Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Systematic Review Article

Estimating Hidden Population Size of COVID-19 using Respondent-Driven Sampling Method - A Systematic Review

Author(s): SeyedAhmad SeyedAlinaghi, Arian Afzalian, Mohsen Dashti, Afsaneh Ghasemzadeh, Zohal Parmoon, Ramin Shahidi, Sanaz Varshochi, Ava Pashaei, Samaneh Mohammadi, Fatemeh Khajeh Akhtaran, Amirali Karimi, Khadijeh Nasiri, Esmaeil Mehraeen* and Daniel Hackett

Volume 24, Issue 6, 2024

Published on: 31 January, 2024

Article ID: e310124226549 Pages: 9

DOI: 10.2174/0118715265277789240110043215

Price: $65

Abstract

Introduction: Currently, the ongoing COVID-19 pandemic is posing a challenge to health systems worldwide. Unfortunately, the true number of infections is underestimated due to the existence of a vast number of asymptomatic infected individual’s proportion. Detecting the actual number of COVID-19-affected patients is critical in order to treat and prevent it. Sampling of such populations, so-called hidden or hard-to-reach populations, is not possible using conventional sampling methods. The objective of this research is to estimate the hidden population size of COVID-19 by using respondent-driven sampling (RDS) methods.

Methods: This study is a systematic review. We have searched online databases of PubMed, Web of Science, Scopus, Embase, and Cochrane to identify English articles published from the beginning of December 2019 to December 2022 using purpose-related keywords. The complete texts of the final chosen articles were thoroughly reviewed, and the significant findings are condensed and presented in the table.

Results: Of the 7 included articles, all were conducted to estimate the actual extent of COVID-19 prevalence in their region and provide a mathematical model to estimate the asymptomatic and undetected cases of COVID-19 amid the pandemic. Two studies stated that the prevalence of COVID-19 in their sample population was 2.6% and 2.4% in Sierra Leone and Austria, respectively. In addition, four studies stated that the actual numbers of infected cases in their sample population were significantly higher, ranging from two to 50 times higher than the recorded reports.

Conclusions: In general, our study illustrates the efficacy of RDS in the estimation of undetected asymptomatic cases with high cost-effectiveness due to its relatively trouble-free and low-cost methods of sampling the population. This method would be valuable in probable future epidemics.

Graphical Abstract

[1]
Mehraeen E, Oliaei S. SeyedAlinaghi S, et al. COVID-19 in Pediatrics: A Systematic Review of Current Knowledge and Practice. Infect Disord Drug Targets 2022; 22(5): e290921196908.
[http://dx.doi.org/10.2174/1871526521666210929121705] [PMID: 34587889]
[2]
Böhning D, Rocchetti I, Maruotti A, Holling H. Estimating the undetected infections in the Covid-19 outbreak by harnessing capture–recapture methods. Int J Infect Dis 2020; 97: 197-201.
[http://dx.doi.org/10.1016/j.ijid.2020.06.009] [PMID: 32534143]
[3]
Mehraeen E, Dadras O, Afsahi AM, et al. Vaccines for COVID-19: A systematic review of feasibility and effectiveness. Infect Disord Drug Targets 2022; 22(2): e230921196758.
[http://dx.doi.org/10.2174/1871526521666210923144837] [PMID: 34554905]
[4]
SeyedAlinaghi S, Karimi A, Barzegary A, et al. COVID-19 mortality in patients with immunodeficiency and its predictors: a systematic review. Eur J Med Res 2022 Oct 8; 27(1): 195.
[http://dx.doi.org/10.1186/s40001-022-00824-7] [PMID: 36209202] [PMCID: PMC9547631]
[5]
Gu X. COVID-19 prediction in South Africa: Estimating the unascertained cases-the hidden part of the epidemiological iceberg. medRxiv 2021.
[6]
Wang XB, Ma C. Controlling the hidden growth of COVID-19. arXiv preprint arXiv:200509769 2020.
[7]
Tuite AR. Estimation of COVID-19 outbreak size in Italy based on international case exportations. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.02.20030049]
[8]
Ranjan R. Estimating the final epidemic size for COVID-19 outbreak using improved epidemiological models. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.12.20061002]
[9]
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020; 323(18): 1775-6.
[http://dx.doi.org/10.1001/jama.2020.4683] [PMID: 32203977]
[10]
Saadati M, Bagheri A. Factors affecting the designing of sampling method for hidden populations exposed to high risk diseases. J Health Promot Manage 2017; 7(1): 1-10.
[http://dx.doi.org/10.21859/jhpm-07011]
[11]
Saadati M. Unbiased estimator of population proportion for hidden populations exposed to high-risk diseases. J Health Syst Res 2017; 12(4): 520-6.
[12]
Watters JK, Biernacki P. Targeted sampling: Options for the study of hidden populations. Soc Probl 1989; 36(4): 416-30.
[http://dx.doi.org/10.2307/800824]
[13]
MacKellar DA, Gallagher KM, Finlayson T, Sanchez T, Lansky A, Sullivan PS. Surveillance of HIV risk and prevention behaviors of men who have sex with men--a national application of venue-based, time-space sampling. Public Health Rep 2007; 122(1_suppl)(Suppl. 1): 39-47.
[http://dx.doi.org/10.1177/00333549071220S107] [PMID: 17354526]
[14]
van Meter K. Methodological and design issues: Techniques for assessing the representatives of snowball samples. NIDA Res Monogr 1990; 9831-43.
[15]
Sudman S. The use of network samples in estimating incidence of missing children. In: American Statistical Association Proceedings on Survey Research Methods. 1986.
[16]
Heckathorn DD. Respondent-driven sampling II: Deriving valid population estimates from chain-referral samples of hidden populations. Soc Probl 2002; 49(1): 11-34.
[http://dx.doi.org/10.1525/sp.2002.49.1.11]
[17]
Heckathorn DD. Respondent-driven sampling: A new approach to the study of hidden populations. Soc Probl 1997; 44(2): 174-99.
[http://dx.doi.org/10.2307/3096941]
[18]
Felix-Medina MH, Monjardin PE, Aceves-Castro AN. Combining link-tracing sampling and cluster sampling to estimate the size of a hidden population in presence of heterogeneous link-probabilities. Surv Methodol 2015; 41(2): 349-77.
[19]
Barrie MB, Lakoh S, Kelly JD, et al. SARS-CoV-2 antibody prevalence in Sierra Leone, March 2021: A cross-sectional, nationally representative, age-stratified serosurvey. BMJ Glob Health 2021; 6(11): e007271.
[http://dx.doi.org/10.1136/bmjgh-2021-007271] [PMID: 34764148]
[20]
Comiskey CM, Snel A, Banka PS. First back-calculation and infection fatality multiplier estimate of the hidden prevalence of COVID-19 in Ireland. Eur J Public Health 2021; 31(4): 908-12.
[http://dx.doi.org/10.1093/eurpub/ckab126] [PMID: 34245277]
[21]
Ocagli H, Azzolina D, Lorenzoni G, et al. Using social networks to estimate the number of COVID-19 cases: The incident (hidden COVID-19 cases network estimation) study protocol. Int J Environ Res Public Health 2021; 18(11): 5713.
[http://dx.doi.org/10.3390/ijerph18115713] [PMID: 34073448]
[22]
Olayiwola OM, Ajayi AO, Onifade OC, Wale-Orojo O, Ajibade B. Adaptive cluster sampling with model based approach for estimating total number of hidden COVID-19 carriers in Nigeria. Stat J IAOS 2020; 36(S1): 103-9.
[http://dx.doi.org/10.3233/SJI-200718]
[23]
Rocchetti I. Böhning D, Holling H, Maruotti A. Estimating the size of undetected cases of the COVID-19 outbreak in Europe: An upper bound estimator. Epidemiol Methods 2020; 9(s1): 20200024.
[http://dx.doi.org/10.1515/em-2020-0024]
[24]
Alene M, Yismaw L, Assemie MA, et al. Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis. PLoS One 2021; 16(3): e0249090.
[http://dx.doi.org/10.1371/journal.pone.0249090] [PMID: 33755688]
[25]
Yanes-Lane M, Winters N, Fregonese F, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS One 2020; 15(11): e0241536.
[http://dx.doi.org/10.1371/journal.pone.0241536] [PMID: 33141862]
[26]
Byambasuren O, Cardona M, Bell K, Clark J, McLaws ML, Glasziou P. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. J Assoc Med Microbiol Infect Dis Can 2020; 5(4): 223-34.
[http://dx.doi.org/10.3138/jammi-2020-0030] [PMID: 36340059]
[27]
Ravindra K. Asymptomatic infection and transmission of COVID-19 among clusters: systematic review and meta-analysis. Public Health 2021.
[PMID: 35038628]
[28]
Gandhi M, Yokoe DS, Havlir DV. Asymptomatic transmission, the Achilles’ heel of current strategies to control COVID-19. Mass Medical Soc. 2020; pp. 2158-60.
[http://dx.doi.org/10.4324/9781003141402-4]
[29]
Mohr NM, Harland KK, Krishnadasan A, et al. Diagnosed and undiagnosed COVID-19 in US emergency department health care personnel: A cross-sectional analysis. Ann Emerg Med 2021; 78(1): 27-34.
[http://dx.doi.org/10.1016/j.annemergmed.2020.12.007] [PMID: 33771413]
[30]
Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25(10): 2000180.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.10.2000180] [PMID: 32183930]
[31]
Nishiura H. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). medRxiv 2020; 2020.02.03.20020248.
[http://dx.doi.org/10.1101/2020.02.03.20020248]
[32]
Cossham A, Johanson G. The benefits and limitations of using key informants in library and information studies research. Inf Res 2019; 24(3): 15.
[33]
Faugier J, Sargeant M. Sampling hard to reach populations. J Adv Nurs 1997; 26(4): 790-7.
[http://dx.doi.org/10.1046/j.1365-2648.1997.00371.x] [PMID: 9354993]
[34]
Kral AH, Malekinejad M, Vaudrey J, et al. Comparing respondent-driven sampling and targeted sampling methods of recruiting injection drug users in San Francisco. J Urban Health 2010; 87(5): 839-50.
[http://dx.doi.org/10.1007/s11524-010-9486-9] [PMID: 20582573]
[35]
Abdesselam K, Verdery A, Pelude L, Dhami P, Momoli F, Jolly AM. The development of respondent-driven sampling (RDS) inference: A systematic review of the population mean and variance estimates. Drug Alcohol Depend 2020; 206: 107702.
[http://dx.doi.org/10.1016/j.drugalcdep.2019.107702] [PMID: 31761476]
[36]
Tuot S, Mburu G, Mun P, et al. Prevalence and correlates of HIV infection among people who use drugs in Cambodia: A cross-sectional survey using respondent driven sampling method. BMC Infect Dis 2019; 19(1): 515.
[http://dx.doi.org/10.1186/s12879-019-4154-5] [PMID: 31185925]
[37]
Mwaniki SW. Prevalence of five curable sexually transmitted infections and associated risk factors among tertiary student men who have sex with men in Nairobi, Kenya: A respondent-driven sampling survey. Sex Health 2022; 20(2): 105-17.
[http://dx.doi.org/10.21203/rs.3.rs-1828548/v1]
[38]
Hathaway AD, Hyshka E, Erickson PG, et al. Whither RDS? An investigation of respondent driven sampling as a method of recruiting mainstream marijuana users. Harm Reduct J 2010; 7(1): 15.
[http://dx.doi.org/10.1186/1477-7517-7-15] [PMID: 20618944]
[39]
Gir E, Teles SA, Menegueti MG, et al. Factors associated with the diagnosis of COVID-19 among Brazilian health professionals COVID-19 and health professionals. PLoS One 2022; 17(6): e0267121.
[http://dx.doi.org/10.1371/journal.pone.0267121] [PMID: 35749441]
[40]
Albuquerque MFPM, Souza WV, Montarroyos UR, et al. Risk of SARS-CoV-2 infection among front-line healthcare workers in Northeast Brazil: A respondent-driven sampling approach. BMJ Open 2022; 12(6): e058369.
[http://dx.doi.org/10.1136/bmjopen-2021-058369] [PMID: 35667719]
[41]
Soltanian AR, Bashirian S, Basti SA, Karami M, Ostovar A, Khazaei S. Estimation of the hidden population with COVID-19 disease. Int J MCH AIDS 2020; 9(2): 217-9.
[http://dx.doi.org/10.21106/ijma.396] [PMID: 32704408]
[42]
Richterich P. Severe underestimation of COVID-19 case numbers: Effect of epidemic growth rate and test restrictions. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.13.20064220]
[43]
Liew FT, Ghosh P, Chakraborty B. Accounting for the role of asymptomatic patients in understanding the dynamics of the COVID-19 pandemic: A case study from Singapore. Epidemiol Methods 2022; 11(s1): 20210031.
[http://dx.doi.org/10.1515/em-2021-0031]
[44]
Ota S. Possibility of underestimation of COVID-19 prevalence by PCR and serological tests. J Microbiol Immunol Infect 2021.
[PMID: 34642099]
[45]
Melis M, Littera R. Undetected infectives in the COVID-19 pandemic. Int J Infect Dis 2021; 104: 262-8.
[http://dx.doi.org/10.1016/j.ijid.2021.01.010] [PMID: 33434673]
[46]
Rahmandad H, Lim TY, Sterman J. Behavioral dynamics of COVID-19: estimating underreporting, multiple waves, and adherence fatigue across 92 nations. Syst Dyn Rev 2021; 37(1): 5-31.
[http://dx.doi.org/10.1002/sdr.1673] [PMID: 34230767]
[47]
Rippinger C, Bicher M, Urach C, et al. Evaluation of undetected cases during the COVID-19 epidemic in Austria. BMC Infect Dis 2021; 21(1): 70.
[http://dx.doi.org/10.1186/s12879-020-05737-6] [PMID: 33441091]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy