Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

PPT1 Promotes Growth and Inhibits Ferroptosis of Oral Squamous Cell Carcinoma Cells

Author(s): Qingqiong Luo, Sheng Hu, Yijie Tang, Dandan Yang and Qilong Chen*

Volume 24, Issue 10, 2024

Published on: 30 January, 2024

Page: [1047 - 1060] Pages: 14

DOI: 10.2174/0115680096294098240123104657

Abstract

Background: Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers with poor prognosis in the head and neck. Elucidating molecular mechanisms underlying OSCC occurrence and development is important for the therapy. Dysregulated palmitoylation-related enzymes have been reported in several cancers but OSCC.

Objectives: To explore the role of palmitoyl-protein thioesterase 1 (PPT1) in OSCC.

Methods: Differentially expressed genes (DEGs) and related protein-protein interaction networks between normal oral epithelial and OSCC tissues were screened and constructed via different online databases. Tumor samples from 70 OSCC patients were evaluated for the relationship between PPT1 expression level and patients’clinic characteristics. The role of PPT1 in OSCC proliferation and metastasis was studied by functional experiments including MTT, colony formation, EdU incorporation and transwell assays. Lentivirus-based constructs were used to manipulate gene expression. FerroOrange probe and malondialdehyde assay were used to determine ferroptosis. Growth of OSCC cells in vivo was investigated by a xenograft mouse model.

Results: A total of 555 DEGs were obtained, and topological analysis revealed that PPT1 and GPX4 might play critical roles in OSCC. Increased PPT1 expression was found to be correlated with poor prognosis of OSCC patients. PPT1 effectively promoted the proliferation, migration and invasion while inhibited the ferroptosis of OSCC cells. PPT1 affected the expression of glutathione peroxidase 4 (GPX4).

Conclusion: PPT1 promoted growth and inhibited ferroptosis of OSCC cells. PPT1 might be a potential target for OSCC therapy.

Graphical Abstract

[1]
Chow, L.Q.M. Head and neck cancer. N. Engl. J. Med., 2020, 382(1), 60-72.
[http://dx.doi.org/10.1056/NEJMra1715715] [PMID: 31893516]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Tan, Y.; Wang, Z.; Xu, M.; Li, B.; Huang, Z.; Qin, S.; Nice, E.C.; Tang, J.; Huang, C. Oral squamous cell carcinomas: State of the field and emerging directions. Int. J. Oral Sci., 2023, 15(1), 44.
[http://dx.doi.org/10.1038/s41368-023-00249-w] [PMID: 37736748]
[4]
Nokovitch, L.; Maquet, C.; Crampon, F.; Taihi, I.; Roussel, L.M.; Obongo, R.; Virard, F.; Fervers, B.; Deneuve, S. Oral cavity squamous cell carcinoma risk factors: State of the art. J. Clin. Med., 2023, 12(9), 3264.
[http://dx.doi.org/10.3390/jcm12093264] [PMID: 37176704]
[5]
Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral squamous cell carcinoma and concomitant primary tumors, what do we know? A review of the literature. Curr. Oncol., 2023, 30(4), 3721-3734.
[http://dx.doi.org/10.3390/curroncol30040283] [PMID: 37185396]
[6]
Ford, P.J.; Rich, A.M. Tobacco use and oral health. Addiction, 2021, 116(12), 3531-3540.
[http://dx.doi.org/10.1111/add.15513] [PMID: 33822437]
[7]
Imbesi Bellantoni, M.; Picciolo, G.; Pirrotta, I.; Irrera, N.; Vaccaro, M.; Vaccaro, F.; Squadrito, F.; Pallio, G. Oral cavity squamous cell carcinoma: An update of the pharmacological treatment. Biomedicines, 2023, 11(4), 1112.
[http://dx.doi.org/10.3390/biomedicines11041112] [PMID: 37189730]
[8]
Dewenter, I.; Kumbrink, J.; Poxleitner, P.; Smolka, W.; Liokatis, P.; Fliefel, R.; Otto, S.; Obermeier, K.T. New insights into redox-related risk factors and therapeutic targets in oral squamous cell carcinoma. Oral Oncol., 2023, 147, 106573.
[http://dx.doi.org/10.1016/j.oraloncology.2023.106573] [PMID: 37951115]
[9]
Biswal, S.; Panda, M.; Sahoo, R.K.; Tripathi, S.K.; Biswal, B.K. Tumour microenvironment and aberrant signaling pathways in cisplatin resistance and strategies to overcome in oral cancer. Arch. Oral Biol., 2023, 151, 105697.
[http://dx.doi.org/10.1016/j.archoralbio.2023.105697] [PMID: 37079976]
[10]
Shi, S.; Yu, Z.L.; Jia, J. The roles of exosomes in the diagnose, development and therapeutic resistance of oral squamous cell carcinoma. Int. J. Mol. Sci., 2023, 24(3), 1968.
[http://dx.doi.org/10.3390/ijms24031968] [PMID: 36768288]
[11]
Caponio, V.C.A.; Zhurakivska, K.; Lo Muzio, L.; Troiano, G.; Cirillo, N. The immune cells in the development of oral squamous cell carcinoma. Cancers, 2023, 15(15), 3779.
[http://dx.doi.org/10.3390/cancers15153779] [PMID: 37568595]
[12]
Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov., 2022, 12(1), 31-46.
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[13]
Wang, Z.; Ying, J.; Zhang, X.; Miao, C.; Xiao, Y.; Zou, J.; Chen, B. Small-molecule modulation of protein lipidation: From chemical probes to therapeutics. ChemBioChem, 2023, 24(14), e202300071.
[http://dx.doi.org/10.1002/cbic.202300071] [PMID: 37059689]
[14]
Gulhane, P.; Singh, S. Unraveling the post-translational modifications and therapeutical approach in NSCLC pathogenesis. Transl. Oncol., 2023, 33, 101673.
[http://dx.doi.org/10.1016/j.tranon.2023.101673] [PMID: 37062237]
[15]
Pan, S.; Chen, R. Pathological implication of protein post-translational modifications in cancer. Mol. Aspects Med., 2022, 86, 101097.
[http://dx.doi.org/10.1016/j.mam.2022.101097] [PMID: 35400524]
[16]
A Heieis, G.; Everts, B. O-GlcNAcylation at the center of antitumor immunity. Curr. Opin. Biotechnol., 2023, 84, 103009.
[http://dx.doi.org/10.1016/j.copbio.2023.103009] [PMID: 37863017]
[17]
Wu, X.; Xu, M.; Geng, M.; Chen, S.; Little, P.J.; Xu, S.; Weng, J. Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct. Target. Ther., 2023, 8(1), 220.
[http://dx.doi.org/10.1038/s41392-023-01439-y] [PMID: 37244925]
[18]
Zhou, B.; Hao, Q.; Liang, Y.; Kong, E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol. Oncol., 2023, 17(1), 3-26.
[http://dx.doi.org/10.1002/1878-0261.13308] [PMID: 36018061]
[19]
Qu, M.; Zhou, X.; Wang, X.; Li, H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int. J. Biol. Sci., 2021, 17(15), 4223-4237.
[http://dx.doi.org/10.7150/ijbs.64046] [PMID: 34803494]
[20]
Cai, J.; Cui, J.; Wang, L. S-palmitoylation regulates innate immune signaling pathways: Molecular mechanisms and targeted therapies. Eur. J. Immunol., 2023, 53(10), 2350476.
[http://dx.doi.org/10.1002/eji.202350476] [PMID: 37369620]
[21]
Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol., 2022, 19(5), 287-305.
[http://dx.doi.org/10.1038/s41571-022-00601-9] [PMID: 35132224]
[22]
Yu, F.; Qian, Z. Mechanisms for regulation of RAS palmitoylation and plasma membrane trafficking in hematopoietic malignancies. J. Clin. Invest., 2023, 133(12), e171104.
[http://dx.doi.org/10.1172/JCI171104] [PMID: 37317974]
[23]
Liu, Z.; Xiao, M.; Mo, Y.; Wang, H.; Han, Y.; Zhao, X.; Yang, X.; Liu, Z.; Xu, B. Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int. J. Biol. Sci., 2022, 18(8), 3447-3457.
[http://dx.doi.org/10.7150/ijbs.72244] [PMID: 35637973]
[24]
Brun, S.; Bestion, E.; Raymond, E.; Bassissi, F.; Jilkova, Z.M.; Mezouar, S.; Rachid, M.; Novello, M.; Tracz, J.; Hamaï, A.; Lalmanach, G.; Vanderlynden, L.; Legouffe, R.; Stauber, J.; Schubert, T.; Plach, M.G.; Courcambeck, J.; Drouot, C.; Jacquemot, G.; Serdjebi, C.; Roth, G.; Baudoin, J.P.; Ansaldi, C.; Decaens, T.; Halfon, P. GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma via modulation of lysosomal functions. Autophagy, 2022, 18(3), 678-694.
[http://dx.doi.org/10.1080/15548627.2021.1988357] [PMID: 34740311]
[25]
Rebecca, V.W.; Nicastri, M.C.; Fennelly, C.; Chude, C.I.; Barber-Rotenberg, J.S.; Ronghe, A.; McAfee, Q.; McLaughlin, N.P.; Zhang, G.; Goldman, A.R.; Ojha, R.; Piao, S.; Noguera-Ortega, E.; Martorella, A.; Alicea, G.M.; Lee, J.J.; Schuchter, L.M.; Xu, X.; Herlyn, M.; Marmorstein, R.; Gimotty, P.A.; Speicher, D.W.; Winkler, J.D.; Amaravadi, R.K. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov., 2019, 9(2), 220-229.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0706] [PMID: 30442709]
[26]
Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma.. JCI Insight, 2022, 7(20), e165688.
[http://dx.doi.org/10.1172/jci.insight.165688] [PMID: 36278493]
[27]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[28]
Zhang, R.; Chen, J.; Wang, S.; Zhang, W.; Zheng, Q.; Cai, R. Ferroptosis in cancer progression. Cells, 2023, 12(14), 1820.
[http://dx.doi.org/10.3390/cells12141820] [PMID: 37508485]
[29]
Maru, D.; Hothi, A.; Bagariya, C.; Kumar, A. Targeting ferroptosis pathways: A novel strategy for cancer therapy. Curr. Cancer Drug Targets, 2022, 22(3), 234-244.
[http://dx.doi.org/10.2174/1568009622666220211122745] [PMID: 35152865]
[30]
Dar, N.J.; John, U.; Bano, N.; Khan, S.; Bhat, S.A. Oxytosis/ferroptosis in neurodegeneration: The underlying role of master regulator glutathione peroxidase 4 (GPX4). Mol. Neurobiol., 2023.
[http://dx.doi.org/10.1007/s12035-023-03646-8] [PMID: 37725216]
[31]
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421.
[http://dx.doi.org/10.1016/j.cell.2022.06.003] [PMID: 35803244]
[32]
Hadian, K.; Stockwell, B.R. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat. Rev. Drug Discov., 2023, 22(9), 723-742.
[http://dx.doi.org/10.1038/s41573-023-00749-8] [PMID: 37550363]
[33]
Lee, J.; Roh, J.L. Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Lett., 2023, 559, 216119.
[http://dx.doi.org/10.1016/j.canlet.2023.216119] [PMID: 36893895]
[34]
Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim. Biophys. Acta Rev. Cancer, 2023, 1878(3), 188890.
[http://dx.doi.org/10.1016/j.bbcan.2023.188890] [PMID: 37001616]
[35]
Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy, 2023, 19(10), 2621-2638.
[http://dx.doi.org/10.1080/15548627.2023.2218764] [PMID: 37272058]
[36]
Zhang, X.D.; Liu, Z.Y.; Wang, M.S.; Guo, Y.X.; Wang, X.K.; Luo, K.; Huang, S.; Li, R.F. Mechanisms and regulations of ferroptosis. Front. Immunol., 2023, 14, 1269451.
[http://dx.doi.org/10.3389/fimmu.2023.1269451] [PMID: 37868994]
[37]
Li, D.; Wang, Y.; Dong, C.; Chen, T.; Dong, A.; Ren, J.; Li, W.; Shu, G.; Yang, J.; Shen, W.; Qin, L.; Hu, L.; Zhou, J. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene, 2023, 42(2), 83-98.
[http://dx.doi.org/10.1038/s41388-022-02537-x] [PMID: 36369321]
[38]
Cai, S.; Ding, Z.; Liu, X.; Zeng, J. Trabectedin induces ferroptosis via regulation of HIF-1α/IRP1/TFR1 and Keap1/Nrf2/GPX4 axis in non-small cell lung cancer cells. Chem. Biol. Interact., 2023, 369, 110262.
[http://dx.doi.org/10.1016/j.cbi.2022.110262] [PMID: 36396105]
[39]
Green, Y.S.; Ferreira dos Santos, M.C.; Fuja, D.G.; Reichert, E.C.; Campos, A.R.; Cowman, S.J.; Acuña Pilarte, K.; Kohan, J.; Tripp, S.R.; Leibold, E.A.; Sirohi, D.; Agarwal, N.; Liu, X.; Koh, M.Y. ISCA2 inhibition decreases HIF and induces ferroptosis in clear cell renal carcinoma. Oncogene, 2022, 41(42), 4709-4723.
[http://dx.doi.org/10.1038/s41388-022-02460-1] [PMID: 36097192]
[40]
Wang, H.; Luo, Q.; Feng, X.; Zhang, R.; Li, J.; Chen, F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer, 2018, 18(1), 500.
[http://dx.doi.org/10.1186/s12885-018-4403-9] [PMID: 29716544]
[41]
Cao, T.; Zhang, H.; Zhou, L.; Wang, Y.; Du, G.; Yao, H.; Wang, Y.; Luo, Q.; Chen, F.; Wang, W.; Tang, G. In vitro cell culture system optimization of keratinocytes from oral lichen planus ( OLP ) patients. Oral Dis., 2017, 23(2), 225-232.
[http://dx.doi.org/10.1111/odi.12599] [PMID: 27763705]
[42]
Qin, X.; Yan, M.; Zhang, J.; Wang, X.; Shen, Z.; Lv, Z.; Li, Z.; Wei, W.; Chen, W. TGFβ3-mediated induction of Periostin facilitates head and neck cancer growth and is associated with metastasis. Sci. Rep., 2016, 6(1), 20587.
[http://dx.doi.org/10.1038/srep20587] [PMID: 26857387]
[43]
Zhu, L.; Luo, Q.; Bi, J.; Ding, J.; Ge, S.; Chen, F. Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo. Chem. Biol. Interact., 2014, 224, 149-156.
[http://dx.doi.org/10.1016/j.cbi.2014.10.027] [PMID: 25450235]
[44]
dos Santos, A.F.; Fazeli, G.; Xavier da Silva, T.N.; Friedmann Angeli, J.P. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol., 2023, 33(12), 1062-1076.
[http://dx.doi.org/10.1016/j.tcb.2023.04.005] [PMID: 37230924]
[45]
Luo, Q.; Li, X.; Gan, G.; Yang, M.; Chen, X.; Chen, F. PPT1 reduction contributes to erianin-induced growth inhibition in oral squamous carcinoma cells. Front. Cell Dev. Biol., 2021, 9, 764263.
[http://dx.doi.org/10.3389/fcell.2021.764263] [PMID: 35004674]
[46]
de Morais, E.F.; Almangush, A.; Salo, T.; da Silva, S.D.; Kujan, O.; Coletta, R.D. Emerging histopathological parameters in the prognosis of oral squamous cell carcinomas. Histol. Histopathol., 2023, 18634.
[PMID: 37310089]
[47]
Woodley, K.T.; Collins, M.O. S-acylated Golga7b stabilises DHHC 5 at the plasma membrane to regulate cell adhesion. EMBO Rep., 2019, 20(10), e47472.
[http://dx.doi.org/10.15252/embr.201847472] [PMID: 31402609]
[48]
Aramsangtienchai, P.; Spiegelman, N.A.; Cao, J.; Lin, H. S-palmitoylation of junctional adhesion molecule C regulates its tight junction localization and cell migration. J. Biol. Chem., 2017, 292(13), 5325-5334.
[http://dx.doi.org/10.1074/jbc.M116.730523] [PMID: 28196865]
[49]
Heiler, S.; Mu, W.; Zöller, M.; Thuma, F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun. Signal., 2015, 13(1), 29.
[http://dx.doi.org/10.1186/s12964-015-0105-y] [PMID: 26054340]
[50]
Fröhlich, M.; Dejanovic, B.; Kashkar, H.; Schwarz, G.; Nussberger, S. S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis., 2014, 5(2), e1057.
[http://dx.doi.org/10.1038/cddis.2014.17] [PMID: 24525733]
[51]
Yuan, M.; Chen, X.; Sun, Y.; Jiang, L.; Xia, Z.; Ye, K.; Jiang, H.; Yang, B.; Ying, M.; Cao, J.; He, Q. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm. Sin. B, 2020, 10(8), 1426-1439.
[http://dx.doi.org/10.1016/j.apsb.2020.03.008] [PMID: 32963941]
[52]
Kwon, H.; Choi, M.; Ahn, Y.; Jang, D.; Pak, Y. Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther., 2023, 30(2), 302-312.
[http://dx.doi.org/10.1038/s41417-022-00546-2] [PMID: 36257975]
[53]
Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; Ronghe, A.; Jain, V.; Winkler, J.D.; Speicher, D.W.; Mastio, J.; Gimotty, P.A.; Xu, X.; Wherry, E.J.; Gabrilovich, D.I.; Amaravadi, R.K. PPT1 inhibition enhances the antitumor activity of anti–PD-1 antibody in melanoma. JCI Insight, 2020, 5(17), e133225.
[http://dx.doi.org/10.1172/jci.insight.133225] [PMID: 32780726]
[54]
Xu, J.; Su, Z.; Cheng, X.; Hu, S.; Wang, W.; Zou, T.; Zhou, X.; Song, Z.; Xia, Y.; Gao, Y.; Zheng, Q. High PPT1 expression predicts poor clinical outcome and PPT1 inhibitor DC661 enhances sorafenib sensitivity in hepatocellular carcinoma. Cancer Cell Int., 2022, 22(1), 115.
[http://dx.doi.org/10.1186/s12935-022-02508-y] [PMID: 35277179]
[55]
Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science, 2011, 334(6056), 678-683.
[http://dx.doi.org/10.1126/science.1207056] [PMID: 22053050]
[56]
Torii, S.; Shintoku, R.; Kubota, C.; Yaegashi, M.; Torii, R.; Sasaki, M.; Suzuki, T.; Mori, M.; Yoshimoto, Y.; Takeuchi, T.; Yamada, K. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem. J., 2016, 473(6), 769-777.
[http://dx.doi.org/10.1042/BJ20150658] [PMID: 26759376]
[57]
Alu, A.; Han, X.; Ma, X.; Wu, M.; Wei, Y.; Wei, X. The role of lysosome in regulated necrosis. Acta Pharm. Sin. B, 2020, 10(10), 1880-1903.
[http://dx.doi.org/10.1016/j.apsb.2020.07.003] [PMID: 33163342]
[58]
Deng, S.; Li, J.; Li, L.; Lin, S.; Yang, Y.; Liu, T.; Zhang, T.; Xie, G.; Wu, D.; Xu, Y. Quercetin alleviates lipopolysaccharide‑induced acute lung injury by inhibiting ferroptosis via the Sirt1/Nrf2/Gpx4 pathway. Int. J. Mol. Med., 2023, 52(6), 118.
[http://dx.doi.org/10.3892/ijmm.2023.5321] [PMID: 37888753]
[59]
Akiyama, H.; Zhao, R.; Ostermann, L.B.; Li, Z.; Tcheng, M.; Yazdani, S.J.; Moayed, A.; Pryor, M.L., II; Slngh, S.; Baran, N.; Ayoub, E.; Nishida, Y.; Mak, P.Y.; Ruvolo, V.R.; Carter, B.Z.; Schimmer, A.D.; Andreeff, M.; Ishizawa, J. Mitochondrial regulation of GPX4 inhibition–mediated ferroptosis in acute myeloid leukemia. Leukemia, 2023.
[http://dx.doi.org/10.1038/s41375-023-02117-2] [PMID: 38148395]
[60]
Zhao, H.; Tang, C.; Wang, M.; Zhao, H.; Zhu, Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front. Immunol., 2023, 14, 1260839.
[http://dx.doi.org/10.3389/fimmu.2023.1260839] [PMID: 37928554]
[61]
Sun, K.; Zhi, Y.; Ren, W.; Li, S.; Zhou, X.; Gao, L.; Zhi, K. The mitochondrial regulation in ferroptosis signaling pathway and its potential strategies for cancer. Biomed. Pharmacother., 2023, 169, 115892.
[http://dx.doi.org/10.1016/j.biopha.2023.115892] [PMID: 37976895]
[62]
Patanè, G.T.; Putaggio, S.; Tellone, E.; Barreca, D.; Ficarra, S.; Maffei, C.; Calderaro, A.; Laganà, G. Ferroptosis: Emerging role in diseases and potential implication of bioactive compounds. Int. J. Mol. Sci., 2023, 24(24), 17279.
[http://dx.doi.org/10.3390/ijms242417279] [PMID: 38139106]
[63]
Baruah, P.; Moorthy, H.; Ramesh, M.; Padhi, D.; Govindaraju, T. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-β induced ferroptosis in Alzheimer’s disease. Chem. Sci., 2023, 14(35), 9427-9438.
[http://dx.doi.org/10.1039/D3SC02350H] [PMID: 37712018]
[64]
Xu, Z.; Wang, X.; Sun, W.; Xu, F.; Kou, H.; Hu, W.; Zhang, Y.; Jiang, Q.; Tang, J.; Xu, Y. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol., 2023, 68, 102952.
[http://dx.doi.org/10.1016/j.redox.2023.102952] [PMID: 37944384]

© 2024 Bentham Science Publishers | Privacy Policy