Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Multicomponent Synthesis of Structurally Diverse Spiroheterocycles using Bio-organic Catalyst in Aqueous Medium

In Press, (this is not the final "Version of Record"). Available online 31 January, 2024
Author(s): Asha Verma, Gargi Pathak, Sandeep Kumar, Vineeta Khatri*, Rajni Johar Chhatwal and Dinesh Kumar Arya*
Published on: 31 January, 2024

DOI: 10.2174/0122133372287369240124062533

Price: $95

Abstract

Background: MCRs are one of the most significant tools in the synthesis of organic compounds. MCR is a rapid chemical technique that uses three or more reactants to produce products that sustain all structural and substructural properties of the initial components. MCRs are useful in all fields of synthetic chemistry because of their rapid rate of reaction, simple procedure and excellent yields. We reported an efficient and environmentally friendly domino approach for the synthesis of spiroheterocycles spiro annulated with indeno[1,2-b]quinoline.

Method: The spiroheterocycles with privileged heterocyclic substructures have been synthesized using taurine (2-aminoethanesulfonic acid) as a green, sustainable, bio-organic and recyclable catalyst in a three-component reaction of isatins, 1,3-diketones, and 1-napthylamine in aqueous media. The present synthetic method is probably the first report to synthesize spiroheterocycles, spiroannulated with indeno[1,2-b]quinoline. Furthermore, the approach is valuable because of the excellent yield that results from the reaction in 15-20 min.

Result: The optimization of reaction conditions is an important case of efficient synthesis. The solvent, temperature, time and catalyst loading were all examined. The reusability of the catalyst was also investigated experimentally. The used catalyst taurine has a high activity as well as good reusability. The present synthetic protocol will be extended to synthesise a library of hybrid compounds. The present synthetic approach is cost-effective, and time-efficient with an easy-workup methodology that gives outstanding yields (80–95%) in 15–20 min.

Conclusion: Taurine-catalyzed multicomponent reaction is a novel and efficient method for the synthesis of spiroannulated indeno[1,2-b]quinolines. The high catalytic activity of taurine as a catalyst with water as a green solvent makes the process environmentally friendly. The special features of the synthetic protocol include synthetic efficiency, operational simplicity, and reusability of the catalyst and it is expected to make significant contributions not only to drug discovery studies but also to pharmaceutical and therapeutic chemistry in view of introducing molecular diversity in the synthesized molecules.

[1]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[2]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N. Recent applications of barbituric acid in multicomponent reactions. RSC Advances, 2016, 6(56), 50895-50922.
[http://dx.doi.org/10.1039/C6RA09874F]
[3]
Maleki, A.; Rahimi, R.; Maleki, S.; Hamidi, N. Synthesis and characterization of magnetic bromochromate hybrid nanomaterials with triphenylphosphine surface-modified iron oxide nanoparticles and their catalytic application in multicomponent reactions. RSC Advances, 2014, 4(56), 29765-29771.
[http://dx.doi.org/10.1039/C4RA04654D]
[4]
Tandon, R.; Tandon, N.; Patil, S.M. Overview on magnetically recyclable ferrite nanoparticles: Synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11(47), 29333-29353.
[http://dx.doi.org/10.1039/D1RA03874E] [PMID: 35479579]
[5]
Nivetha, N.; Martiz, R.M.; Patil, S.M.; Ramu, R.; Sreenivasa, S.; Velmathi, S. Benzodioxole grafted spirooxindole pyrrolidinyl derivatives: Synthesis, characterization, molecular docking and anti-diabetic activity. RSC Advances, 2022, 12(37), 24192-24207.
[http://dx.doi.org/10.1039/D2RA04452H] [PMID: 36128541]
[6]
Wang, Y.; Cobo, A.A.; Franz, A.K. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org. Chem. Front., 2021, 8(15), 4315-4348.
[http://dx.doi.org/10.1039/D1QO00220A]
[7]
Verma, K.; Tailor, Y.K.; Khandelwal, S.; Rushell, E.; Agarwal, M.; Kumar, M. Efficient and environmentally sustainable domino protocol for the synthesis of diversified spiroheterocycles with privileged heterocyclic substructures using bio-organic catalyst in aqueous medium. Mol. Divers., 2020, 24(4), 1355-1365.
[http://dx.doi.org/10.1007/s11030-019-09999-4] [PMID: 31598819]
[8]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[9]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[10]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[11]
Mistry, B.M.; Jauhari, S. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues. Med. Chem. Res., 2013, 22(2), 635-646.
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[12]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[13]
Raghunath, S.A.; Manjunatha, Y.; Rayappa, K. Synthesis, antimicrobial, and antioxidant activities of some new indole analogues containing pyrimidine and fused pyrimidine systems. Med. Chem. Res., 2012, 21(11), 3809-3817.
[http://dx.doi.org/10.1007/s00044-011-9915-7]
[14]
Agarwal, A.; Pearson, P.P.; Taylor, E.W.; Li, H.B.; Dahlgren, T.; Herslöf, M.; Yang, Y.; Lambert, G.; Nelson, D.L.; Regan, J.W.; Martin, A.R. Three-dimensional quantitative structure-activity relationships of 5-HT receptor binding data for tetrahydropyridinylindole derivatives: a comparison of the Hansch and CoMFA methods. J. Med. Chem., 1993, 36(25), 4006-4014.
[http://dx.doi.org/10.1021/jm00077a003] [PMID: 8258822]
[15]
Sondhi, S.M.; Singh, J.; Rani, R.; Gupta, P.P.; Agrawal, S.K.; Saxena, A.K. Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur. J. Med. Chem., 2010, 45(2), 555-563.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.042] [PMID: 19926172]
[16]
Xiao, Q.; Wang, L.; Supekar, S.; Shen, T.; Liu, H.; Ye, F.; Huang, J.; Fan, H.; Wei, Z.; Zhang, C. Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nat. Commun., 2020, 11(1), 5430.
[http://dx.doi.org/10.1038/s41467-020-19249-z]
[17]
Mariki, A.A.; Anaeigoudari, A.; Zahedifar, M.; Pouramiri, B.; Ayati, A.; Lotfi, S. Design, green synthesis, and biological evaluation of new substituted tetrahydropyrimidine derivatives as acetylcholinesterase inhibitors. In: Polycyclic Aromatic Compounds; Taylor & Francis, 2022; p. 42.
[18]
Upadhayaya, R.S.; Shinde, P.D.; Kadam, S.A.; Bawane, A.N.; Sayyed, A.Y.; Kardile, R.A.; Gitay, P.N.; Lahore, S.V.; Dixit, S.S.; Földesi, A.; Chattopadhyaya, J. Synthesis and antimycobacterial activity of prodrugs of indeno[2,1-c]quinoline derivatives. Eur. J. Med. Chem., 2011, 46(4), 1306-1324.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.053] [PMID: 21334792]
[19]
Chen, Y.L.; Hung, H.M.; Lu, C.M.; Li, K.C.; Tzeng, C.C. Synthesis and anticancer evaluation of certain indolo[2,3-b]quinoline derivatives. Bioorg. Med. Chem., 2004, 12(24), 6539-6546.
[http://dx.doi.org/10.1016/j.bmc.2004.09.025] [PMID: 15556770]
[20]
Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug discovery - approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11(12), 849-862.
[http://dx.doi.org/10.1038/nrmicro3138] [PMID: 24217412]
[21]
Sunami, T.; Nishio, K.; Kanzawa, F.; Fukuoka, K.; Kudoh, S.; Yoshikawa, J.; Saijo, N. Combination effects of TAS-103, a novel dual topoisomerase I and II inhibitor, with other anticancer agents on human small cell lung cancer cells. Cancer Chemother. Pharmacol., 1999, 43(5), 394-401.
[http://dx.doi.org/10.1007/s002800050913] [PMID: 10100595]
[22]
Spicer, J.A.; Gamage, S.A.; Atwell, G.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Structure-activity relationships for acridine-substituted analogues of the mixed topoisomerase I/II inhibitor N-[2-(dimethylamino)ethyl]acridine-4-carboxamide. J. Med. Chem., 1997, 40(12), 1919-1929.
[http://dx.doi.org/10.1021/jm970004n] [PMID: 9191970]
[23]
Kohlhagen, G.; Paull, K.D.; Cushman, M.; Nagafuji, P.; Pommier, Y. Protein-linked DNA strand breaks induced by NSC 314622, a novel noncamptothecin topoisomerase I poison. Mol. Pharmacol., 1998, 54(1), 50-58.
[http://dx.doi.org/10.1124/mol.54.1.50] [PMID: 9658189]
[24]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[25]
Mohammed, T.H.; Risan, M.H.; Kadhom, M.; Raheem, R.; Yousif, E. Antifungal, antiviral, and antibacterial activities of silver nanoparticles synthesized using fungi: A review. Lett. Appl. NanoBioSci., 2020, 9(3), 1307-1312.
[http://dx.doi.org/10.33263/LIANBS93.13071312]
[26]
Ebadi, M.; Mijan, N.A.; Jamil, M.S. Palladium nanoparticles on chitosan-coated superparamagnetic manganese ferrite: A biocompatible heterogeneous catalyst for nitroarene reduction and allyl carbamate deprotection. Polymers, 2023, 15(1), 232.
[27]
Saini, K.; Raigar, A.K. Manju; Jangid, D.K.; Mathur, J.; Dhadda, S.; Guleria, A. Tandem protocol for the synthesis of pyrano[3,2- c]quinolone derivatives using taurine as a green bio-organic catalyst in aqueous medium. J. Org. Chem., 2022, 87(21), 13734-13743.
[http://dx.doi.org/10.1021/acs.joc.2c01403] [PMID: 36184942]
[28]
Tang, W.; Cai, C.; Zhao, S.; Liu, H. Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution. J. Phys. Chem., 2018.
[29]
Chavan, K.A.; Shukla, M.; Chauhan, A.N.S.; Maji, S.; Mali, G.; Bhattacharyya, S.; Erande, R.D. Effective synthesis and biological evaluation of natural and designed bis(indolyl)methanes via taurine-catalyzed green approach. ACS Omega, 2022, 7(12), 10438-10446.
[http://dx.doi.org/10.1021/acsomega.1c07258] [PMID: 35382311]
[30]
Mali, G.; Shaikh, B.A.; Garg, S.; Kumar, A.; Bhattacharyya, S.; Erande, R.D.; Chate, A.V. Design, synthesis, and biological evaluation of densely substituted dihydropyrano[2,3- C]pyrazoles via a taurine-catalyzed green multicomponent approach. ACS Omega, 2021, 6(45), 30734-30742.
[http://dx.doi.org/10.1021/acsomega.1c04773] [PMID: 34805701]
[31]
Chate, A.V.; Shaikh, B.A.; Bondle, G.M.; Sangle, S.M. Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano[2,3-c]pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst. Synth. Commun., 2019, 49(17), 2244-2257.
[http://dx.doi.org/10.1080/00397911.2019.1619772]
[32]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Safarpoor Nikoo Langarudi, M.; Alipour Khoshdel, M. Taurine/choline chloride deep eutectic solvent as a novel eco-compatible catalyst to facilitate the multi-component synthesis of pyrano[2,3- d]pyrimidinone (thione), hexahydroquinoline, and biscoumarin derivatives. Polycycl. Aromat. Compd., 2022, 42(4), 1452-1473.
[http://dx.doi.org/10.1080/10406638.2020.1781212]
[33]
El-Remaily, A. Green bio-organic and recoverable catalyst taurine (2-aminoethanesulfonic acid) for synthesis of bio-active compounds 3,4-dihydropyrimidin derivatives in aqueous medium. Chem. Sel., 2020, 5, 12098-12102.
[34]
Mali, G.; Maji, S.; Chavan, K.A.; Shukla, M.; Kumar, M.; Bhattacharyya, S.; Erande, R.D. Effective synthesis and biological evaluation of functionalized 2,3-dihydrofuro[3,2- c]coumarins via an imidazole-catalyzed green multicomponent approach. ACS Omega, 2022, 7(40), 36028-36036.
[http://dx.doi.org/10.1021/acsomega.2c05361] [PMID: 36249391]
[35]
Polke, B. M.; Bhosle, M.R.; Bondle, G.M. Taurine an ecofriendly bioorganic catalyst for the synthesis of dihydropyrido[2,3-d] pyrimidine and pyrimido[4,5-b]quinoline derivatives under ultrasonication. Res. Squa., 2023.
[36]
Rahmati, A.; Eskandari-Vashareh, M. Synthesis of spiro[benzo[h]quinoline-7,3′- indolines] via a three-component condensation reaction. J. Chem. Sci., 2014, 126(1), 169-176.
[http://dx.doi.org/10.1007/s12039-013-0552-1]
[37]
Mansoor, S.S.; Ghashang, M.; Aswin, K. Facile one-pot synthesis of a novel series of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one derivatives catalyzed by tribromomelamine. Res. Chem. Intermed., 2015, 41(10), 6907-6926.
[http://dx.doi.org/10.1007/s11164-014-1787-2]
[38]
Vinoth, N.; Lalitha, A. Catalyst-free three-component synthesis, antibacterial, antifungal, and docking studies of spiroindoline derivatives. Poly. Aro. Com., 2022, 42, 517-533.
[39]
Gul, M.; Turk Celikoglu, E.; Idil, O.; Tas, G.; Pelit, E. Synthesis, antimicrobial activity and molecular docking studies of spiroquinoline-indoline-dione and spiropyrazolo-indoline-dione derivatives. Sci. Rep., 2023, 13(1), 1676.
[http://dx.doi.org/10.1038/s41598-023-27777-z] [PMID: 36717728]
[40]
(a) Arya, A.K.; Gupta, S.K.; Kumar, M. A domino protocol for the efficient synthesis of structurally diverse benzothiazolylquinoline-2,5-diones and their spiro analogues. Tet. Lett, 2012, 53, 6035-6038.;
(b) Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015];
(c) Rajawat, A.; Khandelwal, S.; Kumar, M. Deep eutectic solvent promoted efficient and environmentally benign four-component domino protocol for synthesis of spirooxindoles. RSC Advances, 2014, 4(10), 5105-5112.
[http://dx.doi.org/10.1039/c3ra44600j];
(d) Tailor, Y.K.; Khandelwal, S.; Kumari, Y.; Awasthi, K.; Kumar, M. An efficient one pot three-component nanocatalyzed synthesis of spiroheterocycles using TiO 2 nanoparticles as a heterogeneous catalyst. RSC Advances, 2015, 5(57), 46415-46422.
[http://dx.doi.org/10.1039/C5RA04863J];
(e) Tailor, Y.K.; Khandelwal, S.; Verma, K.; Gopal, R.; Kumar, M. Diversity‐oriented synthesis of spirooxindoles using surface‐modified TiO2 nanoparticles as heterogeneous acid catalyst. ChemistrySelect, 2017, 2(21), 5933-5941.
[http://dx.doi.org/10.1002/slct.201700648];
(f) Verma, K.; Tailor, Y.K.; Khandelwal, S.; Agarwal, M.; Rushell, E.; Kumari, Y.; Awasthi, K.; Kumar, M. An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Advances, 2018, 8(53), 30430-30440.
[http://dx.doi.org/10.1039/C8RA04919J] [PMID: 35546857 ];
(g) Verma, A.; Arya, D.K.; Kumar, S.; Pathak, G.; Khatri, V. An efficient three-component synthetic protocol for the synthesis of structurally diverse spiroannulated benzothiazolopyrimidines catalyzed by l-proline in aqueous media. Res. Chem. Intermed., 2023, 49(11), 4865-4877.
[http://dx.doi.org/10.1007/s11164-023-05120-5];
(h) Verma, A.; Kumar, S.; Khatri, V.; Pathak, G.; Arya, D.K. Multicomponent synthesis of spiroannulated hybrid molecules with preferred substructures using indium triflate as a sustainable catalyst. Res. Chem. Intermed., 2023, 50(1), 1-14.
[http://dx.doi.org/10.1007/s11164-023-05177-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy