Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Effects of Prenatal Methcathinone Exposure on the Neurological Behavior of Adult Offspring

Author(s): Zhang Youyou*, Li Zhaoyang, Li Chen, Zhao Shuquan and Wang Hui

Volume 22, Issue 13, 2024

Published on: 07 February, 2024

Page: [2256 - 2262] Pages: 7

DOI: 10.2174/1570159X22666240128004722

Price: $65

Abstract

Background: Our previous research has shown that prenatal methcathinone exposure affects the neurodevelopment and neurobehavior of adolescent offspring, but the study on whether these findings continue into adulthood is limited.

Objective: This study aims to explore the effects of prenatal methcathinone exposure on anxiety-like behavior, learning and memory abilities, as well as serum 5-hydroxytryptamine and dopamine concentrations in adult offspring.

Methods: Pregnant rats were injected daily with methcathinone between the 7th and 20th days of gestation. The neurobehavioral performance of both male and female adult offspring rats was evaluated by neurobehavioral tests, including open-field tests, Morris water maze (MWM) tests, and novel object recognition (NOR) tests. The levels of 5-hydroxytryptamine and dopamine concentration in rat serum were detected by ELISA.

Results: Significant differences were found in the length of center distance and time of center duration in the open-field test, as well as the times of crossing the platform in the MWM test, between the prenatal methcathinone exposure group and the control group. Results of the NOR test showed that adult offspring rats exposed to methcathinone need more time to discriminate the novel object. No gender differences were detected in the neurobehavioral tests. The serum concentrations of 5-hydroxytryptamine and dopamine in rats exposed to methcathinone prenatally were lower than that in the control group, and the serum dopamine concentration was independent of gender in each group.

Conclusion: Prenatal methcathinone exposure affects the neurological behavior in adult offspring, and 5-hydroxytryptamine and dopamine might be involved in the process.

Graphical Abstract

[1]
Bade, R.; Stockham, P.; Painter, B.; Celma, A.; Bijlsma, L.; Hernandez, F.; White, J.M.; Gerber, C. Investigating the appearance of new psychoactive substances in South Australia using wastewater and forensic data. Drug Test. Anal., 2019, 11(2), 250-256.
[http://dx.doi.org/10.1002/dta.2484] [PMID: 30129282]
[2]
Sikk, K.; Taba, P. Methcathinone “Kitchen Chemistry” and permanent neurological damage. Int. Rev. Neurobiol., 2015, 120, 257-271.
[http://dx.doi.org/10.1016/bs.irn.2015.02.002] [PMID: 26070761]
[3]
González-Mariño, I.; Gracia-Lor, E.; Rousis, N.I.; Castrignanò, E.; Thomas, K.V.; Quintana, J.B.; Kasprzyk-Hordern, B.; Zuccato, E.; Castiglioni, S. Wastewater-based epidemiology to monitor synthetic cathinones use in different european countries. Environ. Sci. Technol., 2016, 50(18), 10089-10096.
[http://dx.doi.org/10.1021/acs.est.6b02644] [PMID: 27491628]
[4]
Abdelwahab, S.I.; Alfaifi, H.; Mohan, S.; Elhassan Taha, M.; Syame, S.; Shaala, L.; Alsanosy, R. Catha edulis Forsk. (Khat): Evaluation of its antidepressant-like Activity. Pharmacogn. Mag., 2017, 13(50)(Suppl. 2), 354.
[http://dx.doi.org/10.4103/pm.pm_442_16] [PMID: 28808405]
[5]
Goldstone, M.S. ‘Cat’: methcathinone--a new drug of abuse. JAMA, 1993, 269(19), 2508.
[http://dx.doi.org/10.1001/jama.1993.03500190050033] [PMID: 8487412]
[6]
Emerson, T.S.; Cisek, J.E. Methcathinone: A russian designer amphetamine infiltrates the rural midwest. Ann. Emerg. Med., 1993, 22(12), 1897-1903.
[http://dx.doi.org/10.1016/S0196-0644(05)80419-6] [PMID: 8239113]
[7]
European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2023: Trends and Developments Available from: https://www.emcdda.europa.eu/publications/european-drug-report/2023_
[8]
United Nations Office on Drug and Crime. 2022 world drug report. Available from: http://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html
[9]
Hasan, M.; Sarker, S.A. New psychoactive substances: A potential threat to developing countries. Addict. Health, 2023, 15(2), 136-143.
[http://dx.doi.org/10.34172/ahj.2023.1411] [PMID: 37560390]
[10]
Zhang, H.B.; Zhao, D.; Liu, Y.P.; Wang, L.X.; Yang, B.; Yuan, T.F. Problem-solving deficits in methcathinone use disorder. Psychopharmacology (Berl.), 2021, 238(9), 2515-2524.
[http://dx.doi.org/10.1007/s00213-021-05874-z] [PMID: 34291307]
[11]
Zeng, N.; Zheng, H.; Shi, T.; Zhang, H.B.; Wang, L.X.; Liang, Z.Y.; Sun, B.; Liao, Y.; Rao, L.L.; Yang, B.; Yuan, T.F. Impaired delay discounting and time sensitivity in methcathinone use disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2022, 272(8), 1595-1602.
[http://dx.doi.org/10.1007/s00406-021-01372-7] [PMID: 35091796]
[12]
Ennok, M.; Sikk, K.; Haldre, S.; Taba, P. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology, 2020, 76, 138-143.
[http://dx.doi.org/10.1016/j.neuro.2019.10.007] [PMID: 31678058]
[13]
Chong, T.T.J.; Bonnelle, V.; Veromann, K.R.; Juurmaa, J.; Taba, P.; Plant, O.; Husain, M. Dissociation of reward and effort sensitivity in methcathinone-induced Parkinsonism. J. Neuropsychol., 2018, 12(2), 291-297.
[http://dx.doi.org/10.1111/jnp.12122] [PMID: 28378511]
[14]
Wojcieszak, J.; Andrzejczak, D.; Szymańska, B.; Zawilska, J.B. Induction of immediate early genes expression in the mouse striatum following acute administration of synthetic cathinones. Pharmacol. Rep., 2019, 71(6), 977-982.
[http://dx.doi.org/10.1016/j.pharep.2019.05.011] [PMID: 31522019]
[15]
Anneken, J.H.; Angoa-Perez, M.; Sati, G.C.; Crich, D.; Kuhn, D.M. Dissociation between hypothermia and neurotoxicity caused by mephedrone and methcathinone in TPH2 knockout mice. Psychopharmacology (Berl.), 2019, 236(3), 1097-1106.
[http://dx.doi.org/10.1007/s00213-018-4991-8] [PMID: 30074064]
[16]
Tusiewicz, K.; Chłopaś-Konowałek, A.; Wachełko, O.; Zawadzki, M.; Szpot, P. A fatal case involving the highest ever reported 4- CMC concentration. J. Forensic Sci., 2023, 68(1), 349-354.
[http://dx.doi.org/10.1111/1556-4029.15162] [PMID: 36286234]
[17]
Wojcieszak, J.; Andrzejczak, D.; Wojtas, A.; Gołembiowska, K.; Zawilska, J.B. Methcathinone and 3-fluoromethcathinone stimulate spontaneous horizontal locomotor activity in mice and elevate extracellular dopamine and serotonin levels in the mouse striatum. Neurotox. Res., 2019, 35(3), 594-605.
[http://dx.doi.org/10.1007/s12640-018-9973-4] [PMID: 30377956]
[18]
Asser, A.; Hikima, A.; Raki, M.; Bergström, K.; Rose, S.; Juurmaa, J.; Krispin, V.; Muldmaa, M.; Lilles, S.; Rätsep, H.; Jenner, P.; Kõks, S.; Männistö, P.T.; Taba, P. Subacute administration of both methcathinone and manganese causes basal ganglia damage in mice resembling that in methcathinone abusers. J. Neural Transm. (Vienna), 2020, 127(5), 707-714.
[http://dx.doi.org/10.1007/s00702-019-02110-z] [PMID: 31786692]
[19]
Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology, 2019, 75, 158-173.
[http://dx.doi.org/10.1016/j.neuro.2019.08.009] [PMID: 31473217]
[20]
Zhou, X.; Bouitbir, J.; Liechti, M.E.; Krähenbühl, S.; Mancuso, R.V. Para-Halogenation of amphetamine and methcathinone increases the mitochondrial toxicity in undifferentiated and differentiated SH-SY5Y cells. Int. J. Mol. Sci., 2020, 21(8), 2841.
[http://dx.doi.org/10.3390/ijms21082841] [PMID: 32325754]
[21]
Harris, M.T.H.; Laks, J.; Stahl, N.; Bagley, S.M.; Saia, K.; Wechsberg, W.M. Gender dynamics in substance use and treatment: A women’s focused approach. Med. Clin. North Am., 2022, 106(1), 219-234.
[http://dx.doi.org/10.1016/j.mcna.2021.08.007] [PMID: 34823732]
[22]
Perez, F.A.; Blythe, S.; Wouldes, T.; McNamara, K.; Black, K.I.; Oei, J.L. Prenatal methamphetamine—impact on the mother and child—a review. Addiction, 2022, 117(1), 250-260.
[http://dx.doi.org/10.1111/add.15509] [PMID: 33830539]
[23]
Paul, S.E.; Hatoum, A.S.; Fine, J.D.; Johnson, E.C.; Hansen, I.; Karcher, N.R.; Moreau, A.L.; Bondy, E.; Qu, Y.; Carter, E.B.; Rogers, C.E.; Agrawal, A.; Barch, D.M.; Bogdan, R. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiatry, 2021, 78(1), 64-76.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.2902] [PMID: 32965490]
[24]
Zhang, Y.; Gong, F.; Liu, P.; He, Y.; Wang, H. Effects of prenatal methamphetamine exposure on birth outcomes, brain structure, and neurodevelopmental outcomes. Dev. Neurosci., 2021, 43(5), 271-280.
[http://dx.doi.org/10.1159/000517753] [PMID: 34139695]
[25]
Youyou, Z.; Yalei, Y.; Yanfei, D.; Shuquan, Z.; Zhaoyang, L.; Liang, R.; Liang, L. Effects of methcathinone exposure during prenatal and lactational periods on the development and the learning and memory abilities of rat offspring. Neurotox. Res., 2020, 38(1), 86-95.
[http://dx.doi.org/10.1007/s12640-020-00184-2] [PMID: 32140923]
[26]
Soares, J.; Costa, V.M.; Bastos, M.L.; Carvalho, F.; Capela, J.P. An updated review on synthetic cathinones. Arch. Toxicol., 2021, 95(9), 2895-2940.
[http://dx.doi.org/10.1007/s00204-021-03083-3] [PMID: 34100120]
[27]
Barker, D.J. The fetal and infant origins of adult disease. BMJ, 1990, 301(6761), 1111.
[http://dx.doi.org/10.1136/bmj.301.6761.1111] [PMID: 2252919]
[28]
Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol., 2003, 463(1-3), 3-33.
[http://dx.doi.org/10.1016/S0014-2999(03)01272-X] [PMID: 12600700]
[29]
Vorhees, C.V.; Williams, M.T. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[30]
Bevins, R.A.; Besheer, J. Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat. Protoc., 2006, 1(3), 1306-1311.
[http://dx.doi.org/10.1038/nprot.2006.205] [PMID: 17406415]
[31]
Smith, A.M.; Mioduszewski, O.; Hatchard, T.; Byron-Alhassan, A.; Fall, C.; Fried, P.A. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol., 2016, 58, 53-59.
[http://dx.doi.org/10.1016/j.ntt.2016.05.010] [PMID: 27263090]
[32]
Day, N.L.; Goldschmidt, L.; Day, R.; Larkby, C.; Richardson, G.A. Prenatal marijuana exposure, age of marijuana initiation, and the development of psychotic symptoms in young adults. Psychol. Med., 2015, 45(8), 1779-1787.
[http://dx.doi.org/10.1017/S0033291714002906] [PMID: 25534593]
[33]
De Genna, N.M.; Willford, J.A.; Richardson, G.A. Long-term effects of prenatal cannabis exposure: Pathways to adolescent and adult outcomes. Pharmacol. Biochem. Behav., 2022, 214, 173358.
[http://dx.doi.org/10.1016/j.pbb.2022.173358] [PMID: 35216971]
[34]
Angoa-Pérez, M.; Anneken, J.H.; Kuhn, D.M. Neurotoxicology of synthetic cathinone analogs. Curr. Top. Behav. Neurosci., 2016, 32, 209-230.
[http://dx.doi.org/10.1007/7854_2016_21] [PMID: 27753008]
[35]
Sparago, M.; Wlos, J.; Yuan, J.; Hatzidimitriou, G.; Tolliver, J.; Dal Cason, T.A.; Katz, J.; Ricaurte, G. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): A new drug of abuse. J. Pharmacol. Exp. Ther., 1996, 279(2), 1043-1052.
[PMID: 8930215]
[36]
Gygi, M.P.; Gibb, J.W.; Hanson, G.R. Methcathinone: An initial study of its effects on monoaminergic systems. J. Pharmacol. Exp. Ther., 1996, 276(3), 1066-1072.
[PMID: 8786536]
[37]
Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol., 2020, 125, 105776.
[http://dx.doi.org/10.1016/j.biocel.2020.105776] [PMID: 32479926]
[38]
Zarrindast, M.R.; Khakpai, F. The modulatory role of dopamine in anxiety-like behavior. Arch. Iran Med., 2015, 18(9), 591-603.
[PMID: 26317601]
[39]
Olveracortés, M.; Anguianorodríguez, P.; Lópezvázquez, M.; Alfaro, J. Serotonin/dopamine interaction in learning. Prog. Brain Res., 2008, 172, 567-602.
[http://dx.doi.org/10.1016/S0079-6123(08)00927-8] [PMID: 18772051]
[40]
Song, Q.; Deng, Y.; Yang, X.; Bai, Y.; Xu, B.; Liu, W.; Zheng, W.; Wang, C.; Zhang, M.; Xu, Z. Manganese-disrupted interaction of dopamine D1 and NMDAR in the striatum to injury learning and memory ability of mice. Mol. Neurobiol., 2016, 53(10), 6745-6758.
[http://dx.doi.org/10.1007/s12035-015-9602-7] [PMID: 26660110]
[41]
Myhrer, T. Neurotransmitter systems involved in learning and memory in the rat: A meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev., 2003, 41(2-3), 268-287.
[http://dx.doi.org/10.1016/S0165-0173(02)00268-0] [PMID: 12663083]
[42]
Dague, A.; Chavva, H.; Brazeau, D.A.; Denvir, J.; Rorabaugh, B.R. Maternal use of methamphetamine induces SEX-DEPENDENT changes in myocardial gene expression in adult offspring. Physiol. Rep., 2022, 10(22), e15509.
[http://dx.doi.org/10.14814/phy2.15509] [PMID: 36426716]
[43]
Korchynska, S.; Krassnitzer, M.; Malenczyk, K.; Prasad, R.B.; Tretiakov, E.O.; Rehman, S.; Cinquina, V.; Gernedl, V.; Farlik, M.; Petersen, J.; Hannes, S.; Schachenhofer, J.; Reisinger, S.N.; Zambon, A.; Asplund, O.; Artner, I.; Keimpema, E.; Lubec, G.; Mulder, J.; Bock, C.; Pollak, D.D.; Romanov, R.A.; Pifl, C.; Groop, L.; Hökfelt, T.G.M.; Harkany, T. Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants. EMBO J., 2020, 39(1), e100882.
[http://dx.doi.org/10.15252/embj.2018100882] [PMID: 31750562]
[44]
Šlamberová, R. Review of long-term consequences of maternal methamphetamine exposure. Physiol. Res., 2019, 68(Suppl. 3), S219-S231.
[http://dx.doi.org/10.33549/physiolres.934360] [PMID: 31928040]
[45]
Itzhak, Y.; Ergui, I.; Young, J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry, 2015, 20(2), 232-239.
[http://dx.doi.org/10.1038/mp.2014.7] [PMID: 24535458]
[46]
Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1663), 20140066.
[http://dx.doi.org/10.1098/rstb.2014.0066] [PMID: 25602070]
[47]
Rosenfeld, C.S. The placenta-brain-axis. J. Neurosci. Res., 2021, 99(1), 271-283.
[http://dx.doi.org/10.1002/jnr.24603] [PMID: 32108381]
[48]
Goeden, N.; Velasquez, J.; Arnold, K.A.; Chan, Y.; Lund, B.T.; Anderson, G.M.; Bonnin, A. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci., 2016, 36(22), 6041-6049.
[http://dx.doi.org/10.1523/JNEUROSCI.2534-15.2016] [PMID: 27251625]
[49]
Shallie, P.D.; Naicker, T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int. J. Dev. Neurosci., 2019, 73(1), 41-49.
[http://dx.doi.org/10.1016/j.ijdevneu.2019.01.003] [PMID: 30634053]
[50]
Zhao, C.; Xie, P.; Yong, T.; Huang, W.; Liu, J.; Wu, D.; Ji, F.; Li, M.; Zhang, D.; Li, R.; Dong, C.; Ma, J.; Dong, Z.; Liu, S.; Cai, Z. Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy. Sci. Bull. (Beijing), 2021, 66(6), 578-591.
[http://dx.doi.org/10.1016/j.scib.2020.08.036] [PMID: 36654428]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy