Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review

In Press, (this is not the final "Version of Record"). Available online 30 January, 2024
Author(s): Prachi Pimple, Jenny Shah and Prabha Singh*
Published on: 30 January, 2024

DOI: 10.2174/0115672018270434240105110330

Price: $95

Abstract

Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual’s quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.

[1]
Rani, R.; Raina, N.; Sharma, A.; Kumar, P.; Tulli, H.S.; Gupta, M. Advancement in nanotechnology for treatment of rheumatoid arthritis: Scope and potential applications. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(10), 2287-2310.
[http://dx.doi.org/10.1007/s00210-023-02514-5] [PMID: 37166463]
[2]
Moghadam, S.; Azari, B.; Darroudi, M.; Zarrinfar, H.; Sabouri, Z.; Mohammed, S.S. Comparison of antifungal activities of zinc, copper, cerium oxide, silver, gold, and selenium nanoparticles against clinical isolates of Aspergillus. Nanomed. J., 2023, 10(3), 227-233.
[3]
Kesharwani, D.; Paliwal, R.; Satapathy, T.; Paul, S.D. Rheumatiod arthritis: An updated overview of latest therapy and drug delivery. J. Pharmacopuncture, 2019, 22(4), 210-224.
[http://dx.doi.org/10.3831/KPI.2019.22.029] [PMID: 31970018]
[4]
Madav, Y.; Barve, K.; Prabhakar, B. Current trends in theranostics for rheumatoid arthritis. Eur. J. Pharm. Sci., 2020, 145, 105240.
[http://dx.doi.org/10.1016/j.ejps.2020.105240] [PMID: 31987984]
[5]
Thakur, S.; Riyaz, B.; Patil, A.; Kaur, A.; Kapoor, B.; Mishra, V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed. Pharmacother., 2018, 106, 1011-1023.
[http://dx.doi.org/10.1016/j.biopha.2018.07.027] [PMID: 30119166]
[6]
Zheng, M.; Jia, H.; Wang, H.; Liu, L.; He, Z.; Zhang, Z.; Yang, W.; Gao, L.; Gao, X.; Gao, F. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances, 2021, 11(13), 7129-7137.
[http://dx.doi.org/10.1039/D1RA00328C] [PMID: 35423287]
[7]
Mohanty, S.; Panda, S.; Bhanja, A.; Pal, A.; Chandra, S.S. Novel Drug Delivery Systems for Rheumatoid Arthritis: An Approach to Better Patient Compliance. Biomed. Pharmacol. J., 2019, 12(1), 157-170.
[http://dx.doi.org/10.13005/bpj/1624]
[9]
Global, R.A. About Arthritis and RA. Available from: https://globalranetwork.org/project/disease-info/
[10]
Gautam, R.K.; Roy, K.; Thapa, G.; Arora, D.; Parashar, S.; Deb, B.G. Perspective of plant medicine in therapy of rheumatoid arthritis. Indian J. Pharm. Sci., 2020, 82(5), 741-765.
[11]
Wang, T.; Zeng, F.; Li, X.; Wei, Y.; Wang, D.; Zhang, W.; Xie, H.; Wei, L.; Xiong, S.; Liu, C.; Li, S.; Wu, J. Identification of key genes and pathways associated with sex differences in rheumatoid arthritis based on bioinformatics analysis. Clin. Rheumatol., 2023, 42(2), 399-406.
[http://dx.doi.org/10.1007/s10067-022-06387-6] [PMID: 36173499]
[12]
Safiri, S.; Kolahi, A.A.; Hoy, D.; Smith, E.; Bettampadi, D.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Qorbani, M.; Collins, G.; Woolf, A.D.; March, L.; Cross, M. Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017. Ann. Rheum. Dis., 2019, 78(11), 1463-1471.
[http://dx.doi.org/10.1136/annrheumdis-2019-215920] [PMID: 31511227]
[13]
Li, T.P.; Zhang, A.H.; Miao, J.H.; Sun, H.; Yan, G.L.; Fang, W.F. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: A systematic review. RSC Adv., 2019, 9(45), 26381-26392.
[14]
Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health approaches among adults: United States, 2002-2012. Natl. Health Stat. Rep., 2015, (79), 1-16.
[PMID: 25671660]
[15]
Dudics, S.; Langan, D.; Meka, R.; Venkatesha, S.; Berman, B.; Che, C.T.; Moudgil, K. Natural products for the treatment of autoimmune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int. J. Mol. Sci., 2018, 19(9), 2508.
[http://dx.doi.org/10.3390/ijms19092508] [PMID: 30149545]
[16]
Santiago, L.Â.M.; Neto, R.N.M.; Santos Ataíde, A.C.; Fonseca, D.C.S.C.; Soares, E.F.A.; de Sá Sousa, J.C.; Mondego-Oliveira, R.; Ribeiro, R.M.; de Sousa Cartágenes, M.S.; Lima-Neto, L.G.; Carvalho, R.C.; de Sousa, E.M. Flavonoids, alkaloids and saponins: Are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review. Clinical Phytoscience, 2021, 7(1), 58.
[http://dx.doi.org/10.1186/s40816-021-00291-3]
[17]
Kour, G.; Haq, S.A.; Bajaj, B.K.; Gupta, P.N.; Ahmed, Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol. Res., 2021, 169, 105618.
[http://dx.doi.org/10.1016/j.phrs.2021.105618] [PMID: 33878447]
[18]
Pham, C.T.N. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(6), 607-619.
[http://dx.doi.org/10.1002/wnan.157] [PMID: 21837725]
[19]
Zhao, J.; Chen, X.; Ho, K.H.; Cai, C.; Li, C.W.; Yang, M.; Yi, C. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. Chin. Chem. Lett., 2021, 32(1), 66-86.
[http://dx.doi.org/10.1016/j.cclet.2020.11.048]
[20]
Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Rawat, R.; Rashid, S.; Vargas-De-La-Cruz, C.; Yadav, S.; Bungau, S.G.; Behl, T. Current trends in epigenetic, cellular and molecular pathways in management of rheumatoid arthritis. Inflammopharmacology, 2023, 31(4), 1577-1588.
[http://dx.doi.org/10.1007/s10787-023-01262-5] [PMID: 37335368]
[21]
Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[22]
Fraenkel, L.; Bathon, J.M.; England, B.R.; St Clair, E.W.; Arayssi, T.; Carandang, K.; Deane, K.D.; Genovese, M.; Huston, K.K.; Kerr, G.; Kremer, J.; Nakamura, M.C.; Russell, L.A.; Singh, J.A.; Smith, B.J.; Sparks, J.A.; Venkatachalam, S.; Weinblatt, M.E.; Al-Gibbawi, M.; Baker, J.F.; Barbour, K.E.; Barton, J.L.; Cappelli, L.; Chamseddine, F.; George, M.; Johnson, S.R.; Kahale, L.; Karam, B.S.; Khamis, A.M.; Navarro-Millán, I.; Mirza, R.; Schwab, P.; Singh, N.; Turgunbaev, M.; Turner, A.S.; Yaacoub, S.; Akl, E.A. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol., 2021, 73(7), 1108-1123.
[http://dx.doi.org/10.1002/art.41752] [PMID: 34101376]
[23]
Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Müller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poór, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655] [PMID: 31969328]
[24]
Smolen, J.S. Rheumatoid arthritis Primer - behind the scenes. Nat. Rev. Dis. Primers, 2020, 6(1), 32.
[http://dx.doi.org/10.1038/s41572-020-0168-y] [PMID: 31907359]
[25]
Patient education: Rheumatoid arthritis treatment (Beyond the Basics). Available from: https://www.uptodate.com/contents/rheumatoid-arthritis-treatment-beyond-the-basics
[26]
Littlejohn, E.A.; Monrad, S.U. Early diagnosis and treatment of rheumatoid arthritis. Prim. Care, 2018, 45(2), 237-255.
[http://dx.doi.org/10.1016/j.pop.2018.02.010] [PMID: 29759122]
[27]
Sparks, J.A. Rheumatoid arthritis. Ann. Intern. Med., 2019, 170(1), ITC1-ITC16.
[http://dx.doi.org/10.7326/AITC201901010] [PMID: 30596879]
[28]
Gupta, R Advancement in the management of rheumatoid arthritis. RPSPPR, 2023, 2(1), rqad005.
[29]
Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis. JAMA, 2018, 320(13), 1360-1372.
[http://dx.doi.org/10.1001/jama.2018.13103] [PMID: 30285183]
[30]
Chatzidionysiou, K.; Sfikakis, P.P. Low rates of remission with methotrexate monotherapy in rheumatoid arthritis: Review of randomised controlled trials could point towards a paradigm shift. RMD Open, 2019, 5(2), e000993.
[http://dx.doi.org/10.1136/rmdopen-2019-000993] [PMID: 31413870]
[31]
Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet, 2017, 389(10086), 2338-2348.
[http://dx.doi.org/10.1016/S0140-6736(17)31491-5] [PMID: 28612748]
[32]
Md Yusof, M.Y.; Emery, P. Targeting interleukin-6 in rheumatoid arthritis. Drugs, 2013, 73(4), 341-356.
[http://dx.doi.org/10.1007/s40265-013-0018-2] [PMID: 23456676]
[33]
Biosimilar Product Information. 2021. Available from: https://www.fda.gov/drugs/biosimilars/biosimilar-product-information
[34]
Kapoor, B.; Singh, S.K.; Gulati, M.; Gupta, R.; Vaidya, Y. Application of liposomes in treatment of rheumatoid arthritis: quo vadis. Sci. World J., 2014, 2014, 978351.
[http://dx.doi.org/10.1155/2014/978351]
[35]
Janakiraman, K.; Krishnaswami, V.; Rajendran, V.; Natesan, S.; Kandasamy, R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater. Today Commun., 2018, 17, 200-213.
[http://dx.doi.org/10.1016/j.mtcomm.2018.09.011] [PMID: 32289062]
[36]
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet, 2016, 388(10055), 2023-2038.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[38]
Foster, O.; Brown, N.; Malik, N.; Akhtar, Z.; Thakur, M. A comprehensive review on surgical implications of rheumatoid arthritis. Gen Surg Open A Open J., 2020, 1(1), 28-34.
[39]
Yano, K.; Ikari, K. Outcomes of joint-preserving surgery for rheumatoid forefoot deformity: An editorial. Int. J. Environ. Res. Public Health, 2022, 19(4), 2038.
[40]
Wang, W.; Zhou, H.; Liu, L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur. J. Med. Chem., 2018, 158, 502-516.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.027] [PMID: 30243154]
[41]
de Camargo, M.C.; Barros, B.C.A.; Fulone, I.; Silva, M.T.; Silveira, M.S.N.; Camargo, I.A.; Barberato-Filho, S.; Del Fiol, F.S.; Lopes, L.C. Adverse events in patients with rheumatoid arthritis and psoriatic arthritis receiving long-term biological agents in a real-life setting. Front. Pharmacol., 2019, 10, 965.
[http://dx.doi.org/10.3389/fphar.2019.00965] [PMID: 31572173]
[42]
Gorantla, S.; Singhvi, G.; Rapalli, V.K.; Waghule, T.; Dubey, S.K.; Saha, R.N. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. Ther. Deliv., 2020, 11(4), 269-284.
[http://dx.doi.org/10.4155/tde-2020-0029] [PMID: 32434463]
[43]
Menchaca-Tapia, V.M.; Rodríguez, E.M.; Contreras-Yáñez, I.; Iglesias-Morales, M.; Pascual-Ramos, V. Adverse outcomes following hand surgery in patients with rheumatoid arthritis. Plast. Surg., 2016, 24(2), 67-72.
[http://dx.doi.org/10.1177/229255031602400201] [PMID: 27441187]
[44]
Sharma, A.; Goel, A. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products. Mol. Biol. Rep., 2023, 50(5), 4687-4706.
[http://dx.doi.org/10.1007/s11033-023-08406-4] [PMID: 37022525]
[45]
Mendoza, N.; Silva, E.M.E. Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance. In: Phytochemicals - Source of Antioxidants and Role in Disease Prevention; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.78226]
[46]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[47]
Hughes, S.D.; Ketheesan, N.; Haleagrahara, N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr., 2017, 57(17), 3601-3613.
[http://dx.doi.org/10.1080/10408398.2016.1246413] [PMID: 27874281]
[48]
Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; Pandian, S.K. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol. Ther., 2019, 194, 107-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.009] [PMID: 30268770]
[49]
Barzegar, M.; Ahmadvand, D.; Sabouri, Z.; Darroudi, M. Phytoextract-mediated synthesis of magnesium oxide nanoparticles using Caccinia macranthera extract and examination of their photocatalytic and anticancer effects. Mater. Res. Bull., 2024, 169, 112514.
[http://dx.doi.org/10.1016/j.materresbull.2023.112514]
[50]
Dai, Y.; Chen, S.R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci. Nutr., 2019, 59(S1), S17-S29.
[http://dx.doi.org/10.1080/10408398.2018.1501657]
[51]
Li, Z.; Tan, J.; Wang, L.; Li, Q. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation, 2017, 40(5), 1599-1605.
[http://dx.doi.org/10.1007/s10753-017-0600-y] [PMID: 28584977]
[52]
Burgos, R.A.; Alarcón, P.; Quiroga, J.; Manosalva, C.; Hancke, J. Andrographolide, an anti-inflammatory multitarget drug: All roads lead to cellular metabolism. Molecules, 2020, 26(1), 5.
[http://dx.doi.org/10.3390/molecules26010005] [PMID: 33374961]
[53]
Gupta, S.; Mishra, K.P.; Kumar, B.; Singh, S.B.; Ganju, L. Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. J. Ethnopharmacol., 2020, 261, 113022.
[http://dx.doi.org/10.1016/j.jep.2020.113022] [PMID: 32569719]
[54]
Li, X.; Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Huang, G.; Xu, A. Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–netosis balance of neutrophils. Int. J. Mol. Sci., 2019, 20(20), 5035.
[http://dx.doi.org/10.3390/ijms20205035] [PMID: 31614480]
[55]
Zhang, Y.; Ma, J.; Zhang, W. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. J. Ethnopharmacol., 2021, 277, 114249.
[http://dx.doi.org/10.1016/j.jep.2021.114249] [PMID: 34058315]
[56]
Yue, M.; Xia, Y.; Shi, C.; Guan, C.; Li, Y.; Liu, R.; Wei, Z.; Dai, Y. Berberine ameliorates collagen‐induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut. FEBS J., 2017, 284(17), 2786-2801.
[http://dx.doi.org/10.1111/febs.14147] [PMID: 28636167]
[57]
Jeong, H.W.; Hsu, K.C.; Lee, J.W.; Ham, M.; Huh, J.Y.; Shin, H.J.; Kim, W.S.; Kim, J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab., 2009, 296(4), E955-E964.
[http://dx.doi.org/10.1152/ajpendo.90599.2008] [PMID: 19208854]
[58]
Vita, A.A.; Aljobaily, H.; Lyons, D.O.; Pullen, N.A. Berberine delays onset of collagen-induced arthritis through t cell suppression. Int. J. Mol. Sci., 2021, 22(7), 3522.
[http://dx.doi.org/10.3390/ijms22073522] [PMID: 33805383]
[59]
Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. A Summary. Foods, 2021, 10(10), 2249.
[http://dx.doi.org/10.3390/foods10102249] [PMID: 34681298]
[60]
Virender, K.; Bharti, M.; Shamama, J.; Waquar, A.; Pankaj, K. Vandana, Garga; Harish, D. Bromelain: A review of its mechanisms, pharmacological effects and potential applications. Food Funct., 2023, 14, 8101-8128.
[61]
Jain, N.; Mohan, S.C. In-vitro anti-inflammatory, anti-arthritic and anti-oxidant activity of bromelain supplement. Int. J. Adv. Sci. Res., 2021, 12(1)
[62]
Kargutkar, S.; Brijesh, S. Anti-rheumatic activity of Ananas comosus fruit peel extract in a complete Freund’s adjuvant rat model. Pharm. Biol., 2016, 54(11), 2616-2622.
[http://dx.doi.org/10.3109/13880209.2016.1173066] [PMID: 27181794]
[63]
Pothacharoen, P.; Chaiwongsa, R.; Chanmee, T.; Insuan, O.; Wongwichai, T.; Janchai, P.; Vaithanomsat, P. Bromelain extract exerts antiarthritic effects via chondroprotection and the suppression of TNF-α–induced NF-κB and MAPK signaling. Plants, 2021, 10(11), 2273.
[http://dx.doi.org/10.3390/plants10112273] [PMID: 34834636]
[64]
Kumari, K.; Gupta, D.; Bhatia, J.K.; Sharma, M.; Gupta, S.; Arora, I. Nutraceuticals & human health: A comprehensive review. World J. Pharm. Res., 2023, 12(14), 478-496.
[65]
Bagherniya, M.; Darand, M.; Askari, G.; Guest, P.C.; Sathyapalan, T.; Sahebkar, A. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials. Adv. Exp. Med. Biol., 2021, 1291, 251-263.
[http://dx.doi.org/10.1007/978-3-030-56153-6_15]
[66]
Dai, Q.; Zhou, D.; Xu, L.; Song, X. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Des. Devel. Ther., 2018, 12, 4095-4105.
[http://dx.doi.org/10.2147/DDDT.S175763] [PMID: 30584274]
[67]
Wang, Q.; Ye, C.; Sun, S.; Li, R.; Shi, X.; Wang, S.; Zeng, X.; Kuang, N.; Liu, Y.; Shi, Q.; Liu, R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int. Immunopharmacol., 2019, 72, 292-300.
[http://dx.doi.org/10.1016/j.intimp.2019.04.027] [PMID: 31005039]
[68]
Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C.; Cai, H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Devel. Ther., 2015, 9, 4931-4942.
[PMID: 26345159]
[69]
Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem., 2019, 25(37), 4929-4945.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[70]
Qi, W.; Lin, C.; Fan, K.; Chen, Z.; Liu, L.; Feng, X.; Zhang, H.; Shao, Y.; Fang, H.; Zhao, C.; Zhang, R.; Cai, D. Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund’s adjuvant-induced arthritis in mice. Chem. Biol. Interact., 2019, 306, 19-28.
[http://dx.doi.org/10.1016/j.cbi.2019.04.002] [PMID: 30954464]
[71]
Li, R.; Cai, L.; Xie, X.; Yang, F.; Li, J. Hesperidin suppresses adjuvant arthritis in rats by inhibiting synoviocyte activity. Phytother. Res., 2010, 24(S1), S71-S76.
[http://dx.doi.org/10.1002/ptr.2906] [PMID: 19585485]
[72]
Fu, Z.; Chen, Z.; Xie, Q.; Lei, H.; Xiang, S. Hesperidin protects against IL 1β induced inflammation in human osteoarthritis chondrocytes. Exp. Ther. Med., 2018, 16(4), 3721-3727.
[http://dx.doi.org/10.3892/etm.2018.6616] [PMID: 30233731]
[73]
Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med., 2019, 18(4), 2759-2776.
[http://dx.doi.org/10.3892/etm.2019.7886] [PMID: 31572524]
[74]
Jadimurthy, R.; Jagadish, S.; Nayak, S.C.; Kumar, S.; Mohan, C.D.; Rangappa, K.S. Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance. Life, 2023, 13(4), 948.
[http://dx.doi.org/10.3390/life13040948] [PMID: 37109477]
[75]
Pan, D.; Li, N.; Liu, Y.; Xu, Q.; Liu, Q.; You, Y.; Wei, Z.; Jiang, Y.; Liu, M.; Guo, T.; Cai, X.; Liu, X.; Wang, Q.; Liu, M.; Lei, X.; Zhang, M.; Zhao, X.; Lin, C. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol., 2018, 55, 174-182.
[http://dx.doi.org/10.1016/j.intimp.2017.12.011] [PMID: 29268189]
[76]
Li-xiang, A.; Fei, F.; Qi, Q.; Run-bin, S.; Sheng-hua, G.; Zi-zhen, D.; Ji-ye, A.; Guang-ji, W.; Chang-xiao, L. Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol. Acta Pharmacol. Sin., 2020, 41, 73-81.
[77]
Liu, X.; Tao, T.; Yao, H.; Zheng, H.; Wang, F.; Gao, Y. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies. Inflammopharmacology, 2023, 31(4), 1629-1645.
[http://dx.doi.org/10.1007/s10787-023-01196-y] [PMID: 37150762]
[78]
Davidson, R.K.; Green, J.; Gardner, S.; Bao, Y.; Cassidy, A.; Clark, I.M. Identifying chondroprotective diet-derived bioactives and investigating their synergism. Sci. Rep., 2018, 8(1), 17173.
[http://dx.doi.org/10.1038/s41598-018-35455-8] [PMID: 30464238]
[79]
Hannan, A.; Akhtar, B.; Sharif, A.; Anjum, F.; Pasha, I.; Khan, A.; Akhtar, M.F.; Saleem, A. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammopharmacology, 2023, 31(1), 287-300.
[http://dx.doi.org/10.1007/s10787-022-01118-4] [PMID: 36542211]
[80]
Guan, F.; Wang, Q.; Bao, Y.; Chao, Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Advances, 2021, 11(13), 7280-7293.
[http://dx.doi.org/10.1039/D0RA08817J] [PMID: 35423269]
[81]
Paul, A.T.; Gohil, V.M.; Bhutani, K.K. Modulating TNF-α signaling with natural products. Drug Discov. Today, 2006, 11(15-16), 725-732.
[http://dx.doi.org/10.1016/j.drudis.2006.06.002] [PMID: 16846800]
[82]
Cessak, G.; Kuzawińska, O.; Burda, A.; Lis, K.; Wojnar, M.; Mirowska-Guzel, D.; Bałkowiec-Iskra, E. TNF inhibitors – Mechanisms of action, approved and off-label indications. Pharmacol. Rep., 2014, 66(5), 836-844.
[http://dx.doi.org/10.1016/j.pharep.2014.05.004] [PMID: 25149988]
[83]
Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Li, X.; Huang, G.; Xu, A. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem., 2020, 84, 108454.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108454] [PMID: 32679549]
[84]
Elmali, N.; Baysal, O.; Harma, A.; Esenkaya, I.; Mizrak, B. Effects of resveratrol in inflammatory arthritis. Inflammation, 2007, 30(1-2), 1-6.
[http://dx.doi.org/10.1007/s10753-006-9012-0] [PMID: 17115116]
[85]
Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11(5), 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[86]
Yang, G.; Chang, C.C.; Yang, Y.; Yuan, L.; Xu, L.; Ho, C.T.; Li, S. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J. Agric. Food Chem., 2018, 66(49), 12953-12960.
[http://dx.doi.org/10.1021/acs.jafc.8b05047] [PMID: 30511573]
[87]
Zhang, Y.; Wang, G.; Wang, T.; Cao, W.; Zhang, L.; Chen, X. Nrf2–Keap1 pathway–mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide–treated rheumatoid arthritis fibroblast‐like synoviocytes. Ann. N. Y. Acad. Sci., 2019, 1457(1), 166-178.
[http://dx.doi.org/10.1111/nyas.14196] [PMID: 31475364]
[88]
Yang, C.M.; Chen, Y.W.; Chi, P.L.; Lin, C.C.; Hsiao, L.D. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts. Biochem. Pharmacol., 2017, 132, 77-91.
[http://dx.doi.org/10.1016/j.bcp.2017.03.003] [PMID: 28288820]
[89]
Oz, B.; Yildirim, A.; Yolbas, S.; Celik, Z.B.; Etem, E.O.; Deniz, G.; Akin, M.; Akar, Z.A.; Karatas, A.; Koca, S.S. Resveratrol inhibits Src tyrosine kinase, STAT3, and Wnt signaling pathway in collagen induced arthritis model. Biofactors, 2019, 45(1), 69-74.
[http://dx.doi.org/10.1002/biof.1463] [PMID: 30496633]
[90]
Gandhi, Y.; Kumar, R.; Grewal, J.; Rawat, H.; Mishra, S.K.; Kumar, V. Advances in anti-inflammatory medicinal plants and phytochemicals in the management of arthritis: A comprehensive review. Food Chem. Adv., 2022, 1, 100085.
[91]
Hussain, Z.; Thu, H.E.; Khan, S.; Sohail, M.; Sarfraz, R.M.; Mahmood, A.; Abourehab, M.A.S. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J. Drug Deliv. Sci. Technol., 2022, 77, 103895.
[http://dx.doi.org/10.1016/j.jddst.2022.103895]
[92]
Bhattacharyya, S.; Sandhu, K.; Chockalingam, S. Nanotechnology-based healthcare engineering products and recent patents—an update. In: Emerging Nanotechnologies for Medical Applications; Elsevier, 2023; pp. 273-296.
[93]
Manickam, V.; Sundar, V.; Panchangam, R.L.; Amiti, S.K.A.; Tamizhselvi, R. Nanotechnology in delivery and targeting of phytochemicals. In: Nanopharmaceuticals: Principles and Applications; Springer, 2021; 2, pp. 211-264.
[http://dx.doi.org/10.1007/978-3-030-44921-6_6]
[94]
Rabiei, M.; Kashanian, S.; Samavati, S.S.; Derakhshankhah, H.; Jamasb, S.; McInnes, S.J.P. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J. Drug Deliv. Sci. Technol., 2021, 61, 102011.
[http://dx.doi.org/10.1016/j.jddst.2020.102011]
[95]
Rahimizadeh, P.; Rezaieyazdi, Z.; Behzadi, F.; Hajizade, A.; Lim, S.I. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int. J. Pharm., 2021, 609, 121137.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121137] [PMID: 34592396]
[96]
Subramanian, A.P.; Jaganathan, S.K.; Manikandan, A.; Pandiaraj, K.N. N, G.; Supriyanto, E. Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Advances, 2016, 6(54), 48294-48314.
[http://dx.doi.org/10.1039/C6RA07802H]
[97]
Mirzaei, S.M.; Oskuee, R.K.; Sadri, K.; Sabouri, Z.; Far, B.F.; Abdulabbas, H.S.; Darroudi, M. Development of a novel sulfur quantum dots: Synthesis, 99mTc radiolabeling, and biodistribution. Appl. Biochem. Biotechnol., 2023.
[http://dx.doi.org/10.1007/s12010-023-04703-7] [PMID: 37650949]
[98]
Sabouri, Z.; Kazemi Oskuee, R.; Sabouri, S.; Tabrizi Hafez Moghaddas, S.S.; Samarghandian, S.; Sajid Abdulabbas, H.; Darroudi, M. Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum Basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects. Ceram. Int., 2023, 49(12), 20989-20997.
[http://dx.doi.org/10.1016/j.ceramint.2023.03.234]
[99]
Saini, R.; Saini, S.; Sharma, S. Nanotechnology: The future medicine. J. Cutan. Aesthet. Surg., 2010, 3(1), 32-33.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[100]
Ahmad, R.; Srivastava, S.; Ghosh, S.; Khare, S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces, 2021, 197, 111389.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111389] [PMID: 33075659]
[101]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[102]
Vinardell, M.P.; Mitjans, M. Nanocarriers for delivery of antioxidants on the skin. Cosmetics, 2015, 2(4), 342-354.
[http://dx.doi.org/10.3390/cosmetics2040342]
[103]
Gugleva, V.; Ivanova, N.; Sotirova, Y.; Andonova, V. Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies. Pharmaceuticals, 2021, 14(9), 837.
[http://dx.doi.org/10.3390/ph14090837] [PMID: 34577536]
[104]
Mohapatra, S.; Ranjan, S.; Dasgupta, N.; Kumar, R.; Thomas, S. Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery; Elsevier, 2018.
[105]
Zhang, R.X.; Ahmed, T.; Li, L.Y.; Li, J.; Abbasi, A.Z.; Wu, X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 2017, 9(4), 1334-1355.
[http://dx.doi.org/10.1039/C6NR08486A] [PMID: 27973629]
[106]
Barba, A.; Lamberti, G.; Sardo, C.; Dapas, B.; Abrami, M.; Grassi, M.; Farra, R.; Tonon, F.; Forte, G.; Musiani, F.; Licciardi, M.; Pozzato, G.; Zanconati, F.; Scaggiante, B.; Grassi, G.; Cavallaro, G. Novel lipid and polymeric materials as delivery systems for nucleic acid based drugs. Curr. Drug Metab., 2015, 16(6), 427-452.
[http://dx.doi.org/10.2174/1389200216666150812142557] [PMID: 26264345]
[107]
Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems - the current state. Adv. Colloid Interface Sci., 2022, 309, 102757.
[http://dx.doi.org/10.1016/j.cis.2022.102757] [PMID: 36152374]
[108]
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154(2), 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[109]
Sun, Z.; Wei, T.; Zhou, X. Liposomes encapsulated dimethyl curcumin regulates dipeptidyl peptidase I activity, gelatinase release and cell cycle of spleen lymphocytes in-vivo to attenuate collagen induced arthritis in rats. Int. Immunopharmacol., 2018, 65, 511-521.
[http://dx.doi.org/10.1016/j.intimp.2018.10.039] [PMID: 30408628]
[110]
Manca, M.L.; Lattuada, D.; Valenti, D.; Marelli, O.; Corradini, C.; Fernàndez-Busquets, X.; Zaru, M.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid. Eur. J. Pharm. Biopharm., 2019, 136, 84-92.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.012] [PMID: 30659893]
[111]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[112]
Sujitha, S.; Dinesh, P.; Rasool, M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur. J. Pharm. Biopharm., 2020, 149, 170-191.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.007] [PMID: 32068029]
[113]
Sujitha, S.; Rasool, M. Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a. Int. Immunopharmacol., 2019, 74, 105703.
[http://dx.doi.org/10.1016/j.intimp.2019.105703] [PMID: 31261037]
[114]
Roces, C.B.; Lou, G.; Jain, N.; Abraham, S.; Thomas, A.; Halbert, G.W.; Perrie, Y. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics, 2020, 12(11), 1095.
[http://dx.doi.org/10.3390/pharmaceutics12111095] [PMID: 33203082]
[115]
Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf., 2020, 19(3), 954-994.
[http://dx.doi.org/10.1111/1541-4337.12547] [PMID: 33331687]
[116]
Chauhan, I.; Singh, L. A comprehensive literature review of lipids used in the formulation of lipid nanoparticles. Curr. Nanomater., 2023, 8(2), 126-152.
[http://dx.doi.org/10.2174/2405461507666220606164446]
[117]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[118]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[119]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[120]
Martins, S.; Sarmento, B.; Ferreira, D.C.; Souto, E.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int. J. Nanomedicine, 2007, 2(4), 595-607.
[PMID: 18203427]
[121]
Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon, 2022, 8(2), e08938.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08938]
[122]
Sabir, F.; Qindeel, M.; Rehman, A.; Ahmad, N.M.; Khan, G.M.; Csoka, I.; Ahmed, N. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery. J. Microencapsul., 2021, 38(4), 233-248.
[http://dx.doi.org/10.1080/02652048.2021.1899321] [PMID: 33689550]
[123]
Sharma, M.; Chaudhary, D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management. Int. J. Pharm., 2021, 594, 120176.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120176] [PMID: 33326825]
[124]
Munir, A.; Muhammad, F.; Zaheer, Y.; Ali, M.A.; Iqbal, M.; Rehman, M.; Munir, M.U.; Akhtar, B.; Webster, T.J.; Sharif, A.; Ihsan, A. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model. J. Drug Deliv. Sci. Technol., 2021, 66, 102854.
[http://dx.doi.org/10.1016/j.jddst.2021.102854]
[125]
Faizullah, K.; Waseem, I.; Waqas, A.; Muhammad, W.; Shaikh, M.R.; Shaikh, M.R.; Haroon, K. Phytonutrients and technological development in formulations. J. Pharm. Sci. Res., 2022, 6(1), 38-66.
[126]
Torchilin, T.M.; Vladimir, P. Advances in polymeric and lipid-core micelles as drug delivery systems. In: Polymeric Biomaterials, 3rd ed; CRC Press, 2013.
[127]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine, 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[128]
Fan, Z.; Li, J.; Liu, J.; Jiao, H.; Liu, B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl. Mater. Interfaces, 2018, 10(28), 23595-23604.
[http://dx.doi.org/10.1021/acsami.8b06236] [PMID: 29920067]
[129]
Khayyal, M.T.; El-Hazek, R.M.; El-Sabbagh, W.A.; Frank, J.; Behnam, D.; Abdel-Tawab, M. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition, 2018, 54, 189-196.
[http://dx.doi.org/10.1016/j.nut.2018.03.055] [PMID: 30048884]
[130]
Choradiya, B.R.; Patil, S.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J. Mol. Liq., 2021, 339, 116751.
[http://dx.doi.org/10.1016/j.molliq.2021.116751]
[131]
Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.; Benson, H.; Roberts, M. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4), 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[132]
Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst., 2019, 3, 95.
[http://dx.doi.org/10.3389/fsufs.2019.00095]
[133]
Ugur Kaplan, A.B.; Cetin, M.; Orgul, D.; Taghizadehghalehjoughi, A.; Hacımuftuoglu, A.; Hekimoglu, S. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein. J. Drug Deliv. Sci. Technol., 2019, 52, 189-203.
[http://dx.doi.org/10.1016/j.jddst.2019.04.027]
[134]
Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother., 2019, 112, 108622.
[http://dx.doi.org/10.1016/j.biopha.2019.108622] [PMID: 30797146]
[135]
Poonia, N.; Lather, V.; Kaur, B.; Kirthanashri, S.V.; Pandita, D. Optimization and development of methotrexate- and resveratrol-loaded nanoemulsion formulation using box–behnken design for rheumatoid arthritis. Assay Drug Dev. Technol., 2020, 18(8), 356-368.
[http://dx.doi.org/10.1089/adt.2020.989] [PMID: 33052698]
[136]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[137]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[138]
Venditti, I. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. J. King Saud Univ. Sci., 2019, 31(3), 398-411.
[http://dx.doi.org/10.1016/j.jksus.2017.10.004]
[139]
Wang, J.; Ayano, E.; Maitani, Y.; Kanazawa, H. Tunable surface properties of temperature-responsive polymer-modified liposomes induce faster cellular uptake. ACS Omega, 2017, 2(1), 316-325.
[http://dx.doi.org/10.1021/acsomega.6b00342] [PMID: 31457232]
[140]
Ige, P.; Pardeshi, S.; Sonawane, R. Development of ph-dependent nanospheres for nebulisation- in vitro diffusion, aerodynamic and cytotoxicity studies. Drug Res., 2018, 68(12), 680-686.
[http://dx.doi.org/10.1055/a-0595-7678] [PMID: 29665591]
[141]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[142]
Naik, J.B.; Pardeshi, S.R.; Patil, R.P.; Patil, P.B.; Mujumdar, A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: An overview. Bionanoscience, 2020, 10(3), 564-582.
[http://dx.doi.org/10.1007/s12668-020-00752-y]
[143]
Gieszinger, P.; Stefania Csaba, N.; Garcia-Fuentes, M.; Prasanna, M.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Janáky, T.; Kecskeméti, G.; Katona, G.; Szabó-Révész, P.; Ambrus, R. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur. J. Pharm. Biopharm., 2020, 153, 177-186.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.003] [PMID: 32531424]
[144]
Wani, T.U.; Raza, S.N.; Khan, N.A. Nanoparticle opsonization: Forces involved and protection by long chain polymers. Polym. Bull., 2020, 77(7), 3865-3889.
[http://dx.doi.org/10.1007/s00289-019-02924-7]
[145]
Yan, F.; Li, H.; Zhong, Z.; Zhou, M.; Lin, Y.; Tang, C.; Li, C. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis. Int. J. Nanomedicine, 2019, 14, 9113-9125.
[http://dx.doi.org/10.2147/IJN.S219413] [PMID: 31819422]
[146]
Saha, S.; Kundu, J.; Verma, R.J.; Chowdhury, P.K. Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation. Materialia, 2020, 9, 100605.
[http://dx.doi.org/10.1016/j.mtla.2020.100605]
[147]
Kulsirirat, T.; Sathirakul, K.; Kamei, N.; Takeda-Morishita, M. The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint. Int. J. Pharm., 2021, 602, 120618.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120618] [PMID: 33887393]
[148]
Yang, W.; Xie, D.; Liang, Y.; Chen, N.; Xiao, B.; Duan, L. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. J. Drug Deliv. Sci. Technol., 2021, 68, 103025.
[149]
Nagase, K.; Hasegawa, M.; Ayano, E.; Maitani, Y.; Kanazawa, H. Effect of polymer phase transition behavior on temperature-responsive polymer-modified liposomes for siRNA transfection. Int. J. Mol. Sci., 2019, 20(2), 430.
[http://dx.doi.org/10.3390/ijms20020430] [PMID: 30669495]
[150]
Ma, Q.; Bai, J.; Xu, J.; Dai, H.; Fan, Q.; Fei, Z.; Chu, J.; Yao, C.; Shi, H.; Zhou, X.; Bo, L.; Wang, C. Reshaping the inflammatory environment in rheumatoid arthritis joints by targeting delivery of berberine with platelet‐derived extracellular vesicles. Adv. NanoBiomed Res., 2021, 1(11), 2100071.
[http://dx.doi.org/10.1002/anbr.202100071]
[151]
Rocha, B.A.; Francisco, C.R.L.; Almeida, M.; Ames, F.Q.; Bona, E.; Leimann, F.V.; Gonçalves, O.H.; Bersani-Amado, C.A. Antiinflammatory activity of carnauba wax microparticles containing curcumin. J. Drug Deliv. Sci. Technol., 2020, 59, 101918.
[http://dx.doi.org/10.1016/j.jddst.2020.101918]
[152]
Das, M.K.; Ahmed, A.B.; Saha, D. Microsphere a drug delivery system–a review. Int. J. Curr. Pharm. Res., 2019, 11(4), 34-41.
[http://dx.doi.org/10.22159/ijcpr.2019v11i4.34941]
[153]
Gupta, S.; Parvez, N.; Bhandari, A.; Sharma, P. Microspheres based on herbal actives: The less-explored ways of disease treatment. Egypt. Pharm. J., 2015, 14(3), 148.
[http://dx.doi.org/10.4103/1687-4315.172852]
[154]
Jiang, Y.; Wang, F.; Xu, H.; Liu, H.; Meng, Q.; Liu, W. Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitro–in vivo correlation. Int. J. Pharm., 2014, 475(1-2), 475-484.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.016] [PMID: 25219858]
[155]
El Sayed, M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ., 2023, 31(7), 2855-2879.
[http://dx.doi.org/10.1007/s10924-023-02796-z]
[156]
Godiya, C.B.; Martins, R.L.A.; Cai, W. Functional biobased hydrogels for the removal of aqueous hazardous pollutants: Current status, challenges, and future perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(41), 21585-21612.
[http://dx.doi.org/10.1039/D0TA07028A]
[157]
Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials. Gels, 2021, 7(4), 182.
[http://dx.doi.org/10.3390/gels7040182] [PMID: 34842654]
[158]
New insights of scaffolds based on hydrogels in tissue engineering. Polymers, 2022, 14(4), 799.
[159]
Ahsan, A.; Tian, W.X.; Farooq, M.A.; Khan, D.H. An overview of hydrogels and their role in transdermal drug delivery. Int. J. Polym. Mater., 2021, 70(8), 574-584.
[http://dx.doi.org/10.1080/00914037.2020.1740989]
[160]
Yu, W.; Zhu, Y.; Li, H.; He, Y. Injectable quercetin-loaded hydrogel with cartilage-protection and immunomodulatory properties for articular cartilage repair. ACS Appl. Bio Mater., 2020, 3(2), 761-771.
[http://dx.doi.org/10.1021/acsabm.9b00673] [PMID: 35019280]
[161]
Dey, M.; Ghosh, B.; Giri, T.K. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids Surf. B Biointerfaces, 2020, 196, 111341.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111341] [PMID: 32916438]
[162]
Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric micelles drug delivery system in oncology. J. Control. Release, 2012, 159(3), 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[163]
Agrawal, R.; Chauhan, C.S.; Garg, A. Snapshot on polymeric micelles as a carrier for drug delivery. Curr. Nanomed., 2023, 13(1), 27-38.
[http://dx.doi.org/10.2174/2468187313666230320115153]
[164]
Bussemer, T.; Otto, I.; Bodmeier, R. Pulsatile drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2001, 18(5), 433-458.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v18.i5.10]
[165]
Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[166]
Fan, X.X.; Xu, M.Z.; Leung, E.L.H.; Jun, C.; Yuan, Z. Liu, L ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nano-Micro Lett., 2020, 12(1), 1-14.
[167]
Kamel, R.; Abbas, H.; Shaffie, N.M. Development and evaluation of PLA-coated co-micellar nanosystem of Resveratrol for the intra-articular treatment of arthritis. Int. J. Pharm., 2019, 569, 118560.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118560] [PMID: 31351180]
[168]
Dietary supplements: FDA should take further actions to improve oversight and consumer understanding. Available from: https://www.gao.gov/products/gao-09-250
[169]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[170]
WHO traditional medicine strategy: 2014-2023. Available from: https://www.who.int/publications-detail-redirect/9789241506096
[173]
Narayana, D.B.A.; Katiyar, C.K. Draft amendment to drugs and cosmetics rules to license science based botanicals, Phytopharmaceuticals as drugs in India. J. Ayurveda Integr. Med., 2013, 4(4), 245-246.
[http://dx.doi.org/10.4103/0975-9476.123726] [PMID: 24459393]
[174]
Study Overview. Patent NCT00752154, 2010.
[175]
Efficacy Study of FANG(30) for Active Rheumatoid Arthritis in Adult Patients (FANG30-RA). Patent NCT00749645, 2016.
[176]
Funk, J.L. Curcuma longa L in rheumatoid arthritis (CLaRA). Patent NCT02543931, 2016.
[177]
Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi, F.A.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J. Am. Coll. Nutr., 2017, 36(1), 9-15.
[http://dx.doi.org/10.1080/07315724.2016.1140093] [PMID: 27710596]
[178]
Jiang, Q. Tripterygium wilfordii hook F and methotrexate for postmenopausal women with rheumatoid arthritis. Patent NCT04136262, 2022.
[179]
Luo, Y.; Hou, X.; Xi, A.; Luo, M.; Wang, K.; Xu, Z. Tripterygium wilfordii Hook F combination therapy with methotrexate for rheumatoid arthritis: An updated meta-analysis. J. Ethnopharmacol., 2023, 307, 116211.
[http://dx.doi.org/10.1016/j.jep.2023.116211] [PMID: 36706936]
[180]
Liu, W.; Zhang, Y.; Zhu, W.; Ma, C.; Ruan, J.; Long, H.; Wang, Y. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets. Front. Immunol., 2018, 9, 2228.
[http://dx.doi.org/10.3389/fimmu.2018.02228] [PMID: 30319663]
[181]
Chen, Z.; Liu, Q.; Liu, J.; Jiang, X.; Xue, Y. Observation on the effect of total glucosides of paeony combined with methotrexate in the treatment of refractory rheumatoid arthritis. Chin. J Pract. Diag. Treatmen., 2017, 31(7), 700-702.
[182]
Wang, M.; Huang, J.; Fan, H.; He, D.; Zhao, S.; Shu, Y.; Li, H.; Liu, L.; Lu, S.; Xiao, C.; Liu, Y. Treatment of rheumatoid arthritis using combination of methotrexate and tripterygium glycosides tablets—a quantitative plasma pharmacochemical and pseudotargeted metabolomic approach. Front. Pharmacol., 2018, 9, 1051.
[http://dx.doi.org/10.3389/fphar.2018.01051] [PMID: 30356765]
[183]
Hydroxytriptolide in active rheumatoid arthritis patients with an inadequate response to methotrexate (T8). Patent NCT02202395, 2017.
[184]
Zhu, Z.; Qi, X.; Chao, C.; Ting, L.; Ding, J.; Zhang, J. Aza spiro ring and polycyclic andrographolide compound, preparation method thereof, pharmaceutical composition and application thereof. CN Patent 112645937A, 2021.
[185]
Min, G.; Huang, T. Application of andrographolide in inhibiting formation and activation of osteoclasts. WO Patent 2020192232A1, 2020.
[186]
Shou, J. Codrug that disintegrates in intestine, preparation therefor, and use thereof. WO Patent 2022012693A1, 2022.
[187]
Obermueller-Jevic, U.; Ruedenauer, S. Composition for the treatment of inflammation and/or associated morbidities thereto. WO Patent 2021123377A1, 2021.
[188]
Wu, Z.; Liang, S.; Yan, L.; Miao, Z.; Liu, J.; Li, Z. Accurate medicated diet food therapy product for rheumatoid arthritis and preparation method thereof. CN Patent 113181305A, 2021.
[189]
Kai, Z.; Xi, Z.; Huang, Z.; Wang, H.; Zhang, L.; Li, C. Pharmaceutical composition for inhibiting lipopolysaccharide-induced macrophage inflammation and application thereof. CN Patent 112043689A, 2020.
[190]
Blagden, N. New curcumin co-crystals and uses. WO Patent 2022013565A1, 2022.
[191]
Therapeutic herbal compositions for improving joint health. WO Patent 2022006572A1, 2022.
[192]
Ramey, G.J.; Ayyadurai, V.A.S.; Deonikar, P. Compositions for improving joint health. US Patent 20210060048A1, 2021.
[193]
Burov, SV Hesperidine conjugate and method for preparation thereof. RU Patent 2742030C1, 2021.
[194]
Qiu, L.; Bao, H.; Qi, M.; Cai, W. A Chinese medicinal ointment with antiinflammatory effect, and its preparation method. CN Patent 113577125A, 2021.
[195]
Xie, B.; Chen, S.; He, R.; Ding, S. Application of kaempferitrin in relieving side effects of glucocorticoid. CN Patent 112675187A, 2021.
[196]
Nakanishi, A.; Tanja, M. Collagenase activity inhibitor. WO Patent2021193498A1 2021.
[197]
Smith, M. Quercetin enhancement formulation. WO Patent 2021189109A1, 2021.
[198]
Bei, Q.; Kuan, Y. Resveratrol analogue containing long conjugated structure and preparation method and application thereof. CN Patent 111943817A, 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy