Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Research Article

Effect of in vitro Digestion on the Bioaccessibility of Polyphenols and Potential Prebiotic Properties of Potato Peel

In Press, (this is not the final "Version of Record"). Available online 02 February, 2024
Author(s): Urvashi P. Mall and Vinayak H. Patel*
Published on: 02 February, 2024

DOI: 10.2174/012772574X287665240118053142

Price: $95

Abstract

Background: Potato peel is a byproduct of the potato processing industry and a potential source of functional ingredients such as dietary fiber, polyphenols, and prebiotics. However, the bioaccessibility of polyphenols and antioxidants during in vitro digestion and prebiotic potential after in vitro digestion of potato peel flour has not been reported.

Objective: The study was designed to assess the bioaccessibility of polyphenols and the prebiotic potential of potato peel flour.

Methods: In this study, the changes in polyphenol content and antioxidant capacity during different phases of in vitro digestion, including salivary, gastric and intestinal phases were studied. Additionally, an investigation was conducted to evaluate the prebiotic properties of potato peel flour by in vitro fermentation with Lactobacillus acidophilus.

Results: The findings revealed a significant increase in the recovery index for total phenolic content during both gastric (106.90%) and intestinal (102.71%) digestive phases. Furthermore, polyphenols in potato peel flour exhibited high residual intestinal digestibility index values (>90%). The antioxidant capacity increased by >50% during various phases of in vitro digestion. Regarding prebiotic properties, potato peel flour significantly increased L. acidophilus counts and promoted the production of short-chain fatty acids, specifically propionate and butyrate.

Conclusion: This study suggests that potato peel flour has the potential to serve as a functional ingredient or nutraceutical that can enhance health and may help in reducing environmental problems.

[1]
Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal., 2009, 22(6), 494-502.
[http://dx.doi.org/10.1016/j.jfca.2009.09.001]
[2]
Wu, D. Recycle technology for potato peel waste processing: A review. Procedia Environ. Sci., 2016, 31, 103-107.
[http://dx.doi.org/10.1016/j.proenv.2016.02.014]
[3]
Singh, N.; Kamath, V.; Rajini, P.S. Protective effect of potato peel powder in ameliorating oxidative stress in streptozotocin diabetic rats. Plant Foods Hum. Nutr., 2005, 60(2), 49-54.
[http://dx.doi.org/10.1007/s11130-005-5099-y] [PMID: 16021831]
[4]
Kaur, S.; Aggarwal, P.; Babbar, N. Evaluating progress of indian potato processing industry: An updated review. Potato Res., 2022.
[http://dx.doi.org/10.1007/s11540-022-09605-5]
[5]
Jeddou, K.B.; Chaari, F.; Maktouf, S.; Nouri-Ellouz, O.; Helbert, C.B.; Ghorbel, R.E. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem., 2016, 205, 97-105.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.108] [PMID: 27006219]
[6]
Rodríguez-Martínez, B.; Gullón, B.; Yáñez, R. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants, 2021, 10, 1630.
[http://dx.doi.org/10.3390/antiox10101630]
[7]
Amado, I.R.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem., 2014, 165, 290-299.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.103] [PMID: 25038678]
[8]
Koduvayur, H.S.F.; Nielsen, N.S.; Jacobsen, C. Antioxidant activity of potato peel extracts in a fish‐rapeseed oil mixture and in oil‐in‐water emulsions. J. Am. Oil Chem. Soc., 2010, 87(11), 1319-1332.
[http://dx.doi.org/10.1007/s11746-010-1611-0]
[9]
Friedman, M.; Kozukue, N.; Kim, H.J.; Choi, S.H.; Mizuno, M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food Compos. Anal., 2017, 62, 69-75.
[http://dx.doi.org/10.1016/j.jfca.2017.04.019]
[10]
Mohdaly, A.A.A.; Sarhan, M.A.; Smetanska, I.; Mahmoud, A. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J. Sci. Food Agric., 2010, 90(2), 218-226.
[http://dx.doi.org/10.1002/jsfa.3796] [PMID: 20355034]
[11]
Al-Weshahy, A.; El-Nokety, M.; Bakhete, M.; Rao, V. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Res. Int., 2013, 50(2), 507-512.
[http://dx.doi.org/10.1016/j.foodres.2010.12.014]
[12]
Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr., 2005, 81(1), 215S-217S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
[13]
Sampaio, S.L.; Petropoulos, S.A.; Alexopoulos, A.; Heleno, S.A.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Potato peels as sources of functional compounds for the food industry: A review. Trends Food Sci. Technol., 2020, 103, 118-129.
[http://dx.doi.org/10.1016/j.tifs.2020.07.015]
[14]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[15]
Khodaei, N.; Fernandez, B.; Fliss, I.; Karboune, S. Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers. Carbohydr. Polym., 2016, 136, 1074-1084.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.106] [PMID: 26572449]
[16]
Jeddou, K.B.; Bouaziz, F.; Helbert, C.B.; Nouri-Ellouz, O.; Maktouf, S.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R. Structural, functional, and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol., 2018, 112, 1146-1155.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.004] [PMID: 29408417]
[17]
Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Xie, M.; Yu, Q. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll., 2019, 93, 284-292.
[http://dx.doi.org/10.1016/j.foodhyd.2019.02.047]
[18]
Fernandes, A.; Mateus, N.; de Freitas, V. Polyphenol-dietary fiber conjugates from fruits and vegetables: Nature and biological fate in a food and nutrition perspective. Foods, 2023, 12(5), 1052.
[http://dx.doi.org/10.3390/foods12051052] [PMID: 36900569]
[19]
Quatrin, A.; Rampelotto, C.; Pauletto, R.; Haselein, L.; Mara, S.; Klein, B. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods, 2020, 65, 103714.
[http://dx.doi.org/10.1016/j.jff.2019.103714]
[20]
Mall, U.P.; Patel, V.H. Evaluation of pomegranate (Punica granatum) peel for bioaccessibility of polyphenols and prebiotic potential using in vitro model. Food Chemistry Advances., 2023, 2, 100320.
[http://dx.doi.org/10.1016/j.focha.2023.100320]
[21]
Sáyago-Ayerdi, S.G.; Zamora-Gasga, V.M.; Venema, K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res. Int., 2019, 118, 89-95.
[http://dx.doi.org/10.1016/j.foodres.2017.12.024] [PMID: 30898357]
[22]
Bamigbade, G.B.; Subhash, A.J.; Kamal-Eldin, A.; Nyström, L.; Ayyash, M. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics. Molecules, 2022, 27(18), 5947.
[http://dx.doi.org/10.3390/molecules27185947] [PMID: 36144679]
[23]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[24]
Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; Macfarlane, S.; Delzenne, N.; Ringel, Y.; Kozianowski, G.; Dickmann, R.; Lenoir-Wijnkoop, I.; Walker, C.; Buddington, R. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull., 2010, 7(1), 1-19.
[http://dx.doi.org/10.1616/1476-2137.15880]
[25]
Farias, D.P.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol., 2019, 93, 23-35.
[http://dx.doi.org/10.1016/j.tifs.2019.09.004]
[26]
Wang, Y. Prebiotics: Present and future in food science and technology. Food Res. Int., 2009, 42(1), 8-12.
[http://dx.doi.org/10.1016/j.foodres.2008.09.001]
[27]
Al-Weshahy, A.; Venket Rao, A. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario. Food Res. Int., 2009, 42(8), 1062-1066.
[http://dx.doi.org/10.1016/j.foodres.2009.05.011]
[28]
Thakur, K.; Xu, G.Y.; Zhang, J.G.; Zhang, F.; Hu, F.; Wei, Z.J. In vitro prebiotic effects of bamboo shoots and potato peel extracts on the proliferation of lactic acid bacteria under simulated GIT conditions. Front. Microbiol., 2018, 9, 2114.
[http://dx.doi.org/10.3389/fmicb.2018.02114] [PMID: 30233560]
[29]
Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; Santos, C.N. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf., 2014, 13(4), 413-436.
[http://dx.doi.org/10.1111/1541-4337.12081] [PMID: 33412708]
[30]
Condezo-Hoyos, L.; Mohanty, I.P.; Noratto, G.D. Assessing non-digestible compounds in apple cultivars and their potential as modulators of obese faecal microbiotain vitro Food Chem., 2014, 161, 208-215.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.122] [PMID: 24837942]
[31]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. . Methods Enzymol., ; , 1999, 299, pp. 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[32]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[33]
Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., , 1999; 299, pp. 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[34]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT., 1995, 28, 25-30.
[35]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[36]
Kamiloglu, S.; Capanoglu, E.; Bilen, F.D.; Bryan, G.; Grootaert, C.; Wiele, T. Van De, Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J. Agric. Food Chem., 2016, 64(12), 2450-2458.
[http://dx.doi.org/10.1021/acs.jafc.5b02640]
[37]
Chen, H.; Shi, Y.; Wang, L.; Hu, X.; Lin, X. Phenolic profile and α-glucosidase inhibitory potential of wampee (Clausena lansium (Lour.) Skeels) peel and pulp: in vitro digestion/in silico evaluations. Food Res. Int., 2023, 173(Pt 1), 113274.
[http://dx.doi.org/10.1016/j.foodres.2023.113274] [PMID: 37803586]
[38]
Balzerani, F.; Hinojosa-Nogueira, D.; Cendoya, X.; Blasco, T.; Pérez-Burillo, S.; Apaolaza, I.; Francino, M.P.; Rufián-Henares, J.Á.; Planes, F.J. Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods. NPJ Syst. Biol. Appl., 2022, 8(1), 24.
[http://dx.doi.org/10.1038/s41540-022-00234-9] [PMID: 35831427]
[39]
Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Effect of processing and in vitro digestion on bioactive constituents of powdered IV range carrot (daucus carota, L.) wastes. Foods, 2023, 12(4), 731.
[http://dx.doi.org/10.3390/foods12040731] [PMID: 36832803]
[40]
Dong, R.; Liu, S.; Xie, J.; Chen, Y.; Zheng, Y.; Zhang, X.; Zhao, E.; Wang, Z.; Xu, H.; Yu, Q. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res. Int., 2021, 143, 110263.
[http://dx.doi.org/10.1016/j.foodres.2021.110263] [PMID: 33992364]
[41]
Marie, A.; Alvito, PC. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct., 2014, 5(6), 1113-1124.
[http://dx.doi.org/10.1039/C3FO60702J]
[42]
Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation 2012. J. Funct. Foods, 2012, 4(1), 226-237.
[http://dx.doi.org/10.1016/j.jff.2011.11.001]
[43]
Cao, Q.; Teng, J.; Wei, B.; Huang, L.; Xia, N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem., 2021, 356, 129682.
[http://dx.doi.org/10.1016/j.foodchem.2021.129682] [PMID: 33812196]
[44]
Zhang, Y.; Yu, W.; Zhang, L.; Wang, M.; Chang, W. The interaction of polyphenols and the gut microbiota in neurodegenerative diseases. Nutrients, 2022, 14(24), 5373.
[http://dx.doi.org/10.3390/nu14245373] [PMID: 36558531]
[45]
Ma, G.; Chen, Y. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods, 2020, 66, 103829.
[http://dx.doi.org/10.1016/j.jff.2020.103829]
[46]
Wang, X.; Qi, Y.; Zheng, H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants, 2022, 11(6), 1212.
[http://dx.doi.org/10.3390/antiox11061212] [PMID: 35740109]
[47]
Javed, A.; Ahmad, A.; Tahir, A.; Shabbir, U.; Nouman, M. Hameed, A Potato peel waste-its nutraceutical, industrial and biotechnological applacations. AIMS Agric. Food, 2019, 4, 807-823.
[http://dx.doi.org/10.3934/agrfood.2019.3.807]
[48]
Ma, Y.L.; Wang, Y.; Wu, Z.F.; Mei, J.; Zhang, W.Q.; Shang, Y.F.; Thakur, K.; Wei, Z-J. Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract. Food Biosci., 2023, 51, 102255.
[http://dx.doi.org/10.1016/j.fbio.2022.102255]
[49]
Palframan, R.J.; Gibson, G.R.; Rastall, R.A. Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe, 2002, 8(5), 287-292.
[http://dx.doi.org/10.1006/anae.2002.0434] [PMID: 16887671]
[50]
Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem., 2012, 131(4), 1466-1472.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.030]
[51]
Zakaria, Z.; Afandi, A.A.; Nuriah, S.; Noor, M.; Hussin, N.; Shahidan, N. Prebiotic activity score of breadfruit resistant starch (artocarpus altilis), breadfruit flour, and inulin during in-vitro fermentation by pure cultures (lactobacillus plantarum, and bifidobacterium bifidum). J Agrobiotech, 2018, 9, 122-131.
[52]
Huebner, J.; Wehling, R.L.; Hutkins, R.W. Functional activity of commercial prebiotics. Int. Dairy J., 2007, 17(7), 770-775.
[http://dx.doi.org/10.1016/j.idairyj.2006.10.006]
[53]
Rubel, I.A.; Pérez, E.E.; Genovese, D.B.; Manrique, G.D. In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Res. Int., 2014, 62, 59-65.
[http://dx.doi.org/10.1016/j.foodres.2014.02.024]
[54]
Gullón, B.; Gullón, P.; Sanz, Y.; Alonso, J.L.; Parajó, J.C. Prebiotic potential of a refined product containing pectic oligosaccharides. Lebensm. Wiss. Technol., 2011, 44(8), 1687-1696.
[http://dx.doi.org/10.1016/j.lwt.2011.03.006]
[55]
Farooq, U.; Mohsin, M.; Liu, X.; Zhang, H. Enhancement of short chain fatty acid production from millet fibres by pure cultures of probiotic fermentation. Trop. J. Pharm. Res., 2013, 12(2), 189-194.
[http://dx.doi.org/10.4314/tjpr.v12i2.9]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy