 2010, 11(1), 209-213.
[PMID: 20593958]
[51]
Chao, C.; Zhang, Z.F.; Berthiller, J.; Boffetta, P.; Hashibe, M. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: A meta-analysis. Cancer Epidemiol. Biomarkers Prev., 2006, 15(5), 979-987.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0899] [PMID: 16702380]
[52]
Niwa, Y.; Hirose, K.; Nakanishi, T.; Nawa, A.; Kuzuya, K.; Tajima, K.; Hamajima, N. Association of the NAD(P)H: Quinone oxidoreductase C609T polymorphism and the risk of cervical cancer in Japanese subjects. Gynecol. Oncol., 2005, 96(2), 423-429.
[http://dx.doi.org/10.1016/j.ygyno.2004.10.015] [PMID: 15661231]
[53]
van der Logt, E.M.J.; Bergevoet, S.M.; Roelofs, H.M.J.; te Morsche, R.H.M.; Dijk, Y.; Wobbes, T.; Nagengast, F.M.; Peters, W.H.M. Role of epoxide hydrolase, NAD(P)H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat. Res., 2006, 593(1-2), 39-49.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.018] [PMID: 16039674]
[54]
Peng, X.E.; Jiang, Y.Y.; Shi, X.S.; Hu, Z.J. NQO1 609C>T polymorphism interaction with tobacco smoking and alcohol drinking increases colorectal cancer risk in a Chinese population. Gene, 2013, 521(1), 105-110.
[http://dx.doi.org/10.1016/j.gene.2013.02.029] [PMID: 23458878]
[55]
Guo, G.; Gao, Z.; Tong, M.; Zhan, D.; Wang, G.; Wang, Y.; Qin, J. NQO1 is a determinant for cellular sensitivity to anti-tumor agent Napabucasin. Am. J. Cancer Res., 2020, 10(5), 1442-1454.
[PMID: 32509390]
[56]
Malik, M.; Haq, S.; Yetoo, D.; Malik, S.; Shah, Z. NADPH: Quinone oxidoreductase 1 (NQO1609C> T) polymorphism and gastric cancer risk: A meta-analysis. J. Carcinog. Mutagen., 2016, 7(249), 2.
[57]
Zhang, J.; Schulz, W.A.; Li, Y.; Wang, R.; Zotz, R.; Wen, D.; Siegel, D.; Ross, D.; Gabbert, H.E.; Sarbia, M. Association of NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism with esophageal squamous cell carcinoma in a German Caucasian and a northern Chinese population. Carcinogenesis, 2003, 24(5), 905-909.
[http://dx.doi.org/10.1093/carcin/bgg019] [PMID: 12771035]
[58]
Sarbia, M.; Bitzer, M.; Siegel, D.; Ross, D.; Schulz, W.A.; Zotz, R.B.; Kiel, S.; Geddert, H.; Kandemir, Y.; Walter, A.; Willers, R.; Gabbert, H.E. Association between NAD(P)H: Quinone oxidoreductase 1 ( NQ01 ) inactivating C609T polymorphism and adenocarcinoma of the upper gastrointestinal tract. Int. J. Cancer, 2003, 107(3), 381-386.
[http://dx.doi.org/10.1002/ijc.11430] [PMID: 14506737]
[59]
Yang, F.Y.; Guan, Q.K.; Cui, Y.H.; Zhao, Z.Q.; Rao, W.; Xi, Z. NAD(P)H quinone oxidoreductase 1 (NQO1) genetic C609T polymorphism is associated with the risk of digestive tract cancer. Eur. J. Cancer Prev., 2012, 21(5), 432-441.
[http://dx.doi.org/10.1097/CEJ.0b013e32834f7514] [PMID: 22387672]
[60]
Garate, M.; Wani, A.A.; Li, G. The NAD(P)H:Quinone Oxidoreductase 1 induces cell cycle progression and proliferation of melanoma cells. Free Radic. Biol. Med., 2010, 48(12), 1601-1609.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.03.003] [PMID: 20226854]
[61]
Nioi, P.; Hayes, J.D. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat. Res., 2004, 555(1-2), 149-171.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.05.023] [PMID: 15476858]
[62]
Lin, L.; Qin, Y.; Jin, T.; Liu, S.; Zhang, S.; Shen, X.; Lin, Z. Significance of NQO1 overexpression for prognostic evaluation of gastric adenocarcinoma. Exp. Mol. Pathol., 2014, 96(2), 200-205.
[http://dx.doi.org/10.1016/j.yexmp.2013.12.008] [PMID: 24384455]
[63]
Begleiter, A.; Leith, M.K.; Thliveris, J.A.; Digby, T. Dietary induction of NQO1 increases the antitumour activity of mitomycin C in human colon tumours in vivo. Br. J. Cancer, 2004, 91(8), 1624-1631.
[http://dx.doi.org/10.1038/sj.bjc.6602171] [PMID: 15467770]
[64]
Mizumoto, A.; Ohashi, S.; Kamada, M.; Saito, T.; Nakai, Y.; Baba, K.; Hirohashi, K.; Mitani, Y.; Kikuchi, O.; Matsubara, J.; Yamada, A.; Takahashi, T.; Lee, H.; Okuno, Y.; Kanai, M.; Muto, M. Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma. J. Gastroenterol., 2019, 54(8), 687-698.
[http://dx.doi.org/10.1007/s00535-019-01549-x] [PMID: 30737573]
[65]
McDonald, B.F.; Quinn, A.M.; Devers, T.; Cullen, A.; Coulter, I.S.; Marison, I.W.; Loughran, S.T. In-vitro characterisation of a novel celecoxib microbead formulation for the treatment and prevention of colorectal cancer. J. Pharm. Pharmacol., 2015, 67(5), 685-695.
[http://dx.doi.org/10.1111/jphp.12372] [PMID: 25650335]
[66]
Suh, N.; Reddy, B.S.; DeCastro, A.; Paul, S.; Lee, H.J.; Smolarek, A.K.; So, J.Y.; Simi, B.; Wang, C.X.; Janakiram, N.B.; Steele, V.; Rao, C.V. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats. Cancer Prev. Res., 2011, 4(11), 1895-1902.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0222] [PMID: 21764859]
[67]
Jiang, Z.N.; Ahmed, S.M.U.; Wang, Q.C.; Shi, H.F.; Tang, X.W. Quinone oxidoreductase 1 is overexpressed in gastric cancer and associated with outcome of adjuvant chemotherapy and survival. World J. Gastroenterol., 2021, 27(22), 3085-3096.
[http://dx.doi.org/10.3748/wjg.v27.i22.3085] [PMID: 34168410]
[68]
Long, D.J., II; Gaikwad, A.; Multani, A.; Pathak, S.; Montgomery, C.A.; Gonzalez, F.J.; Jaiswal, A.K. Disruption of the NAD(P)H:Quinone oxidoreductase 1 (NQO1) gene in mice causes myelogenous hyperplasia. Cancer Res., 2002, 62(11), 3030-3036.
[PMID: 12036909]
[69]
Moscovitz, O.; Tsvetkov, P.; Hazan, N.; Michaelevski, I.; Keisar, H.; Ben-Nissan, G.; Shaul, Y.; Sharon, M. A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Mol. Cell, 2012, 47(1), 76-86.
[http://dx.doi.org/10.1016/j.molcel.2012.05.049] [PMID: 22793692]
[70]
Pey, A.L.; Megarity, C.F.; Medina-Carmona, E.; Timson, D.J. Natural small molecules as stabilizers and activators of cancer-associated NQO1 polymorphisms. Curr. Drug Targets, 2016, 17(13), 1506-1514.
[http://dx.doi.org/10.2174/1389450117666160101121610] [PMID: 26721407]
[71]
Geng, R.; Chen, Z.; Zhao, X.; Qiu, L.; Liu, X.; Liu, R.; Guo, W.; He, G.; Li, J.; Zhu, X. Oxidative stress-related genetic polymorphisms are associated with the prognosis of metastatic gastric cancer patients treated with epirubicin, oxaliplatin and 5-fluorouracil combination chemotherapy. PloS One, 2014, 9(12), e116027.

© 2025 Bentham Science Publishers | Privacy Policy